ENUMERATION OF INDICES OF GIVEN ALTITUDE AND POTENCY

by H. MINC
(Received 29th December 1958)

Indices of the free logarithmetic \mathcal{L} correspond to bifurcating root-trees (cf. (4)), to Evans' non-associative numbers (3) and to Etherington's partitive numbers (2). The free commutative logarithmetic \mathfrak{L}_{c} is the homomorph of \mathfrak{L} determined by the congruence relation $P+Q \sim Q+P$. Formulæ for a_{δ} and p_{a}, i.e. the numbers of indices of \mathcal{L} of a given potency* δ and the number of indices of a given altitude a respectively, were given by Etherington (1), who also gave corresponding formulæ for commutative indices of \mathcal{L}_{c}. Other enumeration formulæ are contained in (5).

The problem of enumeration of indices of \mathcal{L} of given potency $\delta(\delta>1)$ and given altitude $a\left(\alpha+1 \leqslant \delta \leqslant 2^{a}\right.$, cf. (1), p. 157) is essentially one of finding the number of partitions of a sequence of δ objects according to the following rules (cf. (2)):
(1) At the first stage the sequence of δ objects is partitioned so that the first κ objects are in the left subsequence and the remaining $\delta-\kappa$ objects in the right subsequence.
(2) At stage ν all subsequences which do not consist of single elements are again partitioned into a left subsequence and a right subsequence.
(3) There are α stages. After stage α all subsequences consist of single elements.

The corresponding problem for indices of \mathfrak{L}_{c} is equivalent to the enumeration of partitions of an unordered set of δ identical objects according to similar rules.

As there is an index of potency 1 and altitude 0 we may say that a set of a single element can be partitioned at stage 0 .

Let $p(a, \delta)$ denote the number of indices of altitude a and potency δ. Obviously $p(0,1)=1$. If $a \geqslant 1$, any index X of altitude a and potency δ is the sum of its left sub-index X^{\prime} and its right sub-index $X^{\prime \prime}$, i.e. $X=X^{\prime}+X^{\prime \prime}$. We can obtain all required indices by :
(1) Letting sub-index X^{\prime} run through all indices of altitude $a-1$ and $X^{\prime \prime}$ through all indices of altitude less than $\alpha-1$ and potency $\delta-\delta_{X^{\prime}}$ (where $\delta_{X^{\prime}}$ denotes the potency of X^{\prime}). There are

$$
{ }_{d=a}^{\delta-1}\left\{p(a-1, d){ }_{a=0}^{a-2} p(a, \delta-d)\right\}
$$

such indices;
(2) as in (1) but interchanging the roles of X^{\prime} and $X^{\prime \prime}$; and
(3) if $\delta-a \geqslant a$, letting X^{\prime} run through all indices of altitude $a-1$ and

[^0]potency $d(d=a, a+1, \ldots, \delta-a)$, and $X^{\prime \prime}$ through all indices of altitude $a-1$. and potency $\delta-d$. There are
$$
{ }_{d=a}^{\delta-a} p(\alpha-1, d) p(\alpha-1, \delta-d)
$$
of these.
Hence
$$
p(a, \delta)={ }_{d=a}^{\delta} \bar{\Sigma}^{1}\left\{p(a-1, d)\left({ }_{a=0}^{a-2} 2 p(a, \delta-d)+p(a-1, \delta-d)\right)\right\}
$$
where $p(x, y)=0$ whenever $x+1>y$ or $y>2^{x}$.
Denote the number of commutative indices of \mathcal{L}_{c} of altitude a and potency δ by $q(\alpha, \delta)$. Then $q(0,1)=1$. If $\alpha \geqslant 1$ and $X=X^{\prime}+X^{\prime \prime}$ is an index of altitude a and potency δ, we obtain all such non-congruent indices by :
(1) letting X^{\prime} run through all indices of \mathscr{L}_{c} of altitude $\alpha-1$ and $X^{\prime \prime}$ through all indices of altitude less than $a-1$ and of potency $\delta-\delta_{X^{\prime}}$. There are
$$
\sum_{d=a}^{8-1}\left\{q(a-1, d) \sum_{a=0}^{a-2} q(a, \delta-d)\right\}
$$
such indices; and
(2) (a) if δ is odd and $\frac{1}{2}(\delta-1) \geqslant a$, letting X^{\prime} run through all indices of \mathfrak{L}_{c} of altitude $\alpha-1$ and potency $d\left(d=\alpha, \alpha+1, \ldots, \frac{1}{2}(\delta-1)\right)$ and $X^{\prime \prime}$ through all indices of altitude $a-1$ and potency $\delta-d$. There are
of these.
$$
\sum_{d=a}^{\frac{1}{(\delta-1)}} q(a-1 ; d) q(\alpha-1, \delta-d)
$$
(b) if δ is even and $\frac{1}{2} \delta-1 \geqslant a$
(i) letting X^{\prime} run through all indices of \mathcal{L}_{c} of altitude $\alpha-1$ and potency $d\left(d=a, a+1, \ldots, \frac{1}{2} \delta-1\right)$ and $X^{\prime \prime}$ through all indices of altitude $\alpha-1$ and potency $\delta-d$. There are
$$
{ }_{d=a}^{\sum_{d}^{\delta}-1} q(\alpha-1, d) q(a-1, \delta-d)
$$
of these ; and
(ii) letting both X^{\prime} and $X^{\prime \prime}$ run through all indices of \mathfrak{L}_{c} of altitude $a-1$ and potency $\frac{1}{2} \delta$ but taking only one index from each thus obtained pair of congruent indices except when $X^{\prime} \sim X^{\prime \prime}$. There are
$$
\frac{1}{2} q\left(\alpha-1, \frac{1}{2} \delta\right)\left\{q\left(\alpha-1, \frac{1}{2} \delta\right)+1\right\}
$$
of these.
Thus
$$
q(\alpha, \delta)=\sum_{d=a}^{\delta-1}\left\{q(a-1, d) \sum_{a=0}^{a-2} q(a, \delta-d)\right\}+Q(a, \delta)
$$
where
\[

Q(a, \delta)=\left\{$$
\begin{array}{l}
\begin{array}{l}
\frac{1}{d=}(\delta-1) \\
\sum_{d=a}^{2}
\end{array}(a-1, d) q(a-1, \delta-d), \text { if } \delta \text { is odd, } \\
\sum_{d=a}^{\frac{1}{2}-1} q(a-1, d) q(a-1, \delta-d) \\
\quad+\frac{1}{2} q\left(a-1, \frac{1}{2} \delta\right)\left\{q\left(a-1, \frac{1}{2} \delta\right)+1\right\}, \text { if } \delta \text { is even. }
\end{array}
$$\right.
\]

We calculate

| a | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| :---: | ---: |
| δ | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| $p(a, \delta)$ | 1 | 1 | 2 | 1 | 4 | 6 | 6 | 4 | 1 | 8 | 20 | 40 | 68 | 94 | 114 | 116 | 94 | 60 | 28 | 8 | 1 |
| $q(\alpha, \delta)$ | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 3 | 5 | 7 | 8 | 9 | 7 | 7 | 4 | 3 | 1 | 1 |

REFERENCES

(1) I. M. H. Etherington, On non-associative combinations, Proc. Roy. Soc. Edin., 59 (1939), 153-162.
(2) I. M. H. Etherington, Non-associative arithmetics, Proc. Roy. Soc. Edin., A, 62 (1949), 442-453.
(3) Trevor Evans, Non-associative number theory, Amer. Math. Monthly, 64 (1957), 299-309.
(4) H. Minc, Index polynomials and bifurcating root-trees, Proc. Roy Soc. Edin., A, 64 (1957), 319-341.
(5) H. Minc, The free commutative entropic logarithmetic, Proc. Roy. Soc. Edin., A, 65 (1959), 177-192.

The University of British Columbia Vancouver, Canada

[^0]: * Potency, representing the number of free knots in a tree, was called degree by Etherington and length by Evans.

