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Abstract

Recursive formulae satisfied by the Fourier coefficients of meromorphic modular forms on groups of
genus zero have been investigated by several authors. Bruinier et al. [‘The arithmetic of the values
of modular functions and the divisors of modular forms’, Compositio Math. 140(3) (2004), 552–566]
found recurrences for SL(2, Z); Ahlgren [‘The theta-operator and the divisors of modular forms on genus
zero subgroups’, Math. Res. Lett. 10(5–6) (2003), 787–798] investigated the groups 00(p); Atkinson
[‘Divisors of modular forms on 00(4)’, J. Number Theory 112(1) (2005), 189–204] considered 00(4), and
S. Y. Choi [‘The values of modular functions and modular forms’, Canad. Math. Bull. 49(4) (2006), 526–
535] found the corresponding formulae for the groups0+0 (p). In this paper we generalize these results and
find recursive formulae for the Fourier coefficients of any meromorphic modular form f on any genus-
zero group 0 commensurable with SL(2, Z), including noncongruence groups and expansions at irregular
cusps. The form of the recurrence relations is well suited for the computation of the Fourier coefficients
of the functions and forms on the groups which occur in monstrous and generalized moonshine. The
required initial data has, in many cases, been computed by Norton (private communication).
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1. Introduction

Suppose that 0 is a genus-zero subgroup of SL(2, R) commensurable with SL(2, Z).
Let

f = qr
+

∞∑
n=1

anqr+n,

be a meromorphic modular form of integer weight k on 0, where q is a suitable local
parameter at the cusp∞.

When 0 = SL(2, Z), the problem of finding universal recursive relations satisfied
by the Fourier coefficients of f was investigated by Bruinier et al. in [6].

Shortly after this work, Ahlgren in [1] and Atkinson in [3] obtained similar
results for the cases 00(p) (p = 2, 3, 5, 7, 13) and 00(4), respectively. S. Y. Choi
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in [8] considered the case 0+0 (p), which is the group 00(p) extended by the
Fricke involution. These groups have genus zero for p ∈ {2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 41, 47, 59, 71}. S. Y. Choi also gave recursive relations expressing the
coefficients of a Hauptmodul j1 of 01 by using those of the normalized Hauptmodul
j2 of 02, where 01 is a Fuchsian group of the first kind of genus zero and 02 is a
finite-index, genus-zero subgroup of 01. In related work, D. Choi [7] considered the
case of forms on 00(N ) for which N is square-free, but not necessarily genus zero, in
terms of certain ‘(`, N )-type’ sequences of modular functions.

The strategy of these papers, following that of [6], has been to express (θ f )/ f in
terms of a modular form fθ of weight 2 and terms involving the Eisenstein series E2,
where θ is the Ramanujan θ operator, and then to compute (1/2π i)

∫
fθ (z)Fn(z) dz,

along the boundary of a fundamental domain of the group in question, where Fn ,
n = 1, 2, 3, . . . are a certain polynomials in the Hauptmodul of 0 known as the Faber
polynomials.

The motivation for the present paper is to generalize this work, using a somewhat
different method, so as to facilitate and simplify the computations of the Fourier
coefficients of the modular functions and forms which occur in moonshine and
generalized moonshine [9].

In this case, the groups of interest are discrete, genus zero, contain some 00(N ),
and the subgroup which stabilizes ∞ is precisely the subgroup of translations by
integers. We shall call these groups ‘moonshine type’ groups. In the case of monstrous
moonshine the groups are between some 00(N ) and its normalizer in SL(2, R), but for
generalized moonshine the inclusion is not necessarily normal; see [9].

Several types of recurrence relations for the Hauptmoduls which occur in
moonshine are known. For example, in his proof of the monstrous moonshine
conjectures, Borcherds [4] makes use of certain recurrence formulae which generalize
those found by Lehmer [17] and Mahler [19]. For a generalization of Mahler’s
recurrences to some Hauptmoduls with irrational coefficients, see [12].

Another type of recurrence was introduced by Norton [22], who defined the notion
of a replicable function. This gives rise to a new set of recurrence relations for
Hauptmoduls with rational coefficients on moonshine type groups. Conjecturally,
these recurrences can be extended to the case of Hauptmoduls with irrational
coefficients on moonshine type groups. For more information on replicable functions
see, for example, [2, 9, 13, 22].

More generally, a tabulation of all SL(2, R) conjugacy classes of congruence
subgroups of genus zero and of genus one was found in [10, 11]. The results are
that there are 504 SL(2, R) conjugacy classes of genus-zero, congruence subgroups.
These give rise to 616 groups whose Hauptmoduls have rational coefficients and
which contain some 00(N ). Conjecturally, these Hauptmoduls correspond precisely
to Norton’s rational replicable functions (with the exception of three trivial cases).

The recurrence formulae we give in this paper have the virtue of applying uniformly
to any group of genus zero which is commensurable with the modular group. In
particular, they apply to moonshine type groups. They also apply to the computation
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of the coefficients of modular forms, not only Hauptmoduls. The required input is
certain ramification data. For moonshine type groups with rational Hauptmoduls,
the ramification data has been calculated by Norton [23]. Thus, for these cases, the
recurrences we give are of immediate utility. It would be very interesting to complete
this computation to include all 504 cases of conjugacy classes of genus-zero groups
found in [10].

To be more precise, let 0+0 (N ) denote the group 00(N ) extended by all its Atkin–
Lehner elements. Then the recurrence relations we find have as input a square-free
integer N for which 0 is conjugate to a subgroup of 0+0 (N ). This is possible by a
theorem of Helling [14]. Also required are the ramification locus and ramification
orders of a normalized Hauptmodul φ0 of 0. Then, given the weight and divisor of f
and the values of φ0 at the points at which the divisor of f is supported, the recurrence
relations for the Fourier coefficients of f are given in Theorems 3.6 and 3.7. These
have the same form for all 0 and f , and in this sense are universal.

Since the ‘Helling groups’, 0+0 (N ) are transitive on cusps, the form of the
recurrence relations at any cusp of 0 is once again given by Theorems 3.6 and 3.7.
Although our motivation was to find algorithms for computing the Fourier coefficients
of functions and forms for groups of moonshine type, the results hold for any genus-
zero group commensurable with the modular group, including irregular groups (those
which do not contain −12) and noncongruence subgroups. For the irregular groups,
expansions at irregular cusps may be computed.

2. Preliminaries

Let 0 be a finite-index subgroup of 0+0 (N ), for some square-free N . 0+0 (N ) as well
as 0 act on H∗ by Möbius transformations, where H∗ is the union of the upper half-
plane H with the projective rational line P1(Q). Assume that s0 =∞, s1, . . . , st ∈

P1(Q) are a set of representatives of 0 \ P1(Q).
Since 0+0 (N ) acts transitively on P1(Q) (see [15]), there is only one equivalence

class of cusps and this class contains∞. The stabilizer subgroup of∞ in 0+0 (N ) is{
±

(
1 n
0 1

)
: n ∈ Z

}
.

Now we fix a cusp s of 0 and then take an element γ ∈ 0+0 (N ) such that γ (s)=∞.
We have

±γ0sγ
−1
=

{
±

(
1 h
0 1

)m

: m ∈ Z
}
, (2.1)

where h is a positive integer and 0s := {α ∈ 0 : α(s)= s} is the stabilizer subgroup
of s in 0. If −12 6∈ 0, then γ0sγ

−1 is generated either by
(

1 h
0 1

)
or by

(
−1 h

0 −1

)
. The

cusp s is called regular or irregular of width h accordingly. By the definition, if
−12 ∈ 0, then all the cusps of 0 are regular. We call such a group regular. If −12 is
not in 0, then we call 0 irregular. Thus regular groups have only regular cusps, while
irregular groups can have regular or irregular cusps or a mixture of the two.
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For a subgroup G of SL(2, R), we define G to be the image of G in PSL(2, R)=
SL(2, R)/{±1}. If h0, h1, . . . , ht are the cusp widths of the cusps∞, s1, . . . , st of 0,
then the following relation holds (see [16]):

t∑
i=0

hi = [0
+

0 (N ) : 0]. (2.2)

This is called the cusp-split equation of 0.
A complex-valued function f on the upper half-plane H is said to be a meromorphic

(respectively, holomorphic) modular function of weight k with respect to 0 if:
• f is meromorphic (respectively, holomorphic) on H;
• f |[ρ]k = f , for all ρ =

(
a b
c d

)
∈ 0, where f |[ρ]k(z) := (cz + d)−k f (ρ(z));

• f is meromorphic (respectively, holomorphic) at every cusp s of 0.
This last condition means that

f |[γ−1
]k(z)=

{
9(eπ i z/h) if k is odd and s is irregular,

8(e2π i z/h) otherwise,
(2.3)

where 8 and 9 are a meromorphic (respectively, holomorphic) functions at zero, 9
is an odd function, and h and γ are as in Equation (2.1). For more details, see [24,
Definition 2.1].

We shall denote by Ak(0) (respectively, Gk(0)) the space of meromorphic
(respectively, holomorphic) modular forms of weight k for 0. Moreover, if for each
cusp of 0, the function8 (or 9) in (2.3) vanishes at zero, then f is called a cusp form
on 0, and the set of all such cusp forms will be denoted by Sk(0).

Let us recall the definition of the order of a meromorphic function f at a point
τ ∈ 0 \H∗. First, for τ corresponding to a point z0 ∈H, we set eτ = |0τ |, where 0τ
is the stabilizer subgroup of τ . Then ordτ f is defined (see [24, Section 2.4]) as

ordτ f := e−1
τ ord(z−z0) f.

If τ corresponds to a cusp s of 0, with cusp width h, then

ordτ f :=

{
(ordeπ i z/h9)/2 if k is odd and s is irregular,

orde2π i z/h8 otherwise,

where8 and9 are as in (2.3). We can associate with each f ∈ Ak(0) the divisor of f
defined as

div( f ) :=
∑

τ∈0\H∗
ordτ f [τ ]. (2.4)

From now on, we suppose that 0 is of genus zero, by which we mean that the
compact Riemann surface 0 \H∗ is of genus zero. Any generator φ0 of the function
field of this Riemann surface is called a Hauptmodul of 0. When no confusion arises,
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we write φ rather than φ0 . If we require φ to have a simple pole at the cusp infinity,
then (see, for instance, [24, Ch. 2]) after normalization, φ has a q-expansion of the
form

φ(q)=
1
q
+

∑
n≥0

cnqn, (2.5)

where q = e2π i z/h0 .

REMARK 2.1. In light of (2.3), any modular form f (z) of weight k may also be
viewed as a function of q , namely f (z)=8(q) (or f (z)=9(q1/2)). Therefore,
by an abuse of notation, we allow ourselves to write f (q), viewing f as a function
of q . The same remark also applies to any reference to derivatives. In other words,
f ′(q)= d f/dq should be understood as (h0/2π iq)(d f/dz). So, from now on we
suppress 8 and 9 from the notation.

2.1. Faber polynomials. Let

ϕ(q)=
1
q
+

∑
n≥0

an(ϕ)q
n

be a formal power series in q . For n ≥ 1, define the nth Faber polynomial to be the
unique monic polynomial Fn of degree n which satisfies the relation

Fn(ϕ)=
1

qn +

∞∑
m≥1

Fn,mqm .

The coefficients Fn,m depend on the coefficients an(ϕ). For later computations, it is
also convenient to set F0 = 1. Following this convention (see Relation 14 on page 35
of [25]), one may verify that the Faber polynomials are given by the formal generating
series

qϕ′(q)

w − ϕ(q)
=

∞∑
n=0

Fn(w)q
n, (2.6)

where ϕ′(q) is the derivative of ϕ with respect to q . In fact, (2.6) turns out to be an
equality between holomorphic functions if φ is a holomorphic function on a bounded
simply connected domain (for the details, see [25, Theorem 1, p. 51]). The Faber
polynomials Fn , for n ≥ 0, also satisfy the recurrence relation

Fn+1(w)= wFn(w)−

n∑
k=0

an−k(ϕ)Fk(w)− nan(ϕ); (2.7)

see, for instance, the relations in (7), page 40 of [25]. It is also possible to give an
explicit formula for Fn in terms of the coefficients a0(ϕ), a1(ϕ), . . . , an−1(ϕ), n ≥ 1.
This can be done by invoking the following lemma whose proof has been inspired by
relation (2.11) on page 23 and Example 20 on page 33 of [18].
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LEMMA 2.2. Let 3=Q[α1, α2, α3, . . . ], and set α0 = 1. Now suppose that Si ∈3

(i = 1, 2, 3, . . . ) are such that

nαn +

n∑
j=1

S jαn− j = 0 (∀n ≥ 1). (2.8)

Then
Sn = S(n; α1, . . . , αn),

where

S(l; α1, . . . , αn)

:= l
∑

m1,...,mn≥0
m1+2m2+···+nmn=l

(−1)m1+···+mn
(m1 + · · · + mn − 1)!

m1! · · · mn!
α

m1
1 · · · α

mn
n .

PROOF. In 3[[t]], let

H(t)=
∑
n≥0

αntn and P(t)=
∑
n≥1

Sntn−1.

Then
−H(t)P(t)= H ′(t).

This is true since

H ′(t) =
∑
n≥1

nαntn−1

=

∑
n≥1

( n∑
j=1

−S jαn− j

)
tn−1

= −

∑
n≥1

Sntn−1
∑
n≥0

αntn

= −P(t)H(t).

For any element z ∈ t3[[t]], define L(z)= z + z2/2+ z3/3+ · · · . One has the
identity (1+ z)L ′(−z)=−z′. Taking z = H+(t)=

∑
n≥1 αntn , this yields

H(t)(H+(t)− 1
2 H+(t)2 + 1

3 H+(t)3 − · · · )′ =−P(t)H(t).

Thus, since H(t) is not a zero divisor in 3[[t]],

−P(t)= (H+(t)− 1
2 H+(t)2 + 1

3 H+(t)3 − · · · )′. (2.9)

To compute the coefficient of ntn−1 in (2.9) we argue as follows. For any choice of
m1, . . . , mn ≥ 0 satisfying m1 + · · · + nmn = n, write k = m1 + m2 + · · · + mn and
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note that 1≤ k ≤ n. Such a choice uniquely gives rise to the term

(−1)k−1k!

km1! · · · mn!
(α1t)m1(α2t2)m2 · · · (αntn)mn

= (−1)k−1 (m1 + · · · + mn − 1)!
m1! · · · mn!

α
m1
1 · · · α

mn
n tn,

obtained by the generalized binomial theorem applied to the kth term appearing in
H+(t)− 1

2 H+(t)2 + 1
3 H+(t)3 − · · · . Now taking the sum over all possible choices

gives the desired result. 2

Combining Lemma 2.2 with (2.7) yields the following formula for the Faber
polynomials (cf. [5, Theorem 1.3]).

COROLLARY 2.3.

Fn(w) = S(n; a0(ϕ)− w, a1(ϕ), . . . , an−1(ϕ))

= n
∑

m1+2m2+···+nmn=n

(−1)m1+m2+···+mn
(m1 + · · · + mn − 1)!

m1! · · · mn!

× (a0(ϕ)− w)
m1a1(ϕ)

m2 · · · an−1(ϕ)
mn .

(2.10)

3. The recurrence relations

In this section we find recurrence relations for forms on any genus-zero subgroup 0
of SL(2, R)which is commensurable with SL(2, Z). As mentioned in the introduction,
Helling in [14] proved the following result.

THEOREM 3.1. There exist a ρ ∈GL2
+(Q) and a square-free integer N such that

ρ−10ρ ⊆ 0+0 (N ).

We remark that, as the map f 7→ f |[ρ]k provides an isomorphism of
complex vector spaces between Ak(0) and Ak(ρ

−10ρ) (see, for example, [24,
Proposition 2.4]), we may restrict ourselves to the case where 0 is contained in 0+0 (N ).
So, from now on, we assume that 0 ⊆ 0+0 (N ) for the same square-free N . Also, since
0+0 (N ) acts transitively on cusps, without loss of generality, we only need consider
the cusp∞.

Now let

f (z)= qr
+

∞∑
n=1

anqr+n
∈ Ak(0) (3.1)

be a meromorphic modular form of weight k for 0, where q = e2π i z/h0 . As discussed
in Section 2, if k is even, or if k is odd and the cusp∞ is regular, then r is an integer.
While if k is odd and the cusp∞ is irregular, r is equal to r ′/2 for some odd integer r ′.
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3.1. The weight zero quotient. For a square-free integer N , let ν(0+0 (N )) be the
volume of the compact Riemann surface 0+0 (N ) \H∗, which is given by

ν(0+0 (N ))=
π

3

∏
p|N

p + 1
2
;

see, for example, [15, Section 3]. This formula, together with [24, Proposition 2.16,
Theorem 2.20] and the cusp-split formula (2.2), implies that∑

τ∈0\H∗
ordτ f =

k

12

∏
p|N

p + 1
2

t∑
i=0

hi . (3.2)

Let η(z) be the Dedekind eta function and1(z)= η24(z). To continue, we seek a cusp
form for 0+0 (N ) which plays the same role as 1 does for SL(2, Z). By the results of
Newman [20, 21], for some suitable `, the function

h(z)=
∏
δ|N

η(δz)`

is a cusp form of weight ε = (`/2)τ (N ) on 00(N ), where τ(N ) is the number of
positive divisors of N . Moreover, since N is square-free, 0+0 (N ) is the normalizer
of 00(N ); see, for example, [15]. It follows that h(z) is a form on 0+0 (N ). As we shall
see, the results below are independent of the choice of `.

The form h(z) is holomorphic and nonvanishing on H and has a zero of order
(`/24)σ (N ) at∞, where σ(N )=

∑
δ|N δ. One can easily see that

2 :=
f ε/(ε,k)

hk/(ε,k)

is a meromorphic modular form of weight zero on 0, and therefore it can be expressed
as a rational function of φ, the generator of the function field of 0 \H∗. The first
lemma of the next section gives the precise relation between 2 and φ.

3.2. The recursive formulae. We first state and prove two preliminary results which
provide us with enough ingredients for the proof of the main theorem of this section.

LEMMA 3.2. Let the notation be as above. Then, for some nonzero constant λ,

2(z) = λ
t∏

i=1

(φ(z)− φ(si ))
ε

(ε,k) ordsi f−
`hi kσ(N )

24(ε,k)

×

∏
τ∈0\H

(φ(z)− φ(τ))
ε

(ε,k) ordτ f
.

(3.3)

PROOF. To prove this equality it is enough to verify that both sides have the same order
for the points of 0 \H∗. Since h(z) is holomorphic and nonvanishing on the upper
half-plane, for any τ ∈ 0 \H the order of both sides of (3.3) is the same. For any cusp
si , 1≤ i ≤ t , we also have the equality of the orders because ordsi h = `hiσ(N )/24.
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At the cusp∞ we start with the equality (3.2) and immediately we have

`

2
τ(N )

∑
τ∈0\H∗

ordτ f =
`k

24

∏
p|N

(p + 1)
t∑

i=0

hi .

This relation, combined with the identity
∏

p|N (p + 1)= σ(N ), implies that

ε

(ε, k)
ord∞ f −

`h0kσ(N )

24(ε, k)
=

t∑
i=1

`hi kσ(N )

24(ε, k)
−

∑
τ∈0\H∗

ε

(ε, k)
ordτ f.

The last relation shows the equality of the orders at∞ and this completes the proof. 2

LEMMA 3.3. With the notation as above, the coefficients of f satisfy the recursive
relation

an =
−β1an−1 − β2an−2 − · · · − βn−1a1 − βn

n
, (3.4)

where, for n ≥ 1, βn is defined by the formula

βn :=
2kh0

τ(N )

∑
δ|N

δσ

(
n

δh0

)
+

t∑
i=1

(
ordsi f −

khiσ(N )

12τ(N )

)
Fn(si )

+

∑
τ∈0\H

ordτ f Fn(τ ).

(3.5)

Here σ(n/δh0)= 0, if δh0 - n.

PROOF. Taking the logarithmic derivative of (3.3) and using Equation (2.6), we find

q f ′(q)

f (q)
=
`kh0

ε

∑
δ|N

δ

24
E2(q

δh0)

−

t∑
i=1

((
ordsi f −

khiσ(N )

12τ(N )

) ∞∑
n=0

Fn(si )q
n
)

−

∑
τ∈0\H

(
ordτ f

∞∑
n=0

Fn(τ )q
n
)
,

(3.6)

where Fn is the nth Faber polynomial associated with φ and E2(q)= 1−
24
∑
∞

n=1 σ(n)q
n is the nonmodular Eisenstein series of weight 2. The last equality

can be written as

q f ′(q)

f (q)
=
`kh0σ(N )

24ε
−

kh0σ(N )

12τ(N )
+ r −

∞∑
n=1

βnqn
= r −

∞∑
n=1

βnqn, (3.7)
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where βn is defined as in (3.5). Substituting the q-expansion of f given in (3.1) in
Equation (3.7) yields

r +
∞∑

n=1

(r + n)anqn
=

(
1+

∞∑
n=1

anqn
)(

r −
∞∑

n=1

βnqn
)
.

By equating the coefficients of qn on both sides of this last equality,

(r + n)an = ran − β1an−1 − β2an−2 − · · · − βn,

and this last equality yields the desired identity (3.4). 2

LEMMA 3.4. Keeping the assumptions as before,

βn = S(n; a1, . . . , an), (3.8)

where S(n; a1, . . . , an) is defined as in Lemma 2.2.

PROOF. By comparing (3.4) and (2.8), we see that the βn , n = 1, 2, . . . , satisfy the
same relations as the Sn , n = 1, 2, . . . , and so the result follows by Lemma 2.2. 2

THEOREM 3.5. Let f = qr
+
∑
∞

n=1 anqr+n be a weight-k meromorphic modular
form for the genus-zero subgroup 0 of 0+0 (N ). Let s0 =∞, s1, s2, . . . , st be
representatives of the equivalence classes of cusps of 0, of widths h0, h1, h2, . . . , ht ,
respectively. Then

an =
∑

m1,...,mn−1≥0
m1+···+(n−1)mn−1=n

(−1)m1+···+mn−1
(m1 + · · · + mn−1 − 1)!

m1! · · · mn−1!
am1

1 · · · a
mn−1
n−1

−
1
n

(
2kh0

τ(N )

∑
δ|N

δσ

(
n

δh0

)
+

t∑
i=1

(
ordsi f −

khiσ(N )

12τ(N )

)
Fn(φ(si ))

+

∑
τ∈0\H

ordτ f Fn(φ(τ))

)
,

where Fn is the nth Faber polynomial associated with the Hauptmodul φ of 0.

PROOF. The result follows from Lemmas 3.3 and 3.4. 2

Theorem 3.5 gives recursive formulae for the coefficients of the modular form f .
These formulae involve the Faber polynomials evaluated at points of H∗. These
polynomials can also be calculated recursively. To clarify the situation, and to make
clear the required input to the recursion relations, we start by giving a recursive
formula for the Fourier coefficients of normalized Hauptmodul φ of 0.
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Applying Theorem 3.5 to the (normalized) derivative of the Hauptmodul φ gives
the equation

−ncn =
1

n + 1

{
S(n + 1; 0,−c1,−2c2, . . . ,−(n − 1)cn−1)

−
4h0

τ(N )

∑
δ|N

δσ

(
n + 1
δh0

)
−

t∑
i=1

(
1−

hiσ(N )

6τ(N )

)
Fn+1(φ(si ))

−

∑
τ∈0\H

(1− e−1
τ )Fn+1(φ(τ))

}
.

(3.9)

As cn occurs linearly on each side of this equation, we can solve for cn . The result,
after simplification and applying Corollary 2.3, is as follows.

THEOREM 3.6. If n =−1, then c−1 = 1.
If n = 0, then

c0 =
24h0

σ(N )h0 + 6τ(N )
δ1,h0 +

6τ(N )
σ (N )h0 + 6τ(N )

×

{ t∑
i=1

(
1−

hiσ(N )

6τ(N )

)
φ(si )+

∑
τ∈0\H

(1− e−1
τ )φ(τ)

}
.

If n > 0, then

cn =
1

(n + 1)(1+ h0σ(N )
6τ(N ) + n)

×

{
4h0

τ(N )

∑
δ|N

δσ

(
n + 1
δh0

)
− S(n + 1; 0,−c1, . . . ,−(n − 1)cn−1)

+

t∑
i=1

(
1−

hiσ(N )

6τ(N )

)
S(n + 1; c0 − φ(si ), c1, . . . , cn−1)

+

∑
τ∈0\H

(1− e−1
τ )S(n + 1; c0 − φ(τ), c1, . . . , cn−1)

}
.

Using Corollary 2.3, Theorem 3.5 can be rewritten to make the dependence on the
coefficients of φ explicit.

THEOREM 3.7. Let the hypotheses be as in Theorem 3.5 and let ci , i =−1, 0, 1, . . . ,
be the coefficients of Hauptmodul φ of 0, then
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an =
1
n

{
S(n; a1, . . . , an−1)−

2kh0

τ(N )

∑
δ|N

δσ

(
n

δh0

)

−

t∑
i=1

(
ordsi f −

khiσ(N )

12τ(N )

)
S(n; c0 − φ(si ), c1, . . . , cn−1)

−

∑
τ∈0\H

ordτ f S(n; c0 − φ(τ), c1, . . . , cn−1)

}
.

REMARK 3.8. By Theorems 3.6 and 3.7, the recurrence relations established require
as input:
• a square-free integer N such that 0 is a subgroup of 0+0 (N );
• the weight and divisor of f ;
• the ramification locus and the ramification orders of the Hauptmodul φ0 and the

values φ0(τ ), where ordτ f 6= 0.
Given this input, the relations have the same form for all 0 and f and are, in this sense,
universal.

REMARK 3.9. More generally, suppose that f (z) is a form of rational weight k and
multiplier ν on 0, where 0 is a subgroup of some 0+0 (N ) as above. If there is some
integer D such that f D(z) is a form of integral weight and trivial multiplier, then
f (z) has an expansion of the form (3.1) and we can apply the previous arguments to
the quotient f Dε/hDk , where h and ε are as in Section 3.1. So in this case also the
coefficients of f (z) will satisfy the recurrences of Theorems 3.5 and 3.7.
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