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Abstract

In this paper we explore the impact of imitation rules on players’ long-run behaviors
in evolutionary prisoner’s dilemma games. All players sit sequentially and equally
spaced around a circle. Players are assumed to interact only with their neighbors,
and to imitate either their successful neighbors and/or themselves or the successful
actions taken by their neighbors and/or themselves. In the imitating-successful-player
dynamics, full defection is the unique long-run equilibrium as the probability of players’
experimentations (or mutations) tend to 0. By contrast, full cooperation could emerge in
the long run under the imitating-successful-action dynamics. Moreover, it is discovered
that the convergence rate to equilibrium under local interaction could be slower than that
under global interaction.
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1. Introduction

Whether (full) cooperation can be sustained in repeatedly played prisoner’s dilemma (PD)
games interests many researchers. Several approaches have been explored to achieve the
cooperation goal. The folk theorem, assuming that players are longsightedly rational, has been
shown to be effective in this subject. More precisely, the folk theorem shows that cooperative
payoff could be achieved by some equilibrium if players are sufficiently patient. Evolutionary
games with boundedly rational players are promising approaches as well. Nevertheless, whether
players will eventually cooperate would depend on how to set players’ boundedly rational
behaviors. For instance, through the aspiration-level adjustment over periods based on realized
payoffs, Karandikar et al. (1998) and Palomino and Vega-Redondo (1999) showed that coop-
eration is possible in the long run among two players and a continuum of players, respectively.
In the replicator dynamics, Bergstrom and Stark (1993), Nowak and Sigmund (1995), and
Wiseman and Yilankaya (2001) proved that cooperation among a continuum of players could
emerge in the long run.

Oppositely, cooperation is impossible under the Darwinian-type dynamics studied in Kandori
et al. (1993) and Robson and Vega-Redondo (1996). In Kandori et al. (1993) individuals play
with all other players, while players are randomly paired to play the game multiple rounds per
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period in Robson and Vega-Redondo (1996). A detailed comparison between Kandori et al.
(1993) and Robson and Vega-Redondo (1996) can be found in Miekisz (2008). Cooperation
cannot be achieved either under the best-response dynamics studied in Ellison (1993), in which
individuals interact only with their neighbors. However, combining an imitating-successful-
action mechanism with local interaction, Eshel et al. (1998) showed that only the states with
cooperators being the majority could survive and be the long-run equilibria (LRE) for a large
population size. Nevertheless, their work does not tell us exactly which states, especially the
full-cooperation state, are LRE.

The first purpose of this paper is to answer the questions that remain in Eshel et al. (1998) by
deriving all the LRE and the convergence rates to these equilibria. In our model, players meet
with each of their two neighbors once to play the PD game at each time period. Players are
assumed to imitate the successful actions yielding the higher average payoffs. After completing
the strategy revision, players will independently experiment with new strategies with a small
probability. Under our model, which states are LRE and the convergence rates to these equilibria
depend on the game’s payoff structure and the population size. For a large population size and
cooperative payoff, full cooperation would emerge in the long run with a less-than-one positive
probability. Moreover, the states with cooperators being the majority are not necessarily the
LRE. It is also discovered that players could move slower to full defection under local interaction
than under global interaction. This outcome is different from that of Ellison (1993), who
discovered that the convergence rate to the long-run equilibrium under local interaction is
faster than that under global interaction in the best-reply dynamics.

Eshel et al. (1998) demonstrated that players’ local interaction settings are necessary for the
emergence of cooperation under a specific imitation mechanism. However, one may wonder
whether the local interaction setting is also necessary under other imitation mechanisms. Thus,
the second purpose of this paper is to investigate this issue by changing players’ imitation rules.
Unlike in Eshel et al. (1998), we presume that players imitate the successful neighbors or
themselves earning the highest total payoffs. It is found that full defection is the unique long-
run equilibrium. Moreover, the convergence rate to full defection is independent of the game’s
payoff structure and population size. Hence, our results show that, for large cooperative payoffs,
players’ imitation rules are critical in determining their long-run behavior in evolutionary PD
games, in addition to the local interaction setting.

The intuition behind different outcomes under the two imitation rules mentioned above is as
follows. The force deviating from cooperation could be weakened in the process of averaging
action payoffs under the imitating-successful-action rule, but that force remains dominant under
the imitating-successful-player rule. Thus, full cooperation might flourish under the former rule.

The above strategy revision dynamics without mutation can be described as a Markov chain
with the strategy profiles of all players as states. Each state is either transient or lies in a closed
connected component and is thus called a stationary state. In particular, full cooperation and
full defection are two typical absorbing states and are thus stationary states. The introduction
of a mutation mechanism changes the landscape of the states. Each stationary state is now
associated with a basin. The deeper the basin is, the longer the mutated process will stay in it.
In other words, the LRE desired are those stationary states which have the deepest basin.
Though complicated, computation of the basin depth can be done via the method of Freidlin
and Wentzell (1984). It turns out that, under the imitating-successful-action dynamics, the set
of LRE and the convergence rate to equilibrium depend on the population size and on the payoff
structure as well.
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The rest of the paper is organized as follows. Two imitation rules are presented in Section 2.
The associated results are demonstrated in Section 3. The method of Freidlin and Wentzell is
briefly introduced in Section 4, and the proofs of our findings are given in Section 5.

2. The model

Our model is described as follows. Let N = {1, 2, . . . , n}, n ≥ 5, be the set of players.
These players are assumed to sit sequentially and equally spaced around a circle. Each player
has exactly two neighbors. For i ∈ N , let Ni = {i − 1, i + 1} be the set of player i’s neighbors.
Note that player n + i is the same as player i by modulo n. At time period t ∈ {0, 1, 2, . . .},
players meet with each of their two neighbors once to play the following PD game:

a, a b, c

c, b d, d

D C

D

C

Here {C, D} is the strategy set for all players. By convention, C and D represent the cooperation
and defection (or noncooperation) strategies, respectively. Moreover,

a, b, c, and d are payoffs with b > d > a ≥ c. (2.1)

When a > c, strategy D strictly dominates strategy C and (D, D) is the unique Nash equilib-
rium. When a = c, strategy D weakly dominates strategy C, and (D, D), (C, D), and (D, C)

are all Nash equilibria. Nevertheless, (C, C) yields higher payoff than (D, D) in both cases
above. Accordingly, the state space S of our dynamic systems is the set of all players’ strategy
profiles. That is, S = {C, D}n with element s = (s1, s2, . . . , sn), where si is the strategy adopted
by player i ∈ N . For simplicity, label by C = (C, C, . . . , C) and D = (D, D, . . . , D) the
states where all players cooperate and defect, respectively. In the beginning of each period,
players’ actions and payoffs that occurred (after mutation) in the last period are observable to
their neighbors.

Our local-interaction imitation dynamic system consists of two successive parts: imitation
and mutation. In the imitation process, two rules are considered. In the first rule, each player i

is assumed to imitate the most successful player, i.e. the player earning the highest total payoff
among his neighbors and himself. More precisely, given state s = (s1, s2, . . . , sn) ∈ S at
time t , let zi(s) represent player i’s total payoff after playing with each of his neighbors once
at time t . It is easy to see that

zi(s) =
{

bnC
i (s) + a(2 − nC

i (s)) if si = D, i.e. player i chooses strategy D,

dnC
i (s) + c(2 − nC

i (s)) if si = C, i.e. player i chooses strategy C.
(2.2)

Here nC
i (s) = |{j ∈ Ni : sj = C}| is the number of player i’s neighbors choosing strategy C at

time t . Accordingly, player i’s next-period rational choice ri(s) satisfies

ri(s) ∈ Mi(s) := {sj : zj (s) = max zk(s) for k ∈ Ni ∪ {i}}. (2.3)

In the second rule, after playing with his neighbors, each player i is assumed to imitate the
most successful action, i.e. the action yielding the highest average payoff which was adopted
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among his neighbors and himself at time t . Let δ be the Kronecker notation. Then

aE
i (s) =

⎧⎪⎨
⎪⎩

∑
k∈Ni∪{i} zk(s)δE,sk∑

k∈Ni∪{i} δE,sk

if E ∈ {si−1, si , si+1},
−∞ if E �= si−1 = si = si+1,

(2.4)

represents the average payoff for strategy E ∈ {C, D} among player i and his neighbors.
Therefore, player i’s next-period rational choice ri(s) satisfies

ri(s) ∈ M̄i(s) := {E ∈ {C, D} : aE
i (s) = max(aC

i (s), aD
i (s))}. (2.5)

The computations of Mi(s) in (2.3) and M̄i(s) in (2.5) involve the strategies taken by five
consecutive players from i − 2 to i + 2. There are 32 cases in total to be considered in order
to determine ri(s) from (2.3) or (2.5). Since

ri(s) = si if si−1 = si = si+1, (2.6)

14 cases are left by symmetry. These 14 cases can be classified into four categories: (i) only
player i in Ni ∪{i} chooses strategy D, (ii) only player i in Ni ∪{i} chooses strategy C, (iii) two
players including player i in Ni∪{i} choose strategy D, and (iv) two players including player i in
Ni∪{i} choose strategy C. The corresponding values of aC

i (s), aD
i (s), and zj (s) for j ∈ Ni∪{i}

are presented in Tables 1, 2, 3, and 4 inAppendixA. For example, if (si−2, si−1, si , si+1, si+2) =
(D, D, D, C, D) then zi−1(s) = a + a = 2a, zi(s) = a + b, and zi+1(s) = c + c = 2c. Since
si−1 = si = D and si+1 = C, we obtain, by (2.4), that aD

i (s) = (zi−1(s) + zi(s))/2 =
(3a + b)/2 and aC

i (s) = zi+1(s) = 2c.
Some ambiguity occurs when Mi(s) = {C, D} or M̄i(s) = {C, D}. For simplicity, we

require in this paper that, by inertia, player i always sticks to his original strategy si at time t

whenever ambiguity occurs. Under this strict rule,

ri(s) = si if and only if si ∈ Mi(s) (or si ∈ M̄i(s)). (2.7)

The loose rule that both {C, D} can be chosen as the rational choice ri(s) by setting

P(ri(s) = C) = P(ri(s) = D) = 1
2

can be dealt with similarly, and the same results hold with slight modifications.
The above imitation process induces a time-homogeneous Markov chain on S with its

probability transition matrix Q0 : S × S → [0, 1] given by

Q0(s, u) = 1 or 0 depending on whether u = r(s) or not, respectively, (2.8)

where r(s) = (r1(s), r2(s), . . . , rn(s)) is uniquely determined for state s ∈ S by (2.7). In
particular, from (2.6) we have r(C) = C and r(D) = D. Hence,

Q0(C, C) = Q0(D, D) = 1. (2.9)

In the Markov chain terminology, each state in S is either transient or lies in a closed connected
component F . In the latter case, it is called a stationary state. By definition, all states in any F
can reach each other. A state is called absorbing if and only if it lies in some F with |F | = 1.
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In the literature, F is sometimes called an absorbing set. Owing to |S| < ∞, the set S0 of all
stationary states is nonempty and can be characterized by

S0 =
{
s ∈ S : lim

t→∞(νQt
0)(s) > 0 for some initial distribution ν on S

}
. (2.10)

Since C and D are absorbing states under Q0 by (2.9), we have

{C, D} ⊆ S0. (2.11)

After completing the imitation process, players will simultaneously, but independently, alter
their rational choices {ri(s)} with identical probability ε > 0, which is called the mutation rate
and can be regarded as the probability of players’experimenting with new strategies. Altogether,
our local-interaction imitation dynamics define a Markov chain {Xt : t = 0, 1, . . .} on S with
its probability transition matrix Qε, a perturbation of Q0 in (2.8), given by

Qε(s, u) = εd(r(s),u)(1 − ε)n−d(r(s),u) for all s, u ∈ S, (2.12)

where d(r(s), u) = |{i ∈ N : ri(s) �= ui}| is the number of mismatches between the next truly
adopted strategy u and the revised rational choice r(s) at state s.

Because Qε(s, u) > 0 for all s, u ∈ S, the mutation mechanism makes our dynamic process
{Xt } ergodic. Let µε be the associated unique invariant distribution, which is independent of
the initial distribution and characterized by

µε = µεQε. (2.13)

We are interested in the limit probability distribution µ∗ := limε→0 µε, whose existence is
shown in Section 5, and, in particular, whether

C ∈ S∗ := {s ∈ S : µ∗(s) > 0}, (2.14)

which means that full cooperation among players is possible in the long run. Elements in S∗ are
called the stochastically stable states or LRE. Moreover, we are interested in the order estimate
of Eε(T ), where

T = inf{t ≥ 0 : Xt ∈ S∗} (2.15)

is the first time that {Xt } hits S∗ with, say, the initial X0 uniformly distributed on S.
Letting ε ↓ 0 in (2.13), Vega-Redondo (2003, pp. 477–479) showed that µ∗ = µ∗Q0 and,

thus, by (2.10),
S∗ ⊆ S0. (2.16)

As will be shown in Section 5, we will characterize S0 first. Using the method of Freidlin and
Wentzell (1984), we are then able to find S∗ and the order estimate for Eε(T ).

3. The results

In order to specify S0, we first introduce some notation. Any state in the set

M := S0 \ {C, D} (3.1)

is called a mixed stationary state, which means that cooperators and defectors coexist peacefully.
If M �= ∅, any s ∈ M consists of some D-strings alternating with an equal number of C-strings
as follows:

· · · D · · · D︸ ︷︷ ︸
dk

C · · · C︸ ︷︷ ︸
ck

D · · · D︸ ︷︷ ︸
d1

C · · · C︸ ︷︷ ︸
c1

D · · · D︸ ︷︷ ︸
d2

C · · · C︸ ︷︷ ︸
c2

· · · . (3.2)
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Here di and cj are the respective lengths of the ith D-string and the j th C-string starting from
a certain player. Note that the number of D-strings in (3.2) equals the number of C-strings as
players sit around a circle. For positive integers m and �, define the sets

M≥m,≥� := {s ∈ S : all di ≥ m and cj ≥ � in (3.2)}
and Mm,� := {s ∈ S : all di = m and cj = � in (3.2)}.

Remember that throughout the paper we assume that |N | = n ≥ 5 and b > d > a ≥ c by (2.1).
In particular, we have a + b > c + d . The notation f (ε) ≈ εα means that limε↓0 f (ε)/εα

exists and is positive.
Results for the imitation of the most successful player and action dynamics are presented in

Theorems 3.1 and 3.2, below, respectively. The proofs are given in Section 5.

Theorem 3.1. Assume that (2.1), the imitation of the most successful player dynamics, (2.3),
and the strict rule (2.7) hold. Then S∗ = {D} and Eε(T ) ≈ ε−1 as ε ↓ 0. Moreover,

(i) if a + b > 2d then S0 = {C, D}; and

(ii) if a + b ≤ 2d then S0 = {C, D} ∪ M≥2,≥3.

Theorem 3.1 demonstrates that full defection, D, is the unique long-run equilibrium of the
imitation of the most successful player dynamics, though S0 depends on whether a +b ≤ 2d or
not. In the former case, Theorem 3.1(ii) shows that M defined in (3.1) is nonempty. Roughly
speaking, the basin of attraction at state D is the largest one for the process {Xt } and, thus,
D becomes the unique long-run equilibrium as ε → 0. Theorem 3.1 also shows that the
convergence rate to D has order ε−1, which is independent of the game’s payoff structure and
population size.

Imitation of the most successful player dynamics without mutation has been used in Nowak
and May (1992), (1993), Nowak et al. (1994), and Outkin (2003) to study evolutionary PD
games on general spatial structures, such as two-dimensional lattices and the present one-
dimensional circle. Assuming that a = c = 0, d = 1, and 2 > b > 1, they showed that the
set M of mixed stationary states is not empty, but they did not characterize it further.

Theorem 3.2. Assume that (2.1), the imitation of the most successful action dynamics, (2.5),
and the strict rule (2.7) hold.

(i) If a + b > (c + 3d)/2 then S0 = {C, D}, S∗ = {D}, and Eε(T ) ≈ ε−1.

(ii) If a +b ≤ (c + 3d)/2 and (3a + b)/2 < c+d, then S0 = {C, D}∪M , where the mixed
stationary states in M are as shown in (3.2) with all di ∈ {1, 2, 3} and, besides ci ≥ 3,

ci ≥ 5 if (di, di+1) = (1, 1)

and ci ≥ 4 if (di, di+1) = (1, 2) or (2, 1).
(3.3)

Moreover, as ε ↓ 0,
S∗ = {D} and Eε(T ) ≈ ε−1 for n = 5, (3.4)

S∗ = {D} and Eε(T ) ≈ ε−�n/10 for 6 ≤ n ≤ 20, (3.5)

S∗ = S0 and Eε(T ) ≈ ε0 for 21 ≤ n < 30 but n �= 25, (3.6)

S∗ = S0 \ M2,3 and Eε(T ) ≈ ε−1 for n = 25 or 30, (3.7)

S∗ = (S0 \ M2,3) \ {D} and Eε(T ) ≈ ε−3 for n ≥ 31, (3.8)

where �x is the least integer greater than or equal to x.
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(iii) If a + b ≤ (c + 3d)/2 and (3a + b)/2 ≥ c + d, then S0 = {C, D} ∪M≥2,≥3. Moreover,
S∗ = {D} and Eε(T ) ≈ ε−1 as ε ↓ 0.

Note that M2,3 �= ∅ if and only if 5 | n, where 5 | n means that n is a multiple of 5.
In view of Theorem 3.1, it is no surprise to expect D to be the unique long-run equilibrium

indicated in Theorem 3.2(i) and (iii). Yet, Theorem 3.2(ii) shows that, when a+b ≤ (c + 3d)/2
and (3a + b)/2 < c+d , S∗ varies as the population size n grows from {D} = S∗ for 5 ≤ n ≤ 20
to {D, C} ⊂ S∗ for 21 ≤ n ≤ 30 and finally to S∗ = (S0 \M2,3)\{D} for n ≥ 31. In particular,
full cooperation, C, instead of full defection, D, could emerge as a long-run equilibrium under
the imitation of the most successful action dynamics when the number of players is over 30.

In the following we demonstrate why full cooperation could emerge as a long-run equilibrium
under the imitation of the most successful action dynamics, but not under the imitation of the
most successful player dynamics. Consider that a D-string having length greater than or equal
to 3 confronts a C-string having length greater than or equal to 2. Then players’ payoffs under
the imitation of the most successful player dynamics are as follows:

· · · D D D C C · · · (state),

2a (a + b) (c + d) (payoff).

Since a + b > max{c + d, 2a}, the D-player on the boundary will win and hold. However,
under the imitation of the most successful action dynamics, the average payoffs of strategies D

and C are

aD = 2a + (a + b)

2
= 3a + b

2
and aC = c + d,

respectively. With (3a + b)/2 < c + d , the D-player on the boundary cannot be sustained;
hence, the C-player will win and expand. This is because the force deviating from cooperation,
i.e. payoff (b), is weakened in the process of averaging neighbors’ payoffs. Accordingly, the
states with a single D,

· · · CCC
•
DCCC · · · ,

could be mixed stationary states under the imitation of the most successful action dynamics,
but not under the imitation of the most successful player dynamics. By these mixed stationary
states, fewer mutants are required to transfer states in M to C under the imitation of the most
successful action dynamics than under the imitation of the most successful player dynamics.
Hence, C could be the long-run equilibrium under the imitation of the most successful action
dynamics, but not under the imitation of the most successful player dynamics.

Next, our results are compared with those of Eshel et al. (1998). Let d − c = b − a = 1,

a = 0, and define α = 2(a − c)/(d − c) = −2c. A simple calculation shows that the payoff
function zi(s) in (2.2) becomes

zi(s) =
{

nC
i (s) if si = D, i.e. player i chooses strategy D,

nC
i (s) − α if si = C, i.e. player i chooses strategy C.

With this payoff function, the imitation of the most successful action dynamics has been studied
in Eshel et al. (1998), where players choosing strategies C and D are called altruists and egoists,
respectively. Note that (2.1) implies that −1 < c < 0 and, thus, 0 < α < 2. It is easy to check
that Theorem 3.2(i), (ii), and (iii) correspond to the cases α > 0.5, 0 < α < 0.5, and α = 0.5,
respectively. For n ≥ 31 and 0 < α < 0.5, Eshel et al. (1998) showed that

S∗ ⊆ S0 ⊆ {s ∈ S : |{i ∈ N : si = C}| ≥ 0.6n}.
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That is, only those states with the cooperator proportion no less than 0.6 could possibly be LRE.
In particular, D �∈ S∗. However, they could not decide whether C ∈ S∗ or M2,3 ⊆ S∗, as they
lacked complete information about S0 and S∗. Note that M2,3 ⊂ {s ∈ S : |{i ∈ N : si = C}| ≥
0.6n}. In contrast, Theorem 3.2 describes S∗ and S0 explicitly for all PD game payoffs with
population size no less than 5.

In comparison with Theorem 3.1 for the imitation of the most successful player dynamics,
Theorem 3.2 shows that the convergence rate to S∗ under the imitation of the most successful
action dynamics depends on the game payoff structure and population size. Robson and Vega-
Redondo (1996) showed that D is the unique long-run equilibrium, and its convergence rate has
order ε−1 under the global interaction setup. Theorem 3.2(i) and (iii) show the same conclusion
under the local interaction setup. However, Theorem 3.2(ii) indicates that, for 11 ≤ n ≤ 20, the
convergence rate to S∗ = {D} has order ε−2, which is slower than that under global interaction.
This outcome is contrary to that of Ellison (1993), who showed that the convergence rate to S∗
under local interaction is faster than that under global interaction when the best-reply dynamics
were adopted. Moreover, Theorem 3.2(ii) shows that the convergence rate to S∗ has order ε−3

for n ≥ 31.
Finally, we remark that the method developed in this paper can be applied to other 2 × 2

symmetric games like the coordination games and other updating schemes, such as players
matching their neighbors randomly for 1 ≤ v ≤ ∞ rounds. These results are reported in Chen
et al. (2007a), (2007b) and Chow and Wu (2009). Note that, by the strong law of large numbers,
the case in which v = ∞ is equivalent to players matching once with each of their two neighbors
and is investigated in this paper. Theorem 3.2 is not so satisfactory, as full cooperation must
coexist with other LRE. It is interesting to know whether full cooperation could prevail as the
unique long-run equilibrium for other spatial structures like the two-dimensional lattices.

4. The method of Freidlin and Wentzell

Some terminologies are needed in order to describe the invariant distribution µε in (2.13).
Let W be a subset of S. A graph g consisting of arrows u → v, where u ∈ S \ W and v ∈ S, is
called a W -graph if it satisfies the following conditions: (i) every state in S \W is the beginning
of exactly one arrow; (ii) there exists a sequence of arrows leading from any state in S \ W

to W . Or, equivalently, there are no cycles in the graph g.
Denote by G(W) the set of all W -graphs. For any state s ∈ S, define

αs =
∑

g∈G({s})

∏
(u→v)∈g

Qε(u, v). (4.1)

It is shown in Freidlin and Wentzell (1984, p. 177) that (αs : s ∈ S) = (αs : s ∈ S)Qε. Since
µε is the unique probability distribution satisfying (2.13), it follows that

µε(s) = αs∑
t∈S αt

for each s ∈ S. (4.2)

Equation (4.2) holds for any time-homogeneous, irreducible, and aperiodic finite-state
Markov chain. In general, it is not useful, as computing αs from (4.1) is difficult. However,
from (2.12) we have, for any s, u ∈ S,

Qε(s, u) = εU(s,u)(1 + O(ε)), (4.3)
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where U(s, u) = d(r(s), u) = |{i ∈ N : ui �= ri(s)}| and r(s) is the rational choice uniquely
determined under the strict rule (2.7). Hence,

αs =
∑

g∈G({s})
εv(g)(1 + O(ε)) ≈ εv({s}) for small ε, (4.4)

where v(g) = ∑
(u→v)∈gU(u, v) and v({s}) = ming∈G({s}) v(g) are constants independent

of ε. Define
v1 = min

s∈S
v({s}). (4.5)

By (4.2) and (4.4), µ∗ = limε→0 µε does exist and the following holds.

Theorem 4.1. The support S∗ of µ∗ defined in (2.14) is given by

S∗ = {s ∈ S | v({s}) = v1} and µε(u) ≈ εv({u})−v1 for any u ∈ S. (4.6)

In order to find the order estimate of Eε(T ) defined in (2.15), we need to generalize (4.5).
For k ≥ 1, define

vk = min|W |=k
v(W), where v(W) = min

g∈G(W)
v(g). (4.7)

Let Wk be any solution to vk above. Note that W1 ⊆ S∗. Since Wk = S when k = |S|, Wk ⊆ S∗
cannot always be valid unless S∗ = S. As will be shown in (5.9), below, this exceptional case
does not fit our models discussed in Section 2.

Theorem 4.2. (Chiang and Chow (2007).) Let T be as given in (2.15). Then

Eε(T ) ≈ ε−δ as ε ↓ 0, (4.8)

where δ = vk0−1 − vk0 and k0 = min{k ≥ 2 : there exists W ⊆ S with |W | = k, v(W) = vk ,
and W �⊆ S∗}.

The constant δ above means ‘escape energy’ in simulated annealing, which is a probabilistic
algorithm for finding the global minima of combinatorial optimization problems. See Kirk-
patrick et al. (1983) and Geman and Geman (1984) for an introduction on this topic. With this
amount of energy, any state outside S∗, the so-called ‘global minima’ set, could reach S∗. See
Chiang and Chow (1989) for how to obtain S∗ by the cycle method.

Regarding U(u, v) as the cost of going from u to v, then v({s}) means the minimum cost of
all spanning trees with root at s. By (4.6), the set S∗ consists of those states in S which attain
the minimum cost v1 when treated as a root. Similarly, any solution Wk to (4.7) represents an
optimal choice for attaining vk , the minimum cost of all spanning forests with k roots on S.
The quantity (vk − vk+1) is then the cost saved from having k roots to having k + 1 roots in
constructing optimal spanning forests on S.

5. Proofs of Theorems 3.1 and 3.2

In view of Theorems 4.1 and 4.2, the method of Freidlin and Wentzell (1984) can be used
to find the support S∗ and the order estimate of Eε(T ). The procedure is as follows.

Since S∗ ⊆ S0 by (2.16), the first step is to find S0, which is the set of all stationary states
under Q0. Let s ∈ S\S0 be any transient state. By definition, there exist s0 = s, s1, . . . , sj such
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that sj ∈ S0 and Q0(sk, sk+1) > 0 for 0 ≤ k < j . By (2.8) and (4.3),
∑k=j−1

k=0 U(sk, sk+1) = 0.
The converse does not hold. Otherwise, s ∈ S0. In summary,

s is transient if and only if there exists a zero-cost path from s to S0,

but the converse does not hold. (5.1)

In the case in which M �= ∅, any s ∈ M has the form shown in (3.2). We need to find conditions
on the dj and cj in (3.2) in order that s ∈ M .

The next step is to compute v({s}), the minimum-cost spanning tree rooted at s ∈ S, and
solutions Wk to (4.7). Then S∗ and E(Tε) can be obtained via (4.6)–(4.8). It suffices to consider
s ∈ S0, as (5.1) shows that there is no advantage in choosing any transient u as a root. Hence,
u �∈ S∗. By the same argument, u �∈ W for any solution v(W) = vk in (4.7) unless no stationary
state in S0 remains available. In particular,

if S∗ = S0 then Eε(T ) ≈ ε0 as k0 = |S0| + 1 and δ = 0 in (4.8). (5.2)

We can decompose S0 into disjoint closed connected components. By (2.9), {C} and {D}
are two examples. Let F be any closed connected component of S0 under Q0. Then

U(s, u) ≥ 1 for any s ∈ F and u �∈ F, (5.3)

as Q0(s, u) = 0 for s ∈ F and u �∈ F . Hence, it pays to reach out from F . Define

V (s) = the minimum cost of paths from s ∈ F to some u in S0 \ F . (5.4)

Being a closed connected component under Q0, any two states in F can be connected by a
path in F with zero total cost. Hence, when constructing a minimum-cost spanning forest, all
states in F should first converge to a certain state of F and then reach out from there in case
the roots of the forest lie outside F . Only the last reach-out move will cost some price by (5.3).
Therefore,

V (s) ≥ 1 is a constant on any closed connected component F ⊆ S0. (5.5)

In fact, the constant is min{U(w, u) : w ∈ F and there exists a zero-cost path from u to S0 \F }.
We will show later that V (s) = 1 for any s ∈ M . More importantly,

all states in M can reach D at minimum cost 1 per connected component. (5.6)

This is the key ingredient that makes the method of minimum-cost spanning forests efficient
for determining S∗ and E(Tε) via (4.6)–(4.8).

For convenience, we introduce the following notation:

• s
k→ u means that U(s, u) = k;

• s
k↔ u means that U(s, u) = k and U(u, s) = k.

Also, note that ri(s) depends only on the strategies (si−2, si−1, si , si+1, si+2) adopted by five
consecutive players from i − 2 to i + 2 and are, in fact, independent of the time t and the label
of player i. For brevity, we define

r(si−2, si−1, si , si+1, si+2) := ri(s).
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In the following, ‘∗’ denotes C or D independently. Tables 1 and 2 in Appendix A imply that

r(∗, C, D, C, ∗) = D and r(∗, D, C, D, ∗) = D, (5.7)

which shows the strength of D against C. By (2.6) we also have

r(∗, D, D, D, ∗) = D and r(∗, C, C, C, ∗) = C. (5.8)

Since c = min{a, b, c, d} by (2.1), we have r(s) = D and then U(s, D) = 0 for any s ∈ S

with nC(s) := |{j ∈ N : sj = C}| = 1. Hence, by (2.9), (2.16), and (5.1),

S∗ ⊆ S0 ⊆ S \ {s : nC(s) = 1} �= S. (5.9)

This verifies the remark after (4.7). Now we are ready to prove Theorems 3.1 and 3.2.

5.1. Proof of Theorem 3.1 for the imitation of the most successful player dynamics

Part (i): a + b > 2d . By symmetry and (2.1), it follows from Table 4 in Appendix A that

r(∗, D, C, C, ∗) = r(∗, C, C, D, ∗) = D. (5.10)

Note that a + b > c + d and b = max{a, b, c, d} by (2.1). Similarly, Table 3 in Appendix A
implies that

r(∗, C, D, D, ∗) = r(∗, D, D, C, ∗) = D. (5.11)

Equations (5.7)–(5.8) and (5.10)–(5.11) show that any D-string in a mixed state s will grow
under Q0 by absorbing its neighboring Cs. Hence,

any s ∈ S \ {C, D} will reach state D at zero total cost under Q0. (5.12)

By (2.11) and (5.1), S0 = {C, D}. We claim that

v({D}) = 1 and v({C}) = n. (5.13)

The former follows from (5.12) since U(C, s) = 1 for any state s with nC(s) = n − 1.
Equation (5.12) also implies the latter, as the minimum-cost path from D to C is to jump
directly to C at cost U(D, C) = n due to r(D) = D.

Using (4.6) and (5.13), we easily obtain the desired conclusions:

v1 = 1, S∗ = {D}, µε(C) ≈ εn−1, and Eε(T ) ≈ ε−1, (5.14)

as v({D, C}) = v2 = 0 in (4.7) and then k0 = 2 and δ = v1 − v2 = 1 in (4.8).
Part (ii): a + b ≤ 2d . While (5.11) still holds from Table 3, Table 4 implies that

r(s2, C, C, D, s1) = r(s1, D, C, C, s2) = C if and only if s1 = D and s2 = C, (5.15)

which is different from (5.10) in part (i). By (5.11) and (5.15),

any D-string with length greater than or equal to 2 in a state can hold under Q0, (5.16)

while a C-string in a state can hold only when it has length greater than or equal to 3 and is
surrounded by D-strings with length greater than or equal to 2. In particular, M≥2,≥3 ⊆ M .
By (5.7), (5.11), and (5.15),

any C-string with length less than or equal to 2 is eliminated at the next period under Q0,
(5.17)
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while a D-string with length greater than or equal to 3 will then form at this position in the next
period. By (5.16), this C-string can never reappear at its original position. Hence, any C-string
in a state s ∈ M must have length greater than or equal to 3. Moreover, by (5.7),

no singleton D-string in a state could be eliminated under Q0. (5.18)

In fact, it will grow to a length greater than or equal to 3 under Q0 and then can never be
diminished by (5.16). Hence, any D-string in s ∈ M has length greater than or equal to 2.
Putting together, M ⊆ M≥2,≥3 and, thus, M = M≥2,≥3. It is also clear from the above
arguments that r(s) = s for any s ∈ M . Together with (2.9), each state in S0 is an absorbing
state under Q0.

Next we study how states in S0 = M ∪{C, D} communicate with each other in order to find
v({s}) for s ∈ S0. Decompose M = M≥2,≥3 as follows:

M =
L⋃
1

Mk, where Mk := {s ∈ M : s has k disjoint D-strings in (3.2)}. (5.19)

Here L = �n/5�, where �x� denotes the greatest integer less than or equal to x. In particular,

if 5 | n then ML = M2,3; that is, all di = 2 and ci = 3 in (3.2) for s ∈ ML. (5.20)

We verify (5.6) in the following three steps. Remember that V (s) ≥ 1 for s ∈ S0 by (5.5).
Step 1. Let s ∈ Mk be as shown in (3.2). If di ≥ 3 then

· · · C · · · C︸ ︷︷ ︸
ci−1

◦
D · · · D︸ ︷︷ ︸

di−1

•
CC · · · C︸ ︷︷ ︸

ci+1

· · · 1↔ · · · C · · · C︸ ︷︷ ︸
ci−1

◦
D · · · •

D︸ ︷︷ ︸
di

C · · · C︸ ︷︷ ︸
ci

· · ·

1↔ · · · C · · · C ◦
C︸ ︷︷ ︸

ci−1+1

D · · · •
D︸ ︷︷ ︸

di−1

C · · · C︸ ︷︷ ︸
ci

· · · .

In words, one strategy C, marked by a ‘•’, of the left state is mutated to a D strategy, also
marked by a ‘•’, and, thus, reaches the middle state s. The strategy where mutation occurs
between s and the last state is marked by a ‘◦’. All three states above lie in Mk due to di ≥ 3.
Hereafter, we use a ‘•’ to mark a certain player (or players) whose strategy might change in the
process shown in the diagram. When necessary, ‘◦’ and ‘∗’ over a strategy are used to indicate
where mutation occurs.

Repeating the same procedures, any D-string in s can be trimmed to its minimum length 2
at the minimum cost 1 for each move while all the encountered states remain in Mk . Note that
the path is reversible at the same cost.

Step 2. Assume that 5 � n or 1 ≤ k < L. For any s, u ∈ Mk , there is a path in Mk connecting
s and u as follows:

s
1↔ s1

1↔ s2
1↔ · · · 1↔ sj−1

1↔ u and, thus, V (s) = 1 by (5.4). (5.21)

By step 1, we may assume without loss of generality that all D-strings in s and u have
length 2. Let s ∈ Mk be as shown in (3.2). If ci ≥ 4 then

· · · C · · · C︸ ︷︷ ︸
ci−1

D
•
D︸︷︷︸

2

◦
CC · · · C︸ ︷︷ ︸

ci

· · · 1↔ · · · C · · · C︸ ︷︷ ︸
ci−1

∗
D

•
D

◦
D︸ ︷︷ ︸

3

C · · · C︸ ︷︷ ︸
ci−1

· · ·

1↔ · · · C · · · C ∗
C︸ ︷︷ ︸

ci−1+1

•
DD︸︷︷︸

2

C · · · C︸ ︷︷ ︸
ci−1

· · · (5.22)
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and all three states above lie in Mk . This shows that any extra C in a C-string of s can be shifted
either to its left or to its right C-string at cost 1, which is the minimum by (5.5). Moreover,
the path is reversible at the same cost. Repeating the same procedures, all extra Cs in s can be
arbitrarily distributed among its C-strings at the minimum cost 1 for each move while always
staying in Mk . The existence of an extra C in s is crucial for such shiftings in (5.22). Since
now all di = 2 in (3.2) for s, (5.20) implies that there is at least min(n − 5L, 5) ≥ 1 extra Cs
in s due to 5 � n or k < L. This verifies (5.21). Note that U(s, u) ≥ 2L for two different s, u

in ML in the case in which 5 | n.
Step 3. Consider s ∈ Mk with 1 ≤ k ≤ L. Using (5.20) in the case in which 5 | n and

k = L, and using step 2 otherwise, we may assume without loss of generality that all ci = 3
in (3.2) for s. By (5.7) and (5.11),

· · · D · · · D︸ ︷︷ ︸
di

C
•
CC︸ ︷︷ ︸
3

D · · · D︸ ︷︷ ︸
di+1

· · · 1→ · · · D · · · D︸ ︷︷ ︸
di

C
•
DC︸ ︷︷ ︸
3

D · · · D︸ ︷︷ ︸
di+1

· · ·

0→ · · · D · · · D︸ ︷︷ ︸
di+3+di+1

· · · ∈ Mk−1.

Repeating the same procedure k − 1 times, we conclude that all states in M can reach D at the
minimum cost 1 per state. This verifies (5.6).

It remains to study how C and D reach out. By (5.18), the following diagram is optimal
for n = 5:

M1 � u := ◦
D

◦
DCCC

2→ C
1→ CC

•
DCC

0→ CD
•
DDC

0→ D. (5.23)

Similarly, we have the following optimal path for n ≥ 6:

M1 � u := ◦
D

◦
D C · · · C︸ ︷︷ ︸

n−2

2→ C
1→ C

•
D C · · · C︸ ︷︷ ︸

n−2

0→ D
•
DD C · · · C︸ ︷︷ ︸

n−3≥3

∈ M1. (5.24)

Hence, V (C) =1 for n ≥ 5. On the other hand, (5.17) implies that the following path is optimal
for D to reach out:

D
3→ D · · · D︸ ︷︷ ︸

n−3≥2

◦
C

◦
C

◦
C ∈ M1. (5.25)

It follows, from (5.5)–(5.6) and (5.23)–(5.25), that

v({C}) = |M|+4, v({D}) = |M|+1, and v({s}) ≥ |M|+3 for s ∈ M = M≥2,≥3.

We obtain the first equation above by requiring that all states in M ∪{D} converge to u in (5.23)
or (5.24), and then from u to C at cost 2. Hence, v1 = v({D}) = |M| + 1, S∗ = {D}, and
µε(C) ≈ ε3 by (4.6). Then k0 = 2 in (4.8) as v2 = v({s, D}) = |M| for any s ∈ M1 ∪ {C}.
Finally, δ = v1 − v2 = 1, as desired.

5.2. Proof of Theorem 3.2 for the imitation of the most successful action dynamics

Remember that (5.7) and (5.8) remain valid. Tables 3 and 4 in Appendix A imply that the ra-
tional choice r(s) defined in (2.7) depends on the relative magnitudes of a+b, (3a + b)/2, c+d,
and (c + 3d)/2. Note that, under (2.1),

2b >
c + 3d

2
> c + d, a + b >

3a + b

2
> 2c, and a + b > c + d > 2c. (5.26)
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It remains to compare (3a + b)/2 with c + d and a + b with (c + 3d)/2. This leads to the
following classifications.

Part (i): a + b > (c + 3d)/2. By the results in Table 4 and (5.26), (5.10) holds. In the
subcase (3a + b)/2 ≥ c + d , the results in Table 3 and (5.26) imply that (5.11) holds. As in
Theorem 3.1(i), any D-string in a mixed state s will grow by absorbing its neighboring Cs. As
a consequence, (5.12) holds.

For the remaining subcase (3a + b)/2 < c + d, we now show that (5.12) still holds. Instead
of (5.11), from the results in Table 3 and (5.26), we obtain

r(s2, C, D, D, s1) = r(s1, D, D, C, s2) = C if and only if s1 = D and s2 = C. (5.27)

By (5.7), (5.10), and (5.27), any D-string with length less than or equal to 2 in a mixed state s

will absorb its two neighboring Cs and, thus, form a D-string of length greater than or equal
to 3 in the next period under Q0. Similarly, we have, for d ≥ 3,

· · · D •
C D · · · D︸ ︷︷ ︸

d≥3

•
CD · · · 0→ · · · D •

DD · · · D •
DD︸ ︷︷ ︸

d+4

· · · ,

· · · DC
•
D · · · D •

D︸ ︷︷ ︸
d≥3

CC · · · 0→ · · · DD
•
D · · · D︸ ︷︷ ︸
d+1

•
CD ∗ · · · .

Here and hereafter, any ∗ = C or D and is undecidable at present. Moreover,

· · · CC
•
DD · · · D •

D︸ ︷︷ ︸
d≥3

CC · · · 0→ · · · D •
CD · · · D •

C︸ ︷︷ ︸
d

D · · · 0→ · · · ∗ D
•
DD · · · D •

DD︸ ︷︷ ︸
d+2

∗ · · · .

It follows that any D-string with length greater than or equal to 3 in a mixed state s will grow
in the next period or in one more period later under Q0. By repeating the same procedures, this
verifies (5.12) for the subcase (3a + b)/2 < c + d.

By (2.11) and (5.1), S0 = {C, D}. As in Theorem 3.1(i), (5.13) holds and then (5.14)
follows.

Part (ii): a + b ≤ (c + 3d)/2 and (3a + b)/2 < c + d. By the results in Table 3 we still
have (5.27), which means that any D-string of length greater than or equal to 3 will diminish
at the next period under Q0 if surrounded by nonsingleton C-strings. Because of this property,
the structure of S0 is complicated, as indicated in (3.3). The results in Table 4 and (5.26)
imply (5.15). In particular, M2,≥3 ⊆ M by (5.15) and (5.27). The following statements,
(S1)–(S5), verify that M is as claimed in (3.3).

(S1) By (5.1), u ∈ M if s ∈ M and s
0→ u.

(S2) Any C-string in a state s ∈ M must have length greater than or equal to 3.

Statement (S2) holds because (5.7), (5.15), and (5.27) imply that any C-string with length less
than or equal to 2 in a state s will be eliminated at the next period, as shown in

· · · D •
CD · · · 0→ · · · D •

DD · · · and · · · C ∗ D
•
C

•
CD ∗ C · · · 0→ · · · ∗ ∗D

•
D

•
DD ∗ ∗ · · · ,

(5.28)
and (5.29), below. Here each ‘∗’ can be C or D. Though some new Cs could be generated,
which can happen by (5.27) if the C-string is of length 2 and is confronted with a D-string with
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length greater than or equal to 3, they are always isolated and will disappear in the next period:

· · · DD
•
D CC︸︷︷︸

2

•
DDD · · · 0→ · · · ∗ D

•
C DD︸︷︷︸

2

•
CD ∗ · · · 0→ · · · ∗ D

•
D DD︸︷︷︸

2

•
DD ∗ · · · .

(S3) Any D-string in a state s ∈ M must have length 1, 2, or 3.

By (S1) and (S2), we may assume that all C-strings encountered hereafter have length greater
than or equal to 3. By (5.27), any D-string with length d ≥ 3 in s ∈ M will shrink by 2
per period under Q0. So its length will drop to 1 or 2 at some stage. By (5.15) and (5.27), a
D-string of length 2 can hold under Q0, while a singleton D-string will grow by (5.7) and (5.15)
to length 3 and then back to length 1 again:

· · · C · · · •
C︸ ︷︷ ︸

ci−1≥3

D︸︷︷︸
di=1

•
C · · · C︸ ︷︷ ︸

ci≥3

· · · 0→ · · · C · · · C︸ ︷︷ ︸
c′
i−1≥3

•
DD

•
D︸ ︷︷ ︸

d ′
i=3

C · · · C︸ ︷︷ ︸
c′
i≥3

· · ·

0→ · · · C · · · •
C︸ ︷︷ ︸

c′′
i−1≥3

D︸︷︷︸
d ′′
i =1

•
C · · · C︸ ︷︷ ︸

c′′
i ≥3

· · · .

Hence, d can be only 1, 2, or 3.

(S4) Equation (3.3) holds for any state s ∈ M .

Suppose that s ∈ M is as shown in (3.2) with di = di+1 = 1. By (5.7) and (5.15),

· · · C · · · C︸ ︷︷ ︸
ci−1

•
D︸︷︷︸

di=1

C · · · C︸ ︷︷ ︸
ci

•
D︸︷︷︸

di+1=1

C · · · C︸ ︷︷ ︸
ci+1

· · ·

0→ · · · C · · · C︸ ︷︷ ︸
c′
i−1

D
•
DD︸ ︷︷ ︸

d ′
i=3

C · · · C︸ ︷︷ ︸
ci−2

D
•
DD︸ ︷︷ ︸

d ′
i+1=3

C · · · C︸ ︷︷ ︸
c′
i+1

· · ·

= u.

Since u ∈ M by (S1), we have ci − 2 ≥ 3 by (S2). That is, ci ≥ 5. This verifies (3.3) for
(di, di+1) = (1, 1). The other cases can be treated similarly and the details are thus omitted.

(S5) The following diagram shows M is indeed what we claimed:

· · · DD︸︷︷︸
2

C · · · C︸ ︷︷ ︸
ci−1≥4

•
D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
ci≥3

D
•
DD︸ ︷︷ ︸
3

C · · · C︸ ︷︷ ︸
ci+1

· · ·

0↔ · · · DD︸︷︷︸
2

C · · · C︸ ︷︷ ︸
ci−1−1

D
•
DD︸ ︷︷ ︸
3

C · · · C︸ ︷︷ ︸
ci

•
D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
c′
i+1

· · · .

So the length d of any D-string in s ∈ M obeys the following rule under Q0:

1 → 3, 3 → 1, and 2 → 2. (5.30)

Therefore, the closed connected component F(s) containing s ∈ M has cardinal number 2 or 1
depending on whether some di ∈ {1, 3} in its representation (3.2). In case |F(s)| = 2, we
denote the other element by sd . So s

0↔ sd .
Some consequences from the arguments above are listed below.

(S6) Any D-string in a state s ∈ S can never be eliminated under Q0.
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Unless s goes to D, the length of any D-string in s will become 1, 2, or 3 under Q0.

(S7) Any C-string with length greater than or equal to 5 in a state s ∈ S can never be eliminated
under Q0.

If not increased, its length could decrease at most by 2 under Q0.

(S8) Let s ∈ M be as given in (3.2). For any i,

di + ci + di+1 + ci+1 ≥ 10, (5.31)

and the equality holds if and only if (di, ci, di+1, ci+1) is an element in the following
set:

{(2, 3, 2, 3), (1, 3, 3, 3), (3, 3, 1, 3), (1, 5, 1, 3), (1, 4, 2, 3), (2, 4, 1, 3)}. (5.32)

Based on (3.3), both claims can be easily verified case by case as di, di+1 ∈ {1, 2, 3}.
By (5.31), the minimum total length of two adjacent pairs of D-strings and C-strings is 10.

As in (5.19), we decompose M as M = ⋃L
k=1 Mk , where L = �n/5�. The structure of ML for

5 | n, which plays a special role in the theorem, is determined as follows.

(S9) If 5 | n and L is odd, then ML = M2,3.

Let s ∈ ML be as given in (3.2). We need to show that (di, ci, di+1, ci+1) = (2, 3, 2, 3) for
any i. Suppose that (di, ci, di+1, ci+1) �= (2, 3, 2, 3) for any i. It is clear from (5.32) that
we have either di + ci ≥ 6 or di+1 + ci+1 ≥ 6 unless (di, ci, di+1, ci+1) = (1, 4, 2, 3). In
this exceptional case, from (3.3) we obtain (di−1, ci−1) ≥ (1, 5), (2, 4), or (3, 3). Hence,
di−1 + ci−1 ≥ 6. Putting together, we may conclude that

dj + cj ≥ 6 for some j. (5.33)

By (5.31), dj+1+2k+cj+1+2k+dj+2+2k+cj+2+2k ≥ 10 for each 0 ≤ k ≤ (L−1)/2. BecauseL

is odd, by adding up over k and using (5.33), we obtain n = |s| ≥ 6+10(L − 1)/2 = 5L+1 =
n + 1, which is a contradiction. This verifies the claim.

(S10) If 5 | n and L is even, then any s ∈ ML is either in M2,3 or has the form

· · · D︸︷︷︸
1

CCC︸ ︷︷ ︸
3

DDD︸ ︷︷ ︸
3

CCC︸ ︷︷ ︸
3

repeat �n/10� times︷ ︸︸ ︷
D︸︷︷︸
1

CCC︸ ︷︷ ︸
3

DDD︸ ︷︷ ︸
3

CCC︸ ︷︷ ︸
3

· · · . (5.34)

Because the equality in (5.31) holds for any i in representation (3.2) for s ∈ ML, (di, ci,

di+1, ci+1) belongs to the set in (5.32). Suppose that s �∈ M2,3. If some (di, ci) = (1, 3)

then (di+1, ci+1) can only be (3, 3) in order to be in (5.32). This forces (di+2, ci+2) = (1, 3)

in turn by (5.32). Repeating the same arguments, we are led to the form in (5.34). Only the
case in which (di, ci, di+1, ci+1) = (1, 4, 2, 3) is left from (5.32). As in (S9), we then have
(di−1, ci−1) ≥ (1, 5), (2, 4), or (3, 3). Hence, di−1 + ci−1 + di + ci ≥ 11, which violates the
equality in (5.31).

Now we are ready to find S∗. In view of the statements in Theorem 3.2(ii), part (ii) is much
more complicated to prove than part (i). Though still valid, (5.6) is inadequate for our purpose.
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For any s, u ∈ S0, we need to find a minimum-cost path γ = {s0 = s, s1, . . . , s� = u} from s

to u. We will show in the following steps that

there exists a γ with each U(si , si+1) =
{

1 if si ∈ S0 and si+1 �∈ F(si ),

0 otherwise,
(5.35)

first for s, u in some Mk and then for states in {C} ∪ M \ M2,3. Finally, we will show how
D communicates with other states. Note that the path γ is certainly optimal in view of (5.1)
and (5.5).

Step 1. Statement (5.35) holds for any s, u ∈ Mk under the condition that

5 � n or 1 ≤ k < L :=
⌊

n

5

⌋
. (5.36)

Moreover, the path γ in (5.35) lies entirely in Mk and is reversible. Roughly speaking, the
above means that all states in Mk are ‘equivalent’ to each other under condition (5.36).

Because the path γ above is required to be reversible, it suffices to verify the claim for any
u ∈ Mk ∩ M2,≥3. That is, all its D-strings have length 2. As will now be shown, this can
be further weakened. By (5.36) and (S9)–(S10), there are at least min(5, n − 5L) ≥ 1 extra
Cs in u. Hence, some c′

i ≥ 4 in representation (3.2) for u. Let v, w ∈ Mk be exactly as u

except that the lengths from the ith D-string to the (i + 1)th C-string are (2, c′
i , 1, c′

i+1 + 1)

and (2, c′
i − 1, 2, c′

i+1 + 1), respectively. Then

u
1↔ v

0↔ vd
0↔ v

1↔ w, where vd ∈ F(v).

This means that we can shift any extra C in a C-string of u to its right C-string while fulfilling
the claim. By symmetry, this extra C can also be shifted to its left C-string. Repeating the
same procedures, all the extra Cs in u can be arbitrarily relocated among its k C-strings, while
all encountered states are in Mk and fulfill the claim. Hence, it suffices to verify the claim for
some u ∈ Mk ∩ M2,≥3.

Let s ∈ Mk be as in (3.2). By (S3), there are nine possibilities for any (di, di+1). By
symmetry and (5.30), it suffices to consider the following two cases:

(di, di+1) ∈ {(1, 1), (2, 1), (2, 2)} (case (a)), (di, di+1) = (1, 3) (case (b)). (5.37)

Let us start with case (a). Suppose that some (di, di+1) = (1, 1) in (3.2). Observe that

s = · · · C •
D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
ci≥5

•
D︸︷︷︸
1

· · ·

0↔ · · · D •
D

◦
D︸ ︷︷ ︸

3

C · · · C︸ ︷︷ ︸
ci−2≥3

D
•
DD︸ ︷︷ ︸
3

· · ·

1↔ · · · ∗
C

•
DD︸︷︷︸

2

C · · · C︸ ︷︷ ︸
ci−1≥4

•
D︸︷︷︸
1

· · ·

= v.

Not only does v ∈ Mk by (3.3) but also the size d ′
j of its j th D-string equals dj for any

1 ≤ j ≤ k except d ′
i = 2. Since the path above is reversible, the claim in step 1 holds for s
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and u = v. Therefore, we may assume without loss of generality that some di = 2 in (3.2) for
s satisfying case (a) in (5.37).

If s �∈ M2,≥3 then, by (5.30), we may assume some (di, di+1) = (2, 1) in (3.2) for s. Then
ci ≥ 4 by (3.3). As above, we have

· · · DD︸︷︷︸
2

C · · · C︸ ︷︷ ︸
ci≥4

•
D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
ci+1

· · · 0↔ · · · DD︸︷︷︸
2

C · · · C︸ ︷︷ ︸
ci−1

◦
D

•
DD︸ ︷︷ ︸
3

C · · · C︸ ︷︷ ︸
c′
i+1

· · ·

1↔ · · · DD︸︷︷︸
2

C · · · C︸ ︷︷ ︸
ci−1≥3

D
•
D︸︷︷︸

2

∗
C · · · C︸ ︷︷ ︸

ci+1

· · ·

= w,

where w ∈ Mk and the size d ′
j of its j th D-string equals dj for any 1 ≤ j ≤ k except d ′

i+1 = 2.
Repeating the same procedures, we will find a reversible path from s to some u ∈ Mk ∩ M2,≥3
as claimed.

By (5.37), it remains to consider the case in which (di, di+1) ∈ {(1, 3), (3, 1)} for all i.
Because the case in which some (di, di+1) = (1, 1) or (3, 3) has just been treated above, we
may assume without loss of generality that (d1, d2, d3, . . . , dk) = (1, 3, 1, 3, . . . , 1, 3). In
particular, k is even. If all ci = 3 in (3.2) for s then k = L by (5.34), which is excluded
by (5.36). Hence, some ci ≥ 4. By symmetry we may assume that (di, di+1) = (1, 3). Then

sd
0↔ · · · D •

DD︸ ︷︷ ︸
3

C · · · ◦
C︸ ︷︷ ︸

ci−1≥3

•
D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
ci≥4

D
•
DD︸ ︷︷ ︸
3

· · ·

1↔ · · · •
D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
ci−1+1≥4

•
D

∗
D︸︷︷︸

2

C · · · C︸ ︷︷ ︸
ci≥4

•
D︸︷︷︸
1

· · ·

= m.

By (3.3), m ∈ Mk with the length of its ith D-string being 2. Hence, m satisfies case (a). We
have just shown above that there is a desired, reversible path from m to some u ∈ Mk ∩M2,≥3.
Putting together, this completes the proof of step 1.

Step 2. Let M0 = {C}. For n ≥ 6 and 1 ≤ k ≤ L, (5.35) holds for any s ∈ Mk \ M2,3 and
u ∈ Mk−1. Moreover, (5.35) holds for u ∈ Mk \ M2,3 and s ∈ Mk−1 as well.

Note that M2,3 ⊆ ML and M2,3 �= ∅ if and only if 5 | n. By step 1, it suffices to consider
some u ∈ Mk−1. We first treat the case in which (5.36) holds. By step 1 again we may
assume that all dj = 2 except a certain di = 1 in representation (3.2) for s. Note that such s

exist under (5.36). So both ci−1, ci ≥ 4 by (3.3). The conclusion is implied by the following
diagram:

s = · · · DD︸︷︷︸
2

C · · · C︸ ︷︷ ︸
ci−1

•
D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
ci

DD︸︷︷︸
2

· · · 0↔ sd
1→ · · · DD︸︷︷︸

2

C · •
C · C︸ ︷︷ ︸

ci−1+1+ci

DD︸︷︷︸
2

· · · = u
1→ s.

(5.38)
Note that u ∈ Mk−1 by (3.3) and the path above is nearly reversible in the sense that sd appears
only in the path from s to u.

It remains to consider the case in which 5 | n and k = L = n/5. By (S9)–(S10), any
s ∈ ML \ M2,3 has the form shown in (5.34). A diagram similar to (5.38) works for such s.

Step 3. For n ≥ 6, (5.35) holds for any s, u ∈ (S0 \ M2,3) \ {D}. So all states in (S0 \
M2,3) \ {D} are ‘equivalent’.
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By varying k from L to 1 in step 2, the conclusion follows. Now we consider M2,3.
Step 4. For n ≥ 6, (5.35) holds for any s ∈ M2,3 and u ∈ ML−1. But the minimum cost to

reach M2,3 from S0 \ M2,3 is 2 instead of 1.
Since n ≥ 6 and M2,3 �= ∅ if and only if 5 | n, we have L = n/5 ≥ 2. Then, by (5.15)

and (5.27),

· · · CCC︸ ︷︷ ︸
3

DD︸︷︷︸
2

C
•
CC︸ ︷︷ ︸
3

DD︸︷︷︸
2

CCC︸ ︷︷ ︸
3

· · · 1→ · · · CCC︸ ︷︷ ︸
3

DD︸︷︷︸
2

C
•
DC DD︸︷︷︸

2

CCC︸ ︷︷ ︸
3

· · ·

0→ · · · C · · · C︸ ︷︷ ︸
3

D · · · D︸ ︷︷ ︸
7

C · · · C︸ ︷︷ ︸
3

· · ·

0→ · · · C · · · C︸ ︷︷ ︸
4

D · · · D︸ ︷︷ ︸
5

C · · · C︸ ︷︷ ︸
4

· · ·

0→ · · · C · · · C︸ ︷︷ ︸
5

D
•
DD︸ ︷︷ ︸
3

C · · · C︸ ︷︷ ︸
5

· · ·

0↔ · · · C · · · C︸ ︷︷ ︸
6

•
D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
6

· · · . (5.39)

Since the three intermediate states on the right-hand side are transient and the last two states are
in ML−1 with all their not shown D-strings and C-strings having lengths 2 and 3, respectively,
the first claim is verified. Owing to step 3 and (5.30), the minimum cost to reach any s ∈ M2,3
from S0 \ M2,3 is

ML−1 � u = · · · D
•
D︸︷︷︸

2

C · · · C︸ ︷︷ ︸
8

•
DD︸︷︷︸

2

· · · 2→ · · · D
•
D︸︷︷︸

2

CCC︸ ︷︷ ︸
3

DD︸︷︷︸
2

CCC︸ ︷︷ ︸
3

•
DD︸︷︷︸

2

· · · .

It remains to consider how D communicates with other states. The cases in which n = 5
and n ≥ 6 will be treated separately in the following two steps.

Step 5. Consider the case in which (3.4)–(3.8) hold for n = 5. In this case, L = �n/5� = 1
and M = M1 = M2,3. Different from (5.39), we simply have

DDC
◦
CC

1→ DDCDC
0→ D

3→ DD
◦
C

◦
C

◦
C ∈ M1. (5.40)

The last move is optimal as we have shown in (S2) that any C-string with length less than or
equal to 2 in a state will be eliminated under Q0, which implies that D cannot reach any other
state in S0 at cost less than or equal to 2. By using (S6), (5.15), and (5.27), the optimal path to
reach in and out of C is as follows:

M1 � ◦
D

◦
DCCC

2→ C
1→ CC

•
DCC

0→ CD
•
DDC

0→ DC
•
DCD

0→ D. (5.41)

Since M = M2,3 and |M2,3| = 5, we summarize (5.40) and (5.41) to obtain

v({D}) = 6, v({C}) = 9, and v({s}) = 8 for s ∈ M1.

Hence, v({D}) = v1 = 6, S∗ = {D}, and µε(C) ≈ ε3 by (4.6). Moreover, v({C, D}) =
v2 = 5. Then k0 = 2 and δ = v1 − v2 = 1 in (4.8). This completes step 5.
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Step 6. Consider the case in which (3.4)–(3.8) hold for n ≥ 6. By using (5.15) and (5.27),
D can reach out at the minimum cost 3, as in (5.40):

D
3→ ◦

C
◦
C

◦
C︸ ︷︷ ︸

3

D · · · D︸ ︷︷ ︸
n−3

0→ C · · · C︸ ︷︷ ︸
5

D · · · D︸ ︷︷ ︸
n−5

0→ C · · · C︸ ︷︷ ︸
7

D · · · D︸ ︷︷ ︸
n−7

0→ · · · 0→ u ∈ M1,

where the unique D-string in u has length 1 or 2 depending on whether n is even or odd,
respectively. Let η be the number of closed connected components in M . Together with steps 3
and 4,

v({s}) = 3 + η and v({u}) = 4 + η for any s ∈ {C} ∪ M \ M2,3 and u ∈ M2,3. (5.42)

In order to find the minimum-cost path from C to D, step 3 implies that it suffices to do so from
any s ∈ {C}∪M \M2,3. By (S6), it saves to use some state with as many Ds as possible. Note
that any D-string in s ∈ M has length less than or equal to 3 by (S3). If di = di+1 = 1 and
ci ≤ 9 in representation (3.2) for s ∈ M , the following diagram indicates that the ith C-string
of s can be eliminated at cost 1:

s
0↔ sd

1→ · · · ∗ •
D︸︷︷︸
1

CCCC︸ ︷︷ ︸
4

◦
D︸︷︷︸
1

CCCC︸ ︷︷ ︸
4

•
D︸︷︷︸
1

∗ · · ·

0→ · · · D •
DD︸ ︷︷ ︸
3

CC︸︷︷︸
2

DDD︸ ︷︷ ︸
3

CC︸︷︷︸
2

D
•
DD︸ ︷︷ ︸
3

· · ·

0→ · · · ∗ •
D︸︷︷︸
1

CDDCDCDDC
•
D︸︷︷︸
1

∗ · · ·

0→ · · · D •
DD · · · D •

DD︸ ︷︷ ︸
13

· · · . (5.43)

At least two mutations in sd are needed to eliminate this C-string of s if ci > 9 and at least
three mutations if ci > 14. The reason is as follows. If we make two such mutations in the ith
C-string of sd , they need to be well separated. Then the resulting state u under Q0 is the same
as s, except the original ith C-string of s is now divided into three shorter C-strings with lengths
ci1, ci2, and ci3, respectively. By (5.7) and (5.15), each of these three C-strings will shrink by
2 under Q0 at the next period, while their four surrounding D-strings grow from length 1 to
length 3. If ci > 14 then cij − 2 ≥ 3 for some j . By (5.15) and (5.27), this newly created
C-string will grow back to length cij ≥ 5 in the following period and can never be eliminated
by (S7). In general, if

ci > � + 2(� + 1) + 2(� + 1) = 5� + 4 (5.44)

then at least (� + 1) mutations in the ith C-string of sd are needed in order to eliminate the ith
C-string of s under Q0. Otherwise, � mutations are enough, as in (5.43). Since the increment
from � to (� + 1) is (5(� + 1) + 4) − (5� + 4) = 5, it saves to have in s as many blocks
of DCCCCCCCCC as possible, as one mutation is enough to eliminate the nine Cs in any
such block. The maximum number allowed for such blocks in s is �n/10�. If the remainder is
r = n − 10�n/10� ≥ 6, we may add in an extra DC · · · C block with one D and r − 1 ≥ 5 Cs
in order to make s ∈ M \M2,3. If r ≤ 5, we may insert r Cs in some C-string. So s ∈ M \M2,3
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has the form

repeat �n/10� times︷ ︸︸ ︷
D︸︷︷︸
1

CCCCCCCCC︸ ︷︷ ︸
9

· · · D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
r−1

or

repeat �n/10�−1 times︷ ︸︸ ︷
D︸︷︷︸
1

CCCCCCCCC︸ ︷︷ ︸
9

· · · D︸︷︷︸
1

C · · · C︸ ︷︷ ︸
9+r

. (5.45)

In either case, one more mutation from C to D is enough by (5.44) to eliminate these extra Cs.
Hence, with s given in (5.45), we have, from (5.43),

s
0↔ sd

�n/10→ u1
0→ u2

0→ u3
0→ D, (5.46)

where all the ui are transient states, as in (5.43). In fact, this is also the most economic way
to reach D from M . This is because n/5 ≥ �n/10 for 5 | n and any state in M2,3, which is
nonempty if and only if 5 | n, has n/5 C-strings. One mutation is needed for eliminating any
of the C-strings.

It follows, from steps 3 and 4 and (5.46), that

v({D}) =
⌈

n

10

⌉
+ η. (5.47)

Combining (5.47) with (5.42), we obtain v1 = min(3, �n/10) + η. By using (4.6)–(4.8),
(3.4)–(3.8) for n ≥ 6 follow easily. For example, �n/10 = 3 for 21 ≤ n ≤ 30. By (4.6),
(5.42), and (5.47), S∗ = S0 for 21 ≤ n < 30 but n �= 25 and S∗ = S0 \ M2,3 for n = 25 or
30. In the former case, Eε(T ) ≈ ε0 by (5.2). In the latter case, v2 = v({s, u}) = 2 + η for any
s ∈ S0 \ M2,3 and u ∈ M2,3. Hence, δ = v1 − v2 = 1 and Eε(T ) ≈ ε−1 by (4.8). The other
cases of n can be easily checked. It is interesting to note that, for n ≥ 31, v1 = 3+η < v({D}),
v2 = η = v({D, C}), and δ = v1 − v2 = 3. Hence, S∗ = (S0 \ M2,3) \ {D} and Eε(T ) ≈ ε−3.
In particular, C ∈ S∗ but D �∈ S∗. The proof of part (ii) is completed.

Part (iii): a + b ≤ (c + 3d)/2 and (3a + b)/2 ≥ c + d. Now (5.15) remains true from the
results in Table 4 in Appendix A and we have (5.11) from the results in Table 3 in Appendix A.
Since all the configuration rules for the present case are exactly the same as in Theorem 3.1(ii),
we naturally get the same conclusions as there. The details are therefore omitted.

Appendix A

In Tables 1, 2, 3, and 4 the state column depicts the strategies adopted by five consecutive
players i −2, i −1, i, i +1, and i +2. The payoff columns describe the total payoffs of players
i − 1, i, and i + 1 under the imitation of the most successful player dynamics, and the average
payoffs for strategies D and C under the imitation of the most successful action dynamics.

Table 1.

Payoffs
State s

zi−1(s) zi(s) zi+1(s) aD
i (s) aC

i (s)

· · · DCDCD · · · 2c 2b 2c 2b 2c

· · · DCDCC · · · 2c 2b c + d 2b
3c + d

2
· · · CCDCC · · · c + d 2b c + d 2b c + d
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Table 2.

Payoffs
State s

zi−1(s) zi(s) zi+1(s) aD
i (s) aC

i (s)

· · · DDCDD · · · a + b 2c a + b a + b 2c

· · · DDCDC · · · a + b 2c 2b
a + 3b

2
2c

· · · CDCDC · · · 2b 2c 2b 2b 2c

Table 3.

Payoffs
State s

zi−1(s) zi(s) zi+1(s) aD
i (s) aC

i (s)

· · · DDDCD · · · 2a a + b 2c
3a + b

2
2c

· · · DDDCC · · · 2a 1 + b c + d
3a + b

2
c + d

· · · CDDCD · · · a + b a + b 2c a + b 2c

· · · CDDCC · · · a + b a + b c + d a + b c + d

Table 4.

Payoffs
State s

zi−1(s) zi(s) zi+1(s) aD
i (s) aC

i (s)

· · · DDCCD · · · a + b c + d c + d a + b c + d

· · · DDCCC · · · a + b c + d 2d a + b
c + 3d

2
· · · CDCCD · · · 2b c + d c + d 2b c + d

· · · CDCCC · · · 2b c + d 2d 2b
c + 3d

2
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