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Abstract. Starting from a sheaf of associative algebras over a scheme we show that its deformation
theory is described by cohomologies of a canonical object, called the cotangent complex, in the derived
category of sheaves of bi-modules over this sheaf of algebras. The passage from deformations to
cohomology is based on considering a site which is naturally constructed out of our sheaf of algebras.
It turns out that on the one hand, cohomology of certain sheaves on this site control deformations,
and on the other hand, they can be rewritten in terms of the category of sheaves of bi-modules.
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0. Introduction

0.1. In the present paper we continue the study of deformation theory of algebras
using the approach of [Ga]. We will extend the main results of [Ga] to the glob-
al case. Namely, we pose and solve the following problem: what cohomological
machinery controls deformations of a sheaf of algebras over a scheme? This ques-
tion has already been studied by many authors [Ill], [GeSch], [Schl].

0.2. Let first A be an associative algebra over a ring. Consider the category of all
algebras overA, let us call itC(A). One can observe that every question concerning
the deformation theory of A can be formulated in terms of this category.

Our first step will be to apply a linearization procedure to C(A), in other words
we will endow it with a Grothendieck topology and then we will consider sheaves
of abelian groups on it. It will turn out that deformations of A are controlled
by cohomologies of certain sheaves on this site. Cohomologies arise naturally as
classes attached to torsors and gerbes. All this was done in [Ga].

When A is no longer an algebra over a ring but rather a quasi-coherent sheaf
of algebras over a scheme X , the definition of C(A) must be modified in order
to take into account possible localization with respect to X , since the appropriate
cohomology theory would incorporate algebra cohomology ofA and scheme coho-
mology ofX . In this case instead of working with the whole category of sheaves on
our site, we single out a subcategory which we call the category of quasi-coherent
sheaves. This category will have properties similar to those of the category of
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322 D. GAITSGORY

quasi-coherent sheaves of A-bimodules among all sheaves of A-bimodules and it
will be more manageable.

The second step will be to find a connection between the category of sheaves on
C(A) and the category of quasi-coherent sheaves of A-bimodules on our scheme
X . This connection will be described by two mutually adjoint functors, which
would enable us to rewrite the cohomology groups that control deformations of A
in terms of cohomologies of some canonical object T �(A) of the derived category
of quasi-coherent sheaves of A-bimodules. The object T �(A) will be called the
cotangent complex of A. Another approach to the construction of the cotangent
complex in a slightly different situation was used by Illusie [Ill].

0.3. Let us now describe the contents of the paper.
In Section 1 we present a brief exposition of some well known facts and results

from the theory of sites. For a more detailed discussion the reader is referred to
[Ar], [Gr]. In the remaining sections we will freely operate with the machinery of
sheaves, cohomologies, direct and inverse images; therefore the reader is advised
to look through this section in order to become familiar with the notation.

In Section 2 we define the siteCX(A) along with its variants for affine schemes.
We introduce also the appropriate categories of sheaves and functors between them.
The central results are

(1) Theorem 2.3.3 with its corollaries, that insure that the category Shqc(A) is
well defined

(2) Theorem 2.5 that says that cohomologies of quasi-coherent sheaves computed
inside the quasi-coherent category and inside the category of all sheaves give
the same answers.

In Section 3 we introduce functors = and L that establish connection between
the category Shqc(X) and the category Aqc-mod. Let us remark that it would be
possible to work with the category of all sheaves on CX(A) without introducing
quasi-coherent sheaves explicitly. We, nevertheless, decided to do that, since to our
mind, introducing this category and basic functors that are connected to it reflects
the nature of the things and clarifies the exposition.

Finally, Section 4 is devoted to deformation theory. Theorem 4.2 describes how
to pass from deformations to cohomology of sheaves on CX(A) via torsors and
gerbes, and in 4.3 we translate the assertions of this theorem to the language of
cohomology of quasi-coherent sheaves of A-bimodules.

0.4. The results of the present paper can be easily generalized to the case of algebras
over an arbitrary operad (cf. [Ga]). We opted for treating the case of associative
algebras only in order to simplify the exposition. One can also develop a similar
theory for operad co-algebras.
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0.5. In recent years there have been a lot of interest in deformation theory. We
have to mention the works [Ge-Sch 1,2], [Ma], [Ma-St], [St], [Fo]. Our approach
is close to that of [Ill]. Let us also point out that one of the central ideas of the
present paper: to resolve an algebra A by free algebras (at least locally) goes back
to Quillen and to Grothendieck [Qu].

1. Preliminaries on Grothendieck topologies

1.0. In this section we will review certain notions from the theory of sites. Proofs
will be given mostly in cases when our exposition differs from the standard one.

1.1. Let C be a category possessing fiber products. A Grothendieck topology (cf.
[Gr]) on it (or a structure of a site) is a collection of morphisms that are called
covering maps if it satisfies the following three conditions:

(1) Any isomorphism is a covering.
(2) If �:U ! V and :V !W are coverings, then their composition ��:U !

W is a covering too.
(3) If �:U ! V is a covering and if �:V1 ! V is an arbitrary morphism, then

the base change map �1:U �
V
V1 ! V1 is a covering.

1.1.1. EXAMPLES

1. For any categoryC there exists the minimal Grothendieck topology: the only
coverings are isomorphisms. This site will be denoted by (C; min).

2. Let Set be the category of sets. We introduce the structure of a site on it by
declaring surjections to be the covering maps.

3. Let Seto be the category opposite to Set. We introduce a Grothendieck topol-
ogy by declaring �:X ! Y to be a covering if the corresponding map of sets
Y ! X is an injection.

4. Constructions similar to the above ones can be carried out when the category
Set is replaced by an abelian category, in particular, by the categoryAb, the category
of abelian groups.

5. Let X be a topological space. Let C(X) be the category whose objects are
finite disjoint unions of open subspaces of X .

Hom(U; V )
def
= maps from U to V compatible with the embedding to X:

A map � 2 Hom(U; V ) is a covering if it is surjective.
6. Let a cite C have a final object X0 and let X be any other object of C . We

can define a new cite CX whose underlying category is the category of ‘objects of
C over X’, with morphisms being compatible with projections to X . A morphism
� in CX is declared to be a covering if it is a covering in C .
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1.1.2. Let C1 and C2 be two sites. A functor F between the underlying categories
is said to be a functor between sites if the following holds:

(1) F maps coverings to coverings.

(2) If A;B;D are three objects in C1 with A;B mapping toD, then the canonical
map F (A�

D
B)! F (A) �

F (D)
F (B) is a covering in C2.

We say that a functor F between two sites is strict if it preserves fiber products,
i.e. if the map in (2) is an isomorphism.

1.2. DEFINITION. A sheaf of sets (resp. of abelian groups) on a site C is a functor
S between the sites C and Seto (resp.Abo), the latter considered with the topology
specified in the Example 3 above.

Morphisms between sheaves are by definition natural transformations between
such functors.

DEFINITION. A presheaf of sets on C (resp. of abelian groups) is sheaf on C
when the latter is considered with the minimal topology.

It is an easy exercise to verify that the above definition of a sheaf coincides
with the traditional one. From now on, by a sheaf we will mean a sheaf of abelian
groups. It will be left to the reader to make appropriate modifications for sheaves
of sets. Note, that a sheaf of abelian groups is the same as a group-like object in
the category of sheaves of sets.

The category of sheaves will be denoted by Sh(C). This category possesses a
natural additive structure and is in fact an abelian category. If S is a sheaf, and if
X 2 C;S(X) will be denoted by �(X;S) and will be called the set of sections
of S over X . The map �(X;S) ! �(Y; S) for a map Y ! X will be called the
restriction map.

1.3. Let F :C1 ! C2 be a functor between sites. We have then the natural functor
(called direct image) F�: Sh(C2)! Sh(C1). This functor is always left exact.

The functor F� has a left adjoint (called the inverse image): F �: Sh(C1) !
Sh(C2). The functor F � is always right exact.

The following standard facts are often used in the theory of sheaves:

PROPOSITION

(1) The functor F� is right exact if for any covering Z ! F (X) there exists
a covering �:Y ! X , endowed with a map �:F (Y ) ! Z such that the
composition F (Y )! Z ! F (X) coincides with F (�).

(2) The functor F � is left exact if the functor F is strict in the sense of 1.1.2.
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(3) Assume thatF is strict. Then the functorF � is faithful if for any�:Y ! X and
�:Z ! F (Y ) such that the composition Z ! F (Y )! F (X) is a covering,
� is a covering too.

1.3.1. EXAMPLES

1. Let Forget: (C; min) ! C be the canonical functor of sites. The above
constructions yield the embedding functor from sheaves to presheaves and its left
adjoint, which is called the functor of associating a sheaf to a presheaf. It is a good
exercise to describe the associated sheaf explicitly.

2. Let pt be the category of one object and one morphism. If C is a site, for
any X 2 C we have a functor ptX : pt ! C , that sends the unique object of pt to
X . We have the canonical constant sheaf Z on pt. Let by definition ZX = pt�X(Z).
This sheaf will be called the constant sheaf corresponding to X . By definition we
have: Hom(ZX; S) = �(X;S) functorially with respect to S 2 Sh(C).

Analogous construction produces also a sheaf ConstX in the category of sheaves
of sets. A sheaf of sets is called representable if it is of the form ConstX for some
X .

3. Let F :C1 ! C2 be a functor between sites and let X 2 C1. Then

F �(ZX) ' ZF (X):

4. Recall the situation of 1.1.1 Example 6. We have the natural embedding
functor i:CX ! C and its right adjoint Cart:Y ! Y �

X0

X . Note, that the functors

i� and Cart� are canonically isomorphic. We denote this functor by S ! SjCX

and call it the functor of restriction of a sheaf to CX . By definition, for Y 2 CX

we have �(Y; SjCX) ' �(Y; S).
If now X ! X0 is a covering, the functor S ! SjCX is exact and faithful.

1.4. Cohomology of sheaves. Along with the abelian category Sh(C) one consid-
ers also the corresponding derived categoriesD(Sh(C));D+(Sh(C));D�(Sh(C))
and Db(Sh(C)). It can be shown [Ar], [Gr] that the category Sh(C) has enough
injective objects. In particular, any left exact functor admits a right derived functor.
If X 2 C;Ri�(X;S) will be denoted by Hi(X;S).

1.5. Torsors and Gerbes

1.5.0. Let now our category possess a final objectX0 and let S be a sheaf of abelian
groups. Hi(S) will denote Hi(X0; S) ' Ri�(X0; S).

1.5.1. Before defining torsors and gerbes in the sheaf-theoretic context we need to
recall several definitions.

Let � be an abelian group and let � act on a set � . We say that � is a torsor
over � if this action is simply transitive. Torsors over a given group form a rigid
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monoidal category (cf. [DM]) under �1 
 �2 ! �1 � �2=� with the anti-diagonal
action of �.

Let now O be a monoidal category and let M be an arbitrary category. We say
that O acts on M if we are given

(1) A functor Action:O �M !M .
(2) A natural transformation between the two functors O �O �M !M

O �O �M
Action
- O �M

O �M
?

Action
- M

Action

?

such that the obvious ‘pentagon’ identity is satisfied.
We say that M is a gerbe bound by O, if for any X 2 M the functor O ! M

given by A! Action(A�X) is an equivalence of categories.
If O is a groupoid and if M is a gerbe bound by O, then M is also a groupoid

and �0(M) is a torsor over �0(O).

1.5.2. A sheaf of sets � is called a torsor over S if

(1) S viewed as a group-like object in the category of sheaves of sets acts on the
object�, i.e. if for everyX 2 C;�(X;S) acts on�(X;�) in a way compatible
with restrictions.

(2) For every X 2 C;�(X;�) is a torsor over �(X;S), whenever the former is
nonempty.

(3) For some coveringX of X0, the set �(X;�) is nonempty.

Let TorsC(S) denote the category of torsors over S. From 1.5.1 we deduce that
it is a groupoid and that it possesses a structure of a rigid monoidal category.

LEMMA. The group �0(TorsC(S)) is canonically isomorphic to H1(S).
Proof. In fact, we claim more: Consider the category ExtC(ZX0; S), whose

objects are short exact sequences 0 ! S ! E ! ZX0 ! 0 and whose morphisms
are maps between such sequences that induce identity maps on the ends.

We claim, that this category is canonically equivalent to TorsC(S).
Indeed, for any such extension 0 ! S ! E ! ZX0 ! 0 we associate a torsor

� by setting for every X over X0

�(X;�) = splittings: Z' �(X;ZX0)! �(X;E):

This functor is easily seen to be an equivalence of (monoidal) categories and
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�0(Ext(ZX0; S)) ' Ext1(ZX0; S) ' R1 Hom(ZX0; S)

' R1�(X0; S)) ' H1(S): 2

1.5.3. We are heading towards the definition of gerbes, but first we need to recollect
the notion of a stack.

Let C be a site with a final object X0. Suppose that for each X 2 C we
are given a category G(X), for each map �:Y ! X we are given a functor
G�:G(X)! G(Y ) and for each composition of maps �:Y ! X and �:Z ! Y ,
we are given a natural transformation G� �G� ) G��� , such that all the data are
compatible with respect to two-fold compositions.

Remark. Functors G�:G(X) ! G(Y ) for �:Y ! X will be called the
restriction functors and will be often denoted as s 2 G(X)! sjY 2 G(Y ).

Such a collection of categories and of functors is called a presheaf of categories.
It is said to be a sheaf of categories (or a stack) if moreover the following two
axioms are satisfied:

(1) Let X 2 C , and let us consider the category CX as in 1.1.1 Example 6. Let
also s1; s2 be two objects of G(X). We can consider the presheaf of sets on
CX

(Y; �: Y ! X) 2 CX ! Hom(G�(s1); G�(s2)):

We require that this presheaf is a sheaf for each X 2 C .
(2) Let �:Y ! X be a covering. Consider the category of descent data on Y

with respect to X , whose objects are pairs s 2 G(Y ) and an isomorphism
Gp1(s) ! Gp2(s), where p1; p2 are the two projections from Y �

X
Y to Y ,

such that the above isomorphism satisfies the obvious cocycle condition on
the three-fold fiber product ofY with itself overX . Morphisms in this category
are defined to be maps s1 ! s2 compatible with isomorphisms between their
pull-backs on Y �

X
Y . We have the obvious functor fromG(X) to this category

of descent data. We require that this functor is an equivalence of categories.

EXAMPLES

1. Consider the presheaf of categories G(X) := CX .

LEMMA. This presheaf of categories is a stack if and only if

(1) For every X 2 C , Y 2 CX , the presheaf on CX given by Z 2 CX !

HomCX (Z; Y ) is a sheaf.
(2) For every sheaf of sets S on CX the fact that for some Y 2 CX covering

X;SjCY is representable implies that S is representable as well.
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The proof follows directly from the definitions.
All the sites in this paper will satisfy the conditions of the above Lemma.

2. If S is a sheaf of groups, we can defineG(X) = TorsCX (SjCX) (torsors over
SjCX in the categoryCX). This presheaf of categories is always a stack, which we
denote by TorsS .

1.5.4. Gerbes. Let once againC be a site with a final objectX0 and let S be a sheaf
of abelian groups. Let G be a stack on C endowed with the following additional
structure:

(1) Each G(X) is acted on by the monoidal category TorsCX (SjCX).

(2) For each �:Y ! X we are given a natural transformation between two
functors TorsCX (SjCX)�G(X)! G(Y )

G� � ActionX ! ActionY � (TorsS� �G�);

which is compatible with the natural transformations of 1.5.1(2) and with
composition of restrictions.

Suppose that for each X 2 C;G(X) is a gerbe over TorsCX (SjCX) and that there
exists a covering X of X0 such that G(X) is nonempty. We say then that G is a
gerbe bound by S.

Functors between gerbes bound by a sheaf of abelian groups S and natural
transformations between such functors are defined in a natural fashion.

Remark. Let S be a sheaf of abelian groups and let G be a stack such that
if s1; s2 2 G(X), there exists a covering Y of X such that the pull-backs of s1

and s2 on G(Y ) become isomorphic. Then G is a gerbe bound by S if for every
X; s 2 G(X);Aut(s) is isomorphic to �(X;S) functorially in X and in s.

EXAMPLES

1. Let S be in Sh(C). A basic example of a gerbe bound by S is the stack TorsS
of 1.5.3 (Example 2) above.

It is an easy observation that a gerbe G is equivalent to TorsS if and only if
G(X0) is nonempty.

2. Let S1 ! S2 be a map of sheaves of abelian groups. If G is a gerbe bound
by S1, we can construct an induced gerbe G0 bound by S2.

3. (cf. [D-Ill], [BB]) Let 0 ! S ! K0 ! K1 ! ZX0 ! 0 be an exact
sequence of sheaves on C . Let K� denote the 2-complex K0 ! K1. To this
2-complex we can associate a gerbe G(K�) bound by S in a canonical way by
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setting: G(K�)(X) = the category of extensions 0 ! K1jCX ! E ! ZX ! 0
of sheaves over CX endowed with a map of complexes

0 - 0 - K0jCX
- E - ZX

- 0

0
?

- S
?

- K0jCX

id

?

- K1jCX

?

- ZX

id

?

- 0
?

It is easy to verify that G(K�) defined in this way is indeed a gerbe. The following
assertion follows from the definitions:

LEMMA

�0(G(K
�)(X)) ' HomD(Sh(CX))(ZX[�1];K�jCX):

If now �:K� ! K 0� is a quasi-isomorphism of 2-complexes, we get a canoni-
cal functor between the corresponding gerbesG(K�) andG(K 0�). This means that
the operation of assigning a gerbe to a 2-complex is well defined on the derived
category D(Sh(C)).

1.5.5. The following proposition is not difficult to prove:

PROPOSITION. The assignment K� ! G(K�) establishes a one-to-one cor-
respondence between the set isomorphism classes of objects K� in D(Sh(C))
with nontrivial cohomologies only in degrees 0 and 1, such that H0(K�) ' S,
H1(K�) ' ZX0 and the set of equivalence classes of gerbes G bound by S.

In particular, since the set of isomorphism classes of 2-complexes of the above
type in the derived category is Ext2(ZX0; S) ' H2(S), to any gerbeG bound by S
we can associate a well defined class in H2(S) that vanishes if and only if G(X0)
of this gerbe is nonempty.

2. The site CX(A)

2.0. As it has been explained in the introduction, our bridge between deformations
and cohomology is based on considering sheaves on the site CX(A) which we
are about to define. Throughout this paper, by a scheme we will mean a separated
scheme. It is not difficult, however, to generalize all our results to the case of an
arbitrary scheme.

If f :X ! Y is a morphism of schemes, f�us and fus� will denote the usual
inverse and direct image functors on the categories of quasi-coherent sheaves of
O(X) and O(Y ) modules.
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Remark. For an affine scheme we will usually make no distinction between a
quasi-coherent sheaf and its global sections.

2.1. Let X be a scheme and let ZarX denote the Zariski site of X , whose objects
are disjoint finite unions of open subsets of X and whose morphisms are maps of
schemes over X . A morphism in ZarX is a covering if it is surjective. Let A be a
quasi-coherent sheaf of associative algebras on X .

2.1.1. DEFINITION of CX(A).

Objects: triples (U;BU ; �), with U 2 ZarX , BU is a quasi-coherent sheaf of
associative algebras on U and �:BU ! AjU is a map of sheaves of associative
algebras. Here AjU is the restriction of A on U . When no confusion can be made,
we will omit �.

Morphisms: Hom((V;DV ); (U;BU )) is a set of pairs (j; �), where j 2

HomZarX (V;U) and �:DV ! BU jV (restriction by means of j).
The category CX(A) is easily seen to have fiber products.
Topology: (j; �): (V;DV ) ! (B;BU ) is said to be a covering map if j is a

covering in ZarX , and if � is an epimorphism.

Sometimes when no confusion can be made we will write A instead of �(X;A)
for X being an affine scheme.

2.1.2. Variant. When X is an affine scheme X = Spec(R), the site CX(A) will
be often denoted by Cnew

X (A) to emphasize the difference between Cnew
X (A) and

Cold
X (A):

DEFINITION of Cold
X (A)

Objects: R-algebras B with a map to A.
Morphisms: Algebra homomorphisms commuting with structure maps to A.
Topology: Covering maps are defined to be just epimorphisms of algebras.

2.1.3. ShX(A) will denote the category of sheaves of abelian groups over CX(A).
For X affine, X = Spec(R), this category will also be denoted by Shnew

X (A),
whereas Shold

X (A) will denote the category of sheaves of abelian groups over
Cold
X (A).

EXAMPLE 1. Let (U;BU ) 2 C
new
X (A). According to 1.3.1(2) we can consider the

sheaf Z(U;BU) 2 Shnew
X (A).

EXAMPLE 2. A similar construction can be carried out in the case of an affine
scheme X = Spec(R) for Cold

X (A). For a projective R-module V , let Free(V )
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denote the free associative algebra built on V . If now Free(V ) 2 Cold
X (A), the

sheaf ZFree(V ) is a projective object of Shold
A (X). This is because every covering of

Free(V ) admits a section.

2.1.4. LEMMA. The presheaf of categories over CX(A) given by G((U;BU )) :=
CU (BU ) is a stack.

Proof. Observe first of all, that CU (BU ) ' CX(A)(U;BU )
and by 1.5.3(1) we

must check that the following two conditions are verified:

(1) For every (U;BU ) 2 CX(A), the presheaf of sets on CX(A) given by

(V;DV ) 2 CX(A)! HomCX(A)((V;DV ); (U;BU ));

is in fact a sheaf.
(2) If S is a sheaf of sets on CX(A) becomes representable after restriction to

some (U;BU ) 2 CX(A) covering (X;A), then it is representable.

The first point is obvious. In order to treat the second one, let us decompose the
map (U;BU )! (A;X) as a composition

(U;BU )! (U;AjU)! (X;A);

and it becomes sufficient to treat separately the case whenX is affine with U = X

and the case when BU ' AjU . In both cases, the assertion is straightforward. 2

2.2. Let f :Y ! X be a morphism of schemes. Let us be given quasi-coherent
sheaves of algebras A on X and A0 on Y . Assume also be given a map of sheaves
of algebras �:A0 ! f�us(A). We say then that (f; �) is a map from the pair (Y;A0)
to the pair (X;A).

2.2.1. We have a functor denoted (f; �) or just f

CX(A)! CY (A
0): (U;BU ) goes to (U �

X
Y; f�us(B) �

f�us(AjU)
(A0jU �

X
Y )):

This functor is strict if f is flat.
In the case when both X and Y are affine schemes, we have also the functor

Cold
X (A) ! Cold

Y (A0). Having said this, we possess the following collection of
functors between categories of sheaves on X and on Y .

(1) f�: ShY (A0)! ShX(A).
(2) The left adjoint of f�: f�: ShX(A) ! ShY (A0). By 1.3, this functor is exact

if f is flat and is moreover faithful if Y ! X is onto and A0 ! f�us(A) is
epimorphic.

(3) (for X and Y affine) f�: Shold
Y (A0)! Shold

X (A). This functor is exact if A0 !
f�us(A) is an isomorphism, by 1.3(1).
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(4) (also for X and Y affine) The left adjoint of the previous functor, denoted by
f�. This functor is also exact if f is flat and is moreover faithful if Y ! X is
onto and A0 ! f�us(A) is epimorphic, by 1.3.

2.3. Our next goal will be to define a certain subcategory ShqcX (A) in ShX(A)
which we will call the category of quasi-coherent sheaves. The category ShqcX (A)
will have properties analogous to those of the category of quasi-coherent sheaves of
O(X)-modules inside the category of all sheaves ofO(X)-modules over a scheme
X . It will turn out that for an affine scheme, the category of quasi-coherent sheaves
is equivalent to Shold

X (A).

2.3.1. LetX be an affine scheme. We have the natural inclusion functorCold
X (A)!

Cnew
X (A):B ! (X;B). In this case there is the direct image functor denoted

(new ! old): Shnew
X (A)! Shold

X (A) given by

�(B; (new ! old)(S)) = �((X;B); S);

and the left adjoint of (new ! old), denoted by (old ! new).
The functor (old ! new) is exact and the functor (new ! old) is left exact.

R�(new ! old) will denote the right derived functor of (new ! old).

2.3.2. Let now f be a map (Y;A0)! (X;A) with X and Y affine.

LEMMA

(1) The functors f� � (new ! old) and (new ! old) � f�: Shnew
Y (A0)! Shold

X (A)
are canonically isomorphic.

(2) The same for the functors (old ! new) � f� and f� � (old ! new) from
Shold

X (A) to Shnew
Y (A0).

Proof. To prove the first statement it suffices to observe that each of the two
functors identifies with the direct image functor corresponding to compositions:
Cold
X (A) ! Cnew

X (A) ! Cnew
Y (A0) and Cold

X (A) ! Cold
Y (A0) ! Cnew

Y (A0) that
are naturally isomorphic.

The second statement follows from the first one by adjunction. 2

2.3.3. We will now describe the functor (old ! new) more explicitly. The next
result can be considered as an analog of Serre’s Lemma.

THEOREM. LetX be an affine scheme. Then the adjunction morphism of functors
IdShold

X (A) ! (new ! old) � (old ! new) is an isomorphism.

Proof of the Theorem.
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Step 1. Let X be an affine scheme and consider a full subcategory Cnew
X (A)aff

of Cnew
X (A) formed by pairs (U;BU ) with U affine. This subcategory carries

a natural (induced) Grothendieck topology. Let emb be the embedding functor
emb:Cnew

X (A)aff ! Cnew
X (A). By definition, this is a functor between sites in the

sense of 1.1.2.
The following lemma is easy to prove.

LEMMA. The functor emb�: Sh(Cnew
X (A)) ! Sh(Cnew

X (A)aff) is an equivalence
of categories. In particular

emb� � emb� ' Id and emb� � emb� ' Id:

Step 2. Let us start now with a sheaf S 2 Shold
X (A) and consider the following

presheaf S0 on Cnew
X (A)aff .

For j: (U;BU )! (X;A) we set

�((U;BU ); S
0) ' �((U;BU ); j

�(S)):

We claim that this presheaf is in fact a sheaf.
Let j: (U;BU )! (X;A) be a covering, and let ji: (Ui; BU i)! (X;A) denote

the map of the i+1-fold fiber product of (U;BU )with itself over (X;A) to (X;A).
Without restricting generality it suffices to check that the complex

0 ! �((X;A); S0))! �((U;BU ); S
0)! �((U1; BU 1); S

0);

is exact at first two places.
Since the functor of taking sections is left exact, it is enough to prove the

following lemma:

LEMMA. The canonical complex (called the Čech complex of S with respect to
(U;BU ))

0 ! S ! j0�j0
�(S)! j1�j

�
1 (S)! j2�j

�
2 (S)! � � � ;

is exact.

Proof of the Lemma.

Step 1. Assume first, that the map (X;A) ! (U;BU ) admits a section. In this
case our complex is exact since we can write down an explicit homotopy operator.

Step 2. In the general case, by 2.2.1(4), it is enough to prove that our complex is
exact after applying the functor j�. However, when we do that, the complex obtain is
the Čech complex of j�(S) over (U;BU ) with respect to (U1; BU 1). Therefore, we
find ourselves in the situation of Step 1, since the projection (U1; BU 1)! (U;BU )
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admits a section. 2

Step 3. We claim now, that the sheaf S0 constructed above is in fact canonically
isomorphic to emb�(new ! old)(S). For this we must establish an isomorphism

HomSh(Cnew
X

(A)
aff
)(S

0; emb�(M))! HomShold
X
(A)(S; (new ! old)(M));

for any M 2 Shnew
X (A). But this is clear from from the construction of S0.

In order to finish the proof of the theorem it remains to observe that (new! old)�
emb�(S0) ' S, by definition. 2

2.3.4. Let us now present several corollaries of the above theorem.

COROLLARY 1. AssumeX to be affine. The functor (old! new) realizes Shold
X (A)

as a full Abelian subcategory of Shnew
X (A) stable under extensions.

This is a formal consequence of the Theorem.

COROLLARY 2. Let X and Y be affine and consider the canonical morphism of
functors

f� � (new ! old)! (new ! old) � f�;

that is given by the adjunction map of the functors f� and f�.
Then it is an isomorphism when applied to objects of Shnew

X (A) of the form
(old ! new)(S) for S 2 Shold

X (A).

Proof of Corollary 2.
Indeed, on the left hand side we get f��(new ! old)(old ! new)(S) ' f�(S)

whereas on the right-hand side we get

(new ! old) � f� � (old ! new)(S) '

(old ! new) � (old ! new) � f�(S) ' f�(S);

and it is easy to verify, that under these identifications the above natural transfor-
mation yields the identity morphism on f�(S). 2

COROLLARY 3. Let X = Spec(R) be an affine scheme.

(1) Ri(new ! old)(old ! new)(S) = 0 for any S 2 Shold
X (A) and for any i > 1.

(2) The functor (old ! new) : D(Shold
X (A))! D(Shnew

X (A)) if fully faithful.

Proof of Corollary 3.
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To prove the first point, we must show that if 0 ! S ! K1 ! K2 ! 0 is an
exact sequence of sheaves in Shnew

X (A) with S 2 Shold
X (A), the sequence

0 ! S ! ((new ! old)(K1))! ((new ! old)(K2))! 0;

is exact in Shold
X (A).

For this it suffices to check that if B 2 Cold
X (A) is a free algebra built on

a projective R-module, the complex of sections 0 ! �(B;S) ! �(B;K1) !
�(B;K2)! 0 is exact.

Now, since Shold
X (A) � Shnew

X (A) is stable under extensions,
Ext1

Shold
X
(A)

(Z(X;B); S) = 0 implies

H1
Shnew

X (A)((X;B); S) ' Ext1Shnew
X (A)(Z(X;B); S) = 0;

and the assertion follows.
The second point readily follows from the first one. 2

2.3.5. Let us summarize some of the above results into a proposition:

PROPOSITION. Let X be affine, S 2 Shnew
X (A). The following conditions are

equivalent:

(1) S 2 Shold
X (A).

(2) For some pair f : (Y;A0) ! (X;A) with Y affine and faithfully flat over X
and with A0 ! f�us(A) surjective, f�(S) belongs to Shold

Y (A0).
(3) For every (j: (U;UB) ! (X;A)) 2 Cnew

X (A) with U affine, the canonical
map j� � (new ! old)(S)! (new ! old) � j�(S) is an isomorphism.

The proof follows immediately from Corollaries 1, 2 of the Theorem.

2.4. We arrive now to the definition of a quasi-coherent sheaf in ShX(A).

DEFINITION. LetX be first an affine scheme. A sheaf S 2 Shnew
X (A) is said to be

quasi-coherent if it belongs to Shold
X (A).

Let X now be an arbitrary scheme. A sheaf S 2 ShX(A) is said to be
quasi-coherent if for every pair (U;BU ) 2 Cnew

X (A) with U affine, the restric-
tion Sj(U;BU ) (cf. 1.3.1(4)) of S to (U;BU ) is quasi-coherent in the sense of the
previous definition.

LEMMA

(1) Quasi-coherent sheaves form a full abelian subcategory in ShX(A), stable
under extensions. We will denote it by ShqcX (A).
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(2) Let f : (Y;A0) ! (X;A) be a map. Then the direct image functor f� maps
ShqcY (A

0) to ShqcX (A).
(3) Let once again f : (Y;A0)! (X;A) be a map. Then the functor f� also maps

ShqcX (A) to ShqcY (A
0).

Proof. The first point follows readily from the definition and from the fact that
the analogous statement holds for X affine, by 2.3.4(1).

To prove the third point we may assume that both X and Y are affine and then
Lemma 2.3.2 implies the statement.

In order to prove the second point, as in the usual theory of schemes, it is
sufficient to check the statement in the case when both X and Y are affine.

Let (old ! new)(S) 2 Shnew
Y (A0). By 2.3.5(3), we must show that for every

(j: (U;UB)! (X;A)) 2 Cnew
X (A) with U affine, the canonical map

j� � (new ! old) � f� � (old ! new)(S)!

(new ! old) � j� � f� � (old ! new)(S);

is an isomorphism.
Indeed, let j0 and f 0 denote the maps from U �

X
Y to Y and to U and we have

j� � (new ! old) � f� � (old ! new)(S) '

j� � f� � (new ! old) � (old ! new)(S) '

j� � f�(S) ' f 0� � j
0�(S) '

f 0� � (new ! old) � (old ! new) � j0�(S) '

(new ! old) � f 0� � j
0� � (old ! new) '

(new ! old) � j� � f� � (old ! new);

where the above isomorphisms follow by applying Lemma 2.3.2 and Theorem
2.3.3. 2

By analogy with the affine situation, we will denote the inclusion functor ShqcX(A)!
ShX(A) also by (old ! new). Note, however, that when X is not affine there is
no functor analogous to (new ! old): ShX(A)! ShqcX(A) possessing good prop-
erties.

As before, restrictions of the functors f�, f� to the category of quasi-coherent
sheaves will be denoted by f�, f�. By definition, we have

f� � (old ! new) ' (old ! new) � f�;

and

f� � (old ! new) ' (old ! new) � f�:
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2.4.1. EXAMPLE. Let (X;B) 2 CX(A), then Z(X;B) 2 ShqcX(A).

2.4.2. The category ShqcX (A) has enough injective objects because every ShqcU (BU )
with U affine does (cf. [Ar], [Gr]).

2.5. We have the natural functor (old ! new):D(ShqcX(A)) ! D(ShX(A)) that
sends D(ShqcX (A)) to the subcategory DqcShX(A) that consists of objects of
D(ShX(A)) with quasi-coherent cohomologies.

THEOREM. The above functor induces an equivalence of categories: (old !

new):Db(ShqcX (A))! Db
qcShX(A).

Corollary 3 of Theorem 2.3.3 implies the assertion for X affine, as well as the
following fact:

PROPOSITION. Let f : (Y;A0)! (X;A) be a map. Then the natural map R�f� �

(old ! new)! (old ! new) �R�f� is an isomorphism of functors.

Proof of the Proposition.
In order to prove this statement, we may assume that both X and Y are affine.

A standard devissage shows that it is sufficient to show that if I 2 ShqcY (A
0) is an

injective object, Rif� � (old ! new)(I) = 0 for i > 0.
We know, that Rif� � (old ! new)(I) is the sheaf associated to the presheaf

(U;BU )! Hi
ShY (A0)((f

�1(U); f�us(BU ) �
f�us(A)jf

�1(U)
A0jf�1(U)); I):

However, we know by 2.3.4(3) that

Hi
ShY (A0)((f

�1(U); f�us(BU ) �
f�us(A)jf

�1(U)
A0jf�1(U)); I) ';

Hi
Shqc

Y
(A0)

((f�1(U); f�us(BU ) �
f�us(A)jf

�1(U)
A0jf�1(U)); I) = 0;

since I is injective. 2

Proof of the Theorem.
Since any complex is glued from its cohomologies, it suffices to prove that for

S1; S2 2 ShqcX(A) the map

(old ! new): ExtiShqc
X
(A)(S1; S2)!

ExtiShX(A)((old ! new)(S1); (old ! new)(S2));

is an isomorphism.
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Choose j:U ! X to be a covering in ZarX with U affine. Choose also an
embedding j�(S2)! I where I is an injective object of ShqcY (AjU)).
S ! j�(I) is an injection and letK denote the cokernel. The above proposition

implies

ExtiShqc
X
(A)(S1; f�(I)) ' ExtiShX(A)(S1; f�(I)) = 0;

and we have a commutative diagram for every i > 1

Exti�1
Shqc

X
(A)

(S1;K)
(old!new)

- Exti�1
ShX(A)((old ! new)(S1); (old ! new)(K))

ExtiShqc
X
(A)(S1; S2)

�

?

(old!new)
- ExtiShX(A)((old ! new)(S1); (old ! new)(S2))

�

?

The needed assertion follows by induction on i, since for i = 0; 1 it is already
known (Lemma 2.4(1)). 2

3. A-Bimodules and sheaves on CX(A)

3.0. In this section we will study the connection between the category of quasi-
coherent sheaves of A-bimodules and that of quasi-coherent sheaves on CX(A).
The material here is parallel to the one of Section 3 in [Ga]. The category of
quasi-coherent sheaves of A-bimodules will be denoted by Aqc-mod.

3.1. Let us recall several definitions from [Ga]. If B is a quasi-coherent sheaf of
algebras on a scheme X , we denote by IB the sheaf of B-bimodules given by
IB = ker(B 
B ! B) (the map here is the multiplication).

IfM is a quasi-coherent sheaf ofB-bimodules, we will denote by
O(X)(B;M)
the group HomB(IB ;M).

3.2. Let now X be a scheme and let A be a quasi-coherent sheaf of associative
algebras on X . We will construct a localization functor =:Aqc-mod ! ShqcX (A):

Let M 2 Aqc-mod. Consider the presheaf =(M) on CX(A) given by

�((U;BU );=(M)) = 
O(U)(BU ;M jU):

The following Lemma follows directly from the definition.

LEMMA. This presheaf is in fact a sheaf.
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3.2.1. If X is an affine scheme, similar constructions can be carried out in the
category Cold

X (A). In this case we denote the localization functor by =old.

LEMMA. The functors

(new ! old) � = and =old:Aqc-mod ! ShqcX (A);

are canonically isomorphic.

The proof follows immediately from the definition.

3.3. Let us describe=(M) in a slightly different way. Consider the sheaf of algebras
A�M overX , (X;A�M) 2 CX(A). This is a group-like object in this category

Hom((U;BU ); (X;A �M)) = 
(BU ;M jU);

and=(M) is a sheaf given by�((U;BU );=(M))) = Hom((U;BU ); (X;A�M)).
In other words, =(M) is a group like object in the category of sheaves of sets with
=(M) = ConstA�M , as a sheaf of sets. (cf. 1.3.1(2)).

3.3.1. PROPOSITION

(1) Let f : (Y;A0)! (X;A) be a map with Y and X affine. Then the functors

=old � f�us and f� � =old:Aqc-mod(X)! Shold
A0 (Y );

are canonically isomorphic.
(2) For any X and Y f : (Y;A0)! (X;A) the functors

= � f�us and f� � =:Aqc-mod(X)! ShA0(Y );

are canonically isomorphic.
(3) If X is affine the functor =:Aqc-mod ! Shnew

X (A) takes values in Shold
X (A).

(4) Let once again X be affine. Then the functors

(old ! new) � =old and =:Aqc-mod !

Shnew
A (X):Aqc-mod(X)! ShA(X);

are canonically isomorphic.
(5) For X arbitrary the functor =:Aqc-mod ! ShA(X) takes values in ShqcX (A).
(6) The functor =:Aqc-mod ! ShqcX(A) is exact and faithful.

Proof of the Proposition. The first two points are immediately deduced from
the following general Lemma:

LEMMA 1. Let F :C1 ! C2 be a functor between two sites. Let A 2 C1 be an
(abelian) group-like object so that the sheaf of sets ConstA possesses a structure
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of a sheaf of abelian groups. Suppose that F (A) is an (abelian) group-like object
in C2 as well and that F : End(A) ! End(F (A)) is a homomorphism of groups.
Then F �

ab(ConstA) ' ConstF (A).

Proof of the Lemma 1.
Remark. Here the subscript ab is to emphasize that the inverse image functor is

taken in the category of sheaves of abelian groups.
Observe first that for any S 2 Sh(C1),

HomShab(C1)(ConstA; S)) = f 2 �(A;S)jn �  = n�()g for any n 2 Z;

where n on the right-hand side denotes the endomorphism n � IdA 2 End(A).
Therefore, for each S 2 Shab(C2) we have

HomShab(C1)(ConstA; F�(S)) ' f 2 �(A;F�(S))jn � 

= n�()g for any n 2 Z' f 2 �(F (A); S)jn � 

= n�()g for any n 2 Z' HomShab(C2)(ConstF (A); S);

and that is what we wanted to prove. 2

The third point follows from (1), (2), 3.2.1 and 2.3.5(3).
Now, (2), (3) imply (5), whereas (3), 3.2.1 and 2.3.3 imply (4).
In order to prove (6) we may assume X to be affine, and the assertion follows

from the following lemma, whose proof is a straightforward verification.

LEMMA 2. Let X = Spec(R) and let V be an R-module. Let also FreeR(V ) 2
Cold
X (A) be the free associative algebra built on V . Then the functors

M ! HomR(V;M) and M ! �(FreeR(V );=(M)):Aqc-mod ! Ab;

are canonically isomorphic. 2

3.3.2. Let f be a map from a pair (Y;A0 ' f�us(A)) to the pair (X;A). We
have then the direct image functor fus�:A

0
qc-mod ! Aqc-mod and the natural

transformation

=X � fus� ! f� � =Y :

PROPOSITION

(1) The above above map is an isomorphism of functors.
(2) Moreover, it induces an isomorphism of the derived functors

=X � R�(fus�)! R�(f�) � =Y ! R�(=X � fus�);
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from Dqc(A)
def
' D(Aqc-mod) to D(ShqcX(A)).

Proof. Let us first make the following observation:

LEMMA. Let R ! R0 be a homomorphism of commutative rings. Let also B be
an R-algebra, and M be a B


R
R0-bimodule. Then


R(B;M) ' 
R0(B

R
R0;M):

The first assertion follows now, since

�((U;BU );=X � fus�(M)) ' 
O(U)(BU ; fus(M)jU)
Lemma
'


O(f�1(U))(f
�
us(BU ;M jf�1(U)) ' �((f�1(U); f�us(BU )); f� � =Y (M)):

In order to prove the second statement, it suffices to assume that bothX and Y are
affine. In this case the functors fus� and f� are exact (cf. 2.2.1(3)), and since the
functor = is always exact, the assertion follows. 2

3.3.3. Remark. When the condition A0 ' f�us(A) is not satisfied, the functor of
direct image on quasi-coherent sheaves of A0-modules can still be defined but it
will be neither left exact nor right exact. Therefore, the simply minded isomorphism
3.3.2(1) will be false in that situation. However, if one modifies the definition of
direct image in order to get a correctly defined functor in the derived category, the
above isomorphism in derived categories will still hold.

3.4. PROPOSITION–DEFINITION

(1) The functor =:Aqc-mod ! ShqcX(A) admits a left adjoint denoted by L:
ShqcX (A)! Aqc-mod.

(2) Let f be a map from a pair (Y;A0 ' f�us(A)) to the pair (X;A). The functors

LY � f
� and f�us � LX : ShqcA (X)! A0qc-mod(Y );

are canonically isomorphic.

Proof. For any S 2 ShqcX(A) we must construct a quasi-coherent A-module
L(S), satisfying

Hom
Aqc-mod(L(S);M) ' HomShqc

X
(A)(S;=(M));

functorially in M .
Assume first, that for a given S, such L(S) exists. Proposition 3.3.2(1) implies

then, that for every f : (Y; f�us(A)) ! (X;A), LY (f�(S)) over (Y; f�us(A)) exists
as well and satisfies

LY (f
�(S)) ' f�us � L(S):
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Observe that this, on one hand, implies (2) modulo (1) and on the other hand
reduces the construction of the functor L to the case when X is affine.

In these circumstances, every object in ShqcX(A) is a quotient of a one of the
type ZFree(V ).

However, for S = ZFree(V ), Lemma 2 of 3.3.1 implies that L(S) := F (V )
satisfies our requirements, where F (V ) denotes the free A-module built on V . The
proof follows in view of the following assertion:

SUB-LEMMA. Let C1 and C2 be two Abelian categories and let F :C1 ! C2

be an additive left exact functor between them. Suppose that F admits a partially
defined left adjoint functor which is however defined on a large collection of objects
in C2 (i.e. any object in C2 is a quotient of a one from this collection). Then this
left adjoint is defined on the whole of C2. 2

3.4.1. Since the functor = is exact, it can be prolonged to a functor between the

corresponding derived categories:Dqc(A)
def
' D(Aqc-mod)! D(ShqcX (A)) which

will be also denoted by=. Our next aim is to show that the functorL (which is obvi-
ously right exact) can be also derived into a functorL�L:D�(ShqcX(A))! D�

qc(A),
which will be the left adjoint functor to =:D�

qc(A) ! D�(ShqcX(A)). When X is
affine, the argument of 3.4 proves also the existence of suchL�L, since the sheaves
ZFree(V ) with V being a projective O(X)-module form a set of projective genera-
tors of ShqcX (A). However, in order to treat the general case an additional argument
is needed, since objects of the derived category cannot be reconstructed just from
the local information.

3.4.3. THEOREM. Let X be an arbitrary scheme andA be a quasi-coherent sheaf
of algebras on A.Then

(1) The functor L admits a left derived functor L�L:D�(ShqcX(A))! D�
qc(A).

(2) L�L satisfies

Hom(L�L(S�);M�) ' Hom(S�;=(M�));

functorially in S� 2 D�(ShqcX(A)) and in M� 2 D+
qc(A).

(3) Let (Y;A0) ! (X;A) be a map such that f :Y ! X is flat and such that
A0 ! f�us(A) is an isomorphism. Then

L�LY � f
� ' f�us � L

�LX ;

as functors Dqc�(ShX(A))! D�
qcY

(A0).

Remark 1. In (3), one can drop the assumptions that Y is flat over X and
that A0 ! f�us(A) is an isomorphism. In this case the functors f�us:Aqc-mod !
A0qc-mod and f�: ShqcX(A) ! ShqcA0

(Y ) will have to be replaced by appropriate
derived functors.
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Remark 2. The category ShqcX (A) is lacking objects that would be acyclic for
the functor L. The situation here is similar to that in [Bo], [Be], when one wants
to define the direct image functor for D-modules. As in [Bo], there are at least two
ways to overcome this difficulty: a more straightforward one is to go beyond the
category ShqcX(A) and work with arbitrary sheaves. In this case there are enough
acyclic objects for the functor L, but the drawback of this approach is that we
will have to rely on the equivalence of the categoriesDqc(A) and D(A-mod) with
quasi-coherent cohomologies as well as on Theorem 2.5. Another way is the one
described below:

Proof of the Theorem.

Step 1. First we will present a construction of a functor: L0�L:D�(ShqcX (A))!
D�
qc(A).
Consider first a pair (Y;A0) with Y is affine and let S be a quasi-coherent sheaf

onCY (A
0). We will construct a canonical sheaf Can0(S) mapping surjectively onto

Swith Can0(S) being acyclic for the functorL. Namely, Can(S) = ��(B;S)
ZB,
the sum being taken over isomorphism classes of objects in Cold

Y (A0) with B a free
algebra on a projective O(Y )-module. This construction has the following two
properties:

(1) For any map of sheaves S1 ! S2 there is a canonical map Can0(S1) !
Can0(S2).

(2) If f : (Z; f�us(A
0))! (Y;A0) is a morphism of pairs with Y and Z affine, there

exists a canonical map f�(Can0(S))! Can0(f�(S)).

Thus any complex S� of sheaves bounded from above in ShqcY (A
0) admits a admits

a canonical quasi-isomorphism Can(S�)! S� by a complex consisting of sheaves
acyclic with respect to the functor =.

Let now S� be a complex bounded from above on X giving rise to an object of
D�(ShqcX (A)), and choose j:U ! X to be a covering in ZarX with U affine. Put
A0 ' j�us(A) and let also ji:Ui ! X be the i+ 1-st cartesian product of U with
itself over X . All these schemes are affine since X is assumed to be separated.

For each Ui, fix the canonical resolution Can(S�jUi) of S�jUi as above.
Then for each i we can form a complex L(Can(j�i (S

�))) of quasi-coherent
sheaves of AjUi-bimodules on Ui.

There are i+ 1 maps from Ui to Ui�1, call them pik, and for each 1 6 k 6 i+ 1
we have a map of complexes

pikus
�
L(Can(j�i�1(S

�)))! L(Can(j�i (S
�)));

which is a quasi-isomorphism by 3.4(2), since the functor

p�k
i: Shqc

AjUi�1
(AjUi�1)! Shqc

AjUi
(AjUi);

is exact.
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The alternating sum of the maps pikus� defines a complex of complexes

0 ! jus�L(Can(j�(S�)))! j1us�L(Can(j�1 (S
�)))

! j2us�(Can(j�2 (S
�)))! � � � ;

or, in other words, a double complex L0
��(S�) in Aqc-mod, whose associated

complex we denote by Ass(L0��(S�)).
Using Lemma 2.3.3 and Proposition 3.4(2) we see that the canonical map of

complexes

L(Can(j�(S�)))! Ass(L0��(S�))jU;

is a quasi-isomorphism. This implies that the functor

S� ! Ass(L0��(S�));

is a well-defined functor D�(ShqcX(A)) ! D�
qc(A), which we denote by

L0
�
L(S�).

Step 2. Let us prove now, that the functorL0�L(S�)we have constructed satisfies
the adjunction property

Hom(L0
�
L(S�);M�) ' Hom(S�;=(M�)): (�)

For this we must construct the adjunction morphisms

S� ! = � Ass(L0��(S�));

and

Ass(L0��(=(M�)))!M�:

This is done in the following way

Ass[ji�Can(j�i S
�)]

�
- Ass[ji�j

�
i (S

�)] �
by Lemma 2:3:3

� S�

Ass[ji�=L(Can(j�i S
�))]

? by Lemma 3:3:2
�
- =Ass[jius�L(Can(j�i S

�))]

for the first adjunction map, and

Ass[jius�L(j
�
i (=(M

�)))] � Ass[jius�LCan(j�i (=(M
�)))]

Ass[jius�j
�
i us(L=(M

�))]

by 3:4(2)

?

- Ass[jius�j
�
i us(M

�)] �
by Lemma 2:3:3

� M�
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for the second one. It is now easy to verify, that the adjunction maps constructed
above give rise to (�).

Step 3. The adjunction property (�) established above implies that the functor
L0
�
L(S�) we have constructed is a derived functor of L as well as (3) of the The-

orem in view of Proposition 3.3.2. 2

3.5. DEFINITION. Let (X;A) be as before: a scheme with a quasi-coherent
sheaf of algebras on it. We define T �(A) to be the object of Dqc(A) given by
L�L(Z(X;A)).

From the fact that L is right exact we infer that Hi(T �(A)) vanishes for i > 0
and that H0(T �(A)) = IA.
T �(A)will be called the cotangent complex ofA. IfM is a quasi-coherent sheaf

of A-bimodules, we denote by Hi
A(M) the groups Exti(T �(A);M).

3.5.1. EXAMPLE. Suppose that A is flat over O(X). It follows from the results
of Quillen [Qu], that T �(A) ' IA. Indeed, this is true for X affine, and then we
apply 3.4.3(3).

4. Deformation theory

4.0. This section is almost a word by word repetition of [Ga], after we adopt certain
modifications connected with the fact that we are working over a scheme.

4.1.0. For a scheme X , Oi(X) will denote the sheaf O[t]=ti+1 � O(X).

4.1.1. Let A be a quasi-coherent sheaf of associative algebras on X and let M
be a quasi-coherent sheaf of A-bimodules endowed with a map of A-bimodules
�:A!M .

Consider the category Extalg(A;M) defined as follows:

Objects: O1-algebras ext(A;M) such that ker(t: ext(A;M) ! ext(A;M)) =
im(t: ext(A;M)! ext(A;M)) with fixed isomorphisms

ext(A;M)=t � ext(A;M) ' A and im(t: ext(A;M)! ext(A;M)) 'M;

and such that under the above identifications the action of t

A ' ext(A;M)=t � ext(A;M)
t
! im(t: ext(A;M)! ext(A;M)) 'M;

coincides with �.

Morphisms: Maps in this category are defined to be O1-algebra homomor-
phisms that induce identity maps on M ' im(t: ext(A;M)! ext(A;M)) and on
A ' ext(A;M)=t � ext(A;M).
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LEMMA. The category Extalg(A;M) above is canonically equivalent to the cate-
gory TorsCX(A)(=(M)) of =(M)-torsors on CX(A).

Proof. Indeed, to any ext(A;M) as above, we can assign a sheaf of sets whose
sections over (U;BU) 2 CX(A) are algebra-homomorphismsBU ! ext(A;M)jU
that respect the projection to AjU . This set of sections is clearly a torsor over

O(U)(BU ;M jU) ' �((U;BU );=(M)).

The above assignment is an equivalence of categories by 2.1.4. 2

4.1.2. Let us define the category Deformi(A) to have as objects quasi-coherent
sheaves of associativeOi(X)-algebras Ai, endowed with an isomorphismAi=Ai �

t ' A such that TorOi(X)
1 (Ai;O(X)) = 0. In other words, we need that

A
�
! im(ti:Ai ! Ai) ' ker(t:Ai ! Ai):

Morphisms in this category are just Oi(X)-algebras homomorphisms respecting
the identifications with A modulo t. This category is obviously a groupoid. It is
called the category of i-th level deformations of A.

We have natural functors Deformi+1(A) ! Deformi(A) given by reduction
modulo ti+1. If Ai is an object in Deformi(A), we denote by Deformi+1

Ai
(A) the

category-fiber of the above functor. This category, which is obviously a groupoid
too, is called the category of prolongations of Ai onto the i+ 1-st level.

Observe that for any object Ai+1 2 Deformi+1
Ai

(A)

AutDeformi+1
Ai

(A)(Ai+1) ' 
O(X)(A;A):

4.2. We are now ready to state the main result of the present paper:

THEOREM

(1) The category Deform1(A) is equivalent to the category TorsCX(A)(=(A)) of
=(A)-torsors on CX(A).

(2) To any Ai 2 Deformi(A) one can associate a gerbe GAi
bound by =(A)

on CX(A) in such a way that GAi
((X;A)) is canonically equivalent to

Deformi+1
Ai

(A).

Remark. Observe that the first point in the statement of the Theorem is a special
cases of the second one for i = 0.

Proof. The first point of the Theorem is a special case of Lemma 4.1.1 above
with M ' A, � = id.

We define the gerbe GAi
as follows:

GAi
((U;BU )) is the groupoid of Oi(U)-algebras BU i+1 with an isomorphism

BU i+1=t
i+1 �BU i+1 ' BU �

AjU
(Ai)jU;
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such that ker(ti+1:BU i+1 ! BU i+1) = im(t:BU i+1 ! BU i+1) and such that the
map

BU ' BU i+1=t
i+1 �BU i+1 ! im(t:BU i+1 ! BU i+1);

factors through AjU and gives rise to an isomorphism AjU ! im(t:BU i+1 !

BU i+1).
By definition, GAi

((X;A)) ' Deformi+1
Ai

(A).
Functors GAi

((U;BU )) ! GAi
((V;DV )) for maps (V;DV ) ! (U;BU ) are

given by restricting sheaves to V and taking fiber products with DV over BU jV .
We must exhibit now the action of the category TorsCU (BU )(=(AjU)) on

GAi
((U;BU )).

Recall, that by 4.1.1, TorsCU (BU )(=(M jU)) ' Extalg(BU ; AjU).
Let ext(BU ; AjU) be an object of Extalg(BU ; AjU) and we put

Action(Bi+1 � ext(BU ; AjU)

' ker(Bi+1 � ext(BU ; AjU)! BU )=im(t:A! Bi+1 � ext(BU ; AjU)):

If now B0
U i+1 is a fixed object of GAi

((U;BU )), the inverse functor

GAi
((U;BU ))! TorsCU (BU )(=(AjU));

is provided by setting for any other objectB1
U i+1 2 GAi

((U;BU )) the correspond-
ing torsor to have as the set of sections over (V;DV ) the set of Oi+1(V )-algebra
homomorphisms (B0

U i+1)j(V;DV ) ! (B1
U i+1)j(V;DV ) that commute with the

canonical projections to DV .
In order to finish the proof, we must show that GAi

is a stack, but this follows
from 2.1.4. 2

4.3. We will now translate the assertions of the above theorem into cohomological
terms.

1-st Level Deformations. The set of isomorphism classes of the groupoid Deform1(A)
is canonically isomorphic to

Ext1(Z(X;A);=(A)) ' R1 Hom
Aqc-mod(T

�(A); A) ' H1
A(A);

(cf. 1.5.2, 3.5, 4.2(1)).

Prolongation of Deformations 1. If Ai is an i-th level deformation, there exists a
canonical class in H2

A(A) which is zero if and only if there exists a prolongation
Ai+1 of Ai. (cf. 1.5.5, 3.5, 4.2(2)).

Prolongation of Deformations 2. Suppose that for a given i-th level deformation
Ai the category Deformi+1

Ai
(A) has an object. Then �0 of this category is a torsor
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over the abelian group H1
A(A). (cf. 1.5.1, 3.5, 4.2(2)).

4.4. EXAMPLE. Suppose now that the sheafA is flat as a sheaf ofO(X)-modules.
From Example 3.5.1, it follows that deformations ofA are controlled by Exti(IA; A)
(Ext s being taken in the category of quasi-coherent sheaves of A-bimodules) for
i = 1; 2.
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