ENUMERATION OF INDICES OF GIVEN ALTITUDE AND POTENCY

by H. MINC

(Received 29th December 1958)

INDICES of the free logarithmetic \mathfrak{Q} correspond to bifurcating root-trees (cf. (4)), to Evans' non-associative numbers (3) and to Etherington's partitive numbers (2). The free commutative logarithmetic \mathfrak{Q}_c is the homomorph of \mathfrak{Q} determined by the congruence relation $P+Q\sim Q+P$. Formulæ for a_{δ} and p_{α} i.e. the numbers of indices of \mathfrak{Q} of a given potency* δ and the number of indices of a given altitude a respectively, were given by Etherington (1), who also gave corresponding formulæ for commutative indices of \mathfrak{Q}_c . Other enumeration formulæ are contained in (5).

The problem of enumeration of indices of \mathfrak{L} of given potency δ ($\delta > 1$) and given altitude a ($\alpha + 1 \leq \delta \leq 2^{\alpha}$, cf. (1), p. 157) is essentially one of finding the number of partitions of a sequence of δ objects according to the following rules (cf. (2)):

(1) At the first stage the sequence of δ objects is partitioned so that the first κ objects are in the left subsequence and the remaining $\delta - \kappa$ objects in the right subsequence.

(2) At stage ν all subsequences which do not consist of single elements are again partitioned into a left subsequence and a right subsequence.

(3) There are a stages. After stage a all subsequences consist of single elements.

The corresponding problem for indices of \mathfrak{L}_c is equivalent to the enumeration of partitions of an unordered set of δ identical objects according to similar rules.

As there is an index of potency 1 and altitude 0 we may say that a set of a single element can be partitioned at stage 0.

Let $p(a, \delta)$ denote the number of indices of altitude a and potency δ . Obviously p(0, 1)=1. If $a \ge 1$, any index X of altitude a and potency δ is the sum of its left sub-index X' and its right sub-index X'', i.e. X = X' + X''. We can obtain all required indices by :

(1) Letting sub-index X' run through all indices of altitude a-1 and X" through all indices of altitude less than a-1 and potency $\delta - \delta_{X'}$ (where $\delta_{X'}$ denotes the potency of X'). There are

$$\sum_{d=a}^{\delta-1} \{p(a-1, d) \sum_{a=0}^{a-2} p(a, \delta-d)\}$$

such indices;

(2) as in (1) but interchanging the roles of X' and X''; and

(3) if $\delta - a \ge a$, letting X' run through all indices of altitude a-1 and

* Potency, representing the number of free knots in a tree, was called *degree* by Etherington and *length* by Evans.

H. MINC

potency d $(d=a, a+1, ..., \delta-a)$, and X'' through all indices of altitude a-1 and potency $\delta-d$. There are

$$\sum_{d=a}^{\delta=a} p(a-1, d) p(a-1, \delta-d)$$

of these. Hence

$$p(\alpha, \delta) = \sum_{d=a}^{\delta-1} \left\{ p(\alpha-1, d) \left(\sum_{a=0}^{\alpha-2} 2p(a, \delta-d) + p(\alpha-1, \delta-d) \right) \right\}$$

where p(x, y) = 0 whenever x + 1 > y or $y > 2^x$.

Denote the number of commutative indices of \mathfrak{L}_c of altitude a and potency δ by $q(a, \delta)$. Then q(0, 1) = 1. If $a \ge 1$ and X = X' + X'' is an index of altitude a and potency δ , we obtain all such non-congruent indices by :

(1) letting X' run through all indices of \mathfrak{L}_c of altitude a-1 and X" through all indices of altitude less than a-1 and of potency $\delta - \delta_{X'}$. There are

$$\sum_{d=a}^{\delta-1} \left\{ q(a-1, d) \sum_{a=0}^{a-2} q(a, \delta-d) \right\}$$

such indices; and

(2) (a) if δ is odd and $\frac{1}{2}(\delta-1) \ge a$, letting X' run through all indices of \mathfrak{L}_c of altitude a-1 and potency d $(d=a, a+1, \ldots, \frac{1}{2}(\delta-1))$ and X" through all indices of altitude a-1 and potency $\delta-d$. There are

$$\sum_{d=a}^{\frac{1}{2}(\delta-1)} q(a-1, d)q(a-1, \delta-d)$$

of these.

(b) if δ is even and $\frac{1}{2}\delta - 1 \ge a$

(i) letting X' run through all indices of \mathfrak{L}_c of altitude a-1 and potency d $(d=a, a+1, \ldots, \frac{1}{2}\delta-1)$ and X" through all indices of altitude a-1 and potency $\delta-d$. There are

$$\sum_{d=a}^{\frac{1}{2}\delta-1}q(a-1, d)q(a-1, \delta-d)$$

of these; and

(ii) letting both X' and X" run through all indices of \mathfrak{L}_c of altitude a-1 and potency $\frac{1}{2}\delta$ but taking only one index from each thus obtained pair of congruent indices except when $X' \sim X''$. There are

$$\frac{1}{2}q(a-1, \frac{1}{2}\delta)\{q(a-1, \frac{1}{2}\delta)+1\}$$

of these.

Thus

$$q(\alpha, \delta) = \sum_{d=a}^{\delta-1} \left\{ q(\alpha-1, d) \sum_{a=0}^{\alpha-2} q(\alpha, \delta-d) \right\} + Q(\alpha, \delta)$$

$$Q(a, \delta) = \begin{cases} \sum_{\substack{d=a \\ \frac{1}{\delta} = 1 \\ d=a \\ \frac{1}{\delta} = 1 \\$$

208

We calculate

a	0	l	2	2	3	3	3	3	3	4	4	4	4	4	4	4	4	4	4	4	4
δ	1	2	3	4	4	5	6	7	8	5	6	7	8	9	10	11	12	13	14	15	16
<i>p</i> (α, δ)	1	1	2	1	4	6	6	4	1	8	20	40	68	94	114	116	94	60	28	8	1
$q(a, \delta)$	1	1	1	1	1	2	2	1	1	1	3	5	7	8	9	7	7	4	3	1	1

REFERENCES

(1) I. M. H. Etherington, On non-associative combinations, Proc. Roy. Soc. Edin., 59 (1939), 153-162.

(2) I. M. H. Etherington, Non-associative arithmetics, Proc. Roy. Soc. Edin., A, 62 (1949), 442-453.

(3) Trevor Evans, Non-associative number theory, Amer. Math. Monthly, 64 (1957), 299-309.

(4) H. Minc, Index polynomials and bifurcating root-trees, Proc. Roy Soc. Edin., A, 64 (1957), 319-341.

(5) H. Minc, The free commutative entropic logarithmetic, Proc. Roy. Soc. Edin., A, 65 (1959), 177-192.

THE UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, CANADA 209