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Abstract. A generalization of the class of monotone twistmaps to maps of 5" x RN

is proposed. The existence of Birkhoff orbits is studied, and a criterion for positive
topological entropy is given. These results are then specialized to the case of
monotone twist maps. Finally it is shown that there is a large class of symplectic
maps to which the foregoing discussion applies.

1. Introduction
In this paper we shall study a class of dynamical systems which generalizes the
class of 'monotone twist maps' of two dimensional annuli, and also the class of
'degree one circle maps', both of which have been studied extensively in the last
decade or two.

The maps which we shall deal with are continuous maps <p of the generalized
annulus S1 x RN (JV>0) into itself. The denning condition of these maps is that
they come from solving a recurrence relation

A(xk_,,...,xk+m) = 0 (VfceZ) (l.l)

in the first coordinate of a general point in S1 x RN. This is explained more precisely
in §2.

Our main concern is with the construction of Birkhoff orbits of <p (denned in
§ 3), and a criterion for positivity of the topological entropy, htop(<p), of the map <p.

The main tool which we use is presented in § 4, in the form of Theorem 4.2 and
two afterthoughts. This theorem allows us to construct solutions of the recurrence
equation with prescribed qualitative properties. The method of construction is a
discrete analog of Perron's method of solving the Dirichlet problem i.e. his method
of constructing harmonic functions with prescribed boundary values from subhar-
monic functions and 'barrier functions' (or super harmonic functions).

As a first application of this method we show in § 5 how the existence of certain
kinds of orbits of <p implies the existence of a Birkhoff orbit, thereby generalizing
a result of Hall ([Hal]).

t This research was partially supported by the United States Army under Contract No. DAAL03-87-K-
0043, by a NATO Science Fellowship, and by the Netherlands Organization for the Advancement of
Pure Research (Z.W.O.).
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16 S. B. Angenent

In § 6 we formulate Hypothesis 6.1, which roughly speaking, asserts the existence
of two solutions of (1.1), say x(

n
u and x(

n
2), which 'exchange rotation numbers' in

the sense that

x(
n

]) xl
n
2)

l im—L>w,> lim ——

and
Y(2) (1)

lim <o)os lim

hold for some co0<a>1. It is shown that this hypothesis implies the existence of
Birkhoff orbits with any prescribed rotation number w in the interval [co0, wj .

A more complicated construction, which is carried out in § 7, shows that the
Hypothesis (6.1) implies that hlop((p)>0. In fact we show that there is a compact
set K <= S1 x RN such that some iterate of cp leaves K invariant, and has a Bernoulli
shift as a factor, when restricted to K. Here we partially generalize another result
of Hall, who in turn was concerned with giving a topological version of a 'shadowing
theorem' of Mather's (see [Ha2] and [Ma2] where Mather's result is announced).
A consequence of this construction is that the number of periodic orbits with period
<N grows exponentially with N. Moreover, our method of proving existence of
these orbits is constructive. Given x(1) and x(2) a computer program could be written
which constructs a great number of periodic orbits.

In § 8 we specialize our results to the two dimensional case, and ask which
properties a map (i.e. a monotone twist map) with zero topological entropy must
have. The first result in this direction is that, if /jtop(<p) = 0, then any orbit must have
a forward and backward rotation number. Similar results, under different hypotheses,
have been obtained by M. Handel. The other result is that, if htop((p) = 0, then any
periodic orbit 'of type (p, q)' with gcd (p, q) = 1 must be a Birkhoff orbit. This result
is originally due to Boyland [Bo]. As far as I am aware, both Handel and Boyland
rely on Thurston's classification of surface diffeomorphisms. By contrast, our
approach is self contained, and as we have pointed out before, constructive, in a
certain sense.

Throughout § 8 we could have weakened the hypothesis 'htop(<p) = 0' to 'there is
no invariant set K c S1 x R' such that q> \ K has a subshift of finite type as a factor'.
However, a theorem of Katok ([Ka2]) shows that this is not very much of a
weakening. Indeed, if the map <p is C1+F, then his theorem says that both conditions
are equivalent.

The next section, the ninth, deals with the question of existence of Birkhoff orbits
in general, i.e. without further hypotheses on the map q>. We obtain the existence
of Birkhoff orbits with prescribed rotation number <o, not for the original map cp,
but for a 'translated map' which comes from the recurrence relation
A(x,i_,,..., xk+m) = A for some A. In general this A will depend on <o, and will not
be zero. From this result we derive a sufficient condition of the existence of at least
one Birkhoff orbit of the original map tp. The condition turns out to be (trivially)
necessary as well. We conclude this section by briefly specializing the results to the
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Monotone recurrence relations 17

one dimensional (i.e. degree-one circle maps) and the two dimensional (twist map)
case.

Finally, in the last section, by way of example, we indicate a number of symplectic
maps <p which belong to the class of maps which was studied in this paper. In
particular we show that there is a very simple mechanical model, whose steady
states are described by such maps.

2. Twist maps and recurrence relations
Let A be the cylinder (R/Z)xR, and let (p:A-*A be an orientation preserving
monotone twist homeomorphism. On the universal cover R2 of A a lift of <p will be
given by

F(x, y) = (f(x, y), g(x, y)),

where /, g are periodic in the sense that

\,y)=f(x,y) + \
(2.1)

g(x+l,y) = g(x,y)

(i.e. x is the angle coordinate). The monotone twist condition on <p says that the
function f(x, y) is strictly increasing in y.

In addition we shall assume that <p satisfies the infinite twist condition:

lim f(x, y) = ±oo.

Combined, these two conditions imply that for any pair x, x e R there is a unique
solution Y(x, x) of the equation

f(x,Y(x,x)) = x.

This solution is a strictly increasing function of x. It is continuous, and satisfies

Y(x,x)= Y(x+l,x+l)

for all x, x e R.

From Y(x, x) we construct another function:

Y(x,x) = g(x, Y(x,x)).

This function is also continuous, and periodic in the sense that

Y ( x , x ) = Y ( x + l,x + l ) .
We shall now show that Y(x, x) is a strictly decreasing functon of x.

Fox fixed x0 the image of the line x = x0 under the map F is given by the graph
of the function G0(x) = g(x0, Y(x0, x)). This graph divides the plane into two parts,
one above it, and one below it. If x, > x0 is given, then the image of the line x = x,
must lie in one of these two parts. Thus we either have

g(x0, Y(xo,x))>g(xl, Y(xt,x))

for all xeR, or we have the reverse inequality for all xeR. Since <p and F are
orientation preserving the latter cannot happen. Therefore xo<x{ implies that

Y(xo,x)>Y(xl,x).
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18 S. B. Angenent

The construction of Y also shows that

lim Y(x, x) = ±00

and similarly limx^±Co Y(x, x) = =FOO.
Consider a sequence of points (xk, yk) (keZ) in the plane. They are the orbit of

a point under the map F if and only if they satisfy

for all k e Z . The first equation is equivalent to yk= Y(xk, xk+l) for all k. If we
substitute this in the second equation we get the following equivalent set of equations:

yk= Y(xk,xk+i)

yk= Y{xk_x,xk).

We see that a sequence of points (xk,yk) is an orbit of F if and only if the x
coordinates satisfy

A(xk^,xk,xk+l) = 0 (VfceZ) (2.2)

and the yk are given by yk = Y(xk, xfc+1). Here we have written

A(x_,,xo,x,)= y(xo ,x , ) -Y(x_, ,x0) . (2.3)

So instead of studying orbits of the map F one may as well study solutions of (2.2).
The function A which we have just introduced satisfies the following hypotheses.

It is continuous, it is monotone increasing in both x_, and x+1, and

lim A(x_,, x0, x,) = lim A(x_,, x0, x,) = ±oo.
x_i->±oc Xi-»±oc

Finally, it is periodic in the sense that

A(x_,,xo,x,) = A(x_, + l,Xo+l,x, + l)

holds.
Motivated by this example we shall consider monotone recurrence relations of

type (/, m) for /, m > 1. We define such a relation to be one of the form

A(xk_,,. . . ,xt+M) = 0 (fceZ) (2.4)

where A is a continuous function of /+ m +1 variables which satisfies the following
conditions:

a monotonicity A(x_(,. . . , xm) is a nondecreasing function of all the x,-
except possibly x0. Moreover, it is strictly increasing in the variables x_,
and x+m.

b periodicity A(x_, , . . . , xm) = A(x_; + 1 , . . . , xm +1).
c coerciveness limx ,^±cc A(x % / , . . . , xm) = ±oo and (2.5)

lim A(x_,, . . . , x m ) = ±oo.

If ( x t _ ; , . . . , xfc+m_,) is given then conditions a and c imply that we can solve
(2.4) for xk+m. In this way we have defined a continuous map Fd from R;+m to
R'+m, given by

' b(Xk-l, • • • , Xk + m _ , ) = (Xj(_;+I , . . . , Xk + m ) .
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Monotone recurrence relations 19

The conditions a and c also imply that we can solve (2.4) for xk_, if the other
variables are given. Thus the map FA is a homeomorphism of R'+m onto itself.

Throughout the paper we shall keep one fixed Z action on R/+m in mind. It is
given by

(x_ , , . . . , xm_,) + i = (x_, + / , . . . , xm_, +1)

for I'eZ. The quotient R / + m /Z is homeomorphic to S 'xR ' + m " ' . We shall call it
Al+m, since it generalizes the annulus (R/Z) x R which we started with.

The periodicity condition b implies that FA is equivalent with respect to the
Z-action on R/+m, i.e. FA(x+ /') = FA(x)+i. Hence it defines a homeomorphism on
the quotient Al+m, which we shall call <ps. This class of homeomorphisms is our
generalization of the class of monotone twist maps of the annulus.

Our assumption that / S: 1 is not a necessary assumption. If we allow / = 0 then
we can still define the maps FA and <pA as above. The only difference is that they
need not be invertible anymore. Except for this all the results which we shall derive
in the following sections remain true. In particular they apply to degree-one maps
of the circle. If h : R -> R satisfies / i (x+l ) =/i(x) + l then the solutions of (2.4) where
we have taken

are exactly the orbits of the map h : R -» R. Our map <pA is the map which h induces
on the circle R/Z.

3. Birkhoff orbits, and the space X
Let X denote the space of bi-infinite sequences of real numbers, i.e. X = Rz. We
equip X with the product topology.

The space X is also partially ordered by:

def

x < y *—* xk < yk for all integers k

where x, yeX. The following notation is sometimes used:
def

x < y *—* x^y and x •£ y,

def

x « y *—* xk < yk for all k € Z.

Given a pair of sequences x, y € X such that x < y we define the order interval

[x,y] = {zeX:x^z<y}.

Any order interval is homeomorphic to the product [0, l ] z , which is a compact
metrizable space.

On X we have a Z x Z action, r, given by

This action is compatible with both the topology and the partial ordering we have
on A".
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20 S. B. Angenent

A sequence x e X will be called a Birkhoff-sequence if for any pair of integers
(m, n) one either has Tmn(x)>x or r m n ( x ) < x We shall denote the set of all Birkhoff
sequences by B.

An equivalent definition of a Birkhoff sequence is the following. A sequence x e X
is a Birkhoff sequence if and only if for any i, j , ke Z one has

x,; s Xj + k «-> x,+, < x,+, + A:.

Thus, if {x,} is the sequence of x-coordinates of an orbit of a monotone twist map,
then x is a Birkhoff sequence if and only if the map preserves the order on the
orbit. This is the usual definition of a 'Birkhoff-orbit' (see [Kal]).

It is known that if x e B is a Birkhoff sequence, then x has a rotation number,
i.e. the limit

i- * * d e f i ^lim — = a) =w(x)

exists. In fact one has the following inequalities:

x0+[(ok\<xk<x0+[a)k\+l (keZ) (3.1)

where [wfcj is the largest integer below <ok.
The set of Birkhoff sequences, B, which is the intersection of the sets

{xe X: Tm n(x) s x or rmn(x) < x}, is a closed subset of X.
The whole set B is not compact, but the inequalities (3.1) imply that for any two

constants a, B > 0 the closed set

{x e B | |xo| =£ a and |o>(x)| < B}

is contained in an order interval, and therefore compact.
We shall occasionally say something about periodic orbits 'of type (p, q)\
If the map <p& of R'+ m/Z has a periodic point P with period q, then some lift

(x_, , . . . , xm _,) e R(+m of P will almost be periodic in the sense that the corresponding
sequence {xk, k e Z} e X satisfies

xk+q=xk+p (keZ) (3.2)

for some p e Z . Another way of saying this is x = Tpq(x).
By definition any sequence xe X will be said to be periodic of type (p, q) if it

satisfies (3.2).
If xe X is periodic of type (p, q) and if x is also a Birkhoff orbit or sequence

then x is periodic of type (p0, q0) where p = /• p0, q = /• q0 and / = gcd (p, q).
Indeed, xe B implies that we have rPo,o(x)s:x or TPO<JO(X)<X. Suppose the first

holds, and for some i e Z we have

T;>o.<?o(*)< > x>> i - e - *.--</„ + A ) > * i -

Then T,,O(,O(X)>X implies that for all feeZ

x,.kqo+ kpo> x,_(k_1)£(0 + (/c - l)p0

so that x, = Xj-iqo+ lpo> Xj, a clear contradiction. If we did not have TPO,,0(X) S: X but
TP(hqo(x) s x instead then the same arqument would show that we still have TPO,qu(x) =
x.
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Monotone recurrence relations 21

4. Subsolutions and supersolutions
Let Ae C(R/+m+l) be a monotone recurrence relation of type (/, m) as we defined
them in § 2.

A sequence x e X is called a subsolution for A iff

A(x H , . . . ,x J + m )>0 (Y/eZ) (4.1)

holds. Similarly, a supersolution is a sequence x e X such that
A(x,_,,. . . ,x,+m)s0 (V/eZ) (4.1')

holds.
The next lemma states some of the elementary properties of sub- and super-

solutions.

LEMMA 4.1. (a) The set of subsolutions for A is closed in X. The same holds for
supersolutions.

(b) If {x{a)}aes# is a family of subsolutions which is bounded from above (w.r.t. the
partial ordering on X) then sup xia) defined by

is a subsolution.
Analogously, a family of supersolutions x(a) which is bounded from below has an

infimum, and inf xla) is again a supersolution.
Proof. Part (a) follows immediately from the continuity of the function A.

To prove part (b), let x(a) be a family of subsolutions, indexed by a e M, and let
x = sup x<a). Then for each je Z there exists a sequence of a^'s for which

xjV>je, -2-k ( f c = l , 2 , 3 , . . . j € Z )

holds. Clearly x = supjik x
(a<k> so that we may assume that the family of xlahs is

countable. Moreover, if one defines

then, as N f oo, the x<N) converge in the product topology on X to x. In view of
part (a) of this lemma we only have to consider the case in which the number of
x(a)'s is finite. In turn, this may be reduced to the case of only two x<a)'s, by means
of an induction argument.

So consider two subsolutions x, y e X and let x = sup (x, y) be their maximum or
supremum. Letje Z be given, and assume that x^y,. Then for any nonzero integer
k in the range - / < k< +m one has xj+k ^xj+k, so that the monotonicity of A (i.e.
hypothesis 2.5a) implies that

A ( x , _ , , . . . , xj+m)> A{xj_h . . . , xj+m) > 0 .

If Xj < yt then one has, for the same reasons,

A(x/_,,..., xJ+m) > A(y,_,,..., yJ+m)>0.
In either case we obtain A(x,_,,..., xj+m) a 0 for arbitrary j , so that x is a subsolution.
This finishes the proof of the lemma.

The next result shows how subsolutions and supersolutions may be used to
construct actual solutions of the recurrence relation (2.4).
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22 5. B. Angenent

THEOREM 4.2. Let x, xeX be a sub- and a supersolution, respectively, which are
ordered: x<x. Then there is at least one solution of (2.4), say x, between x and x,
i.e. for which x < x < x holds.

Proof. Define

5 = {x e X | x is a subsolution and x < x}.

Clearly S is bounded from above, so that

x = sup 5

exists. Since x e S we have x < x < x. By our previous lemma x is again a subsolution,
and therefore xe S. We have for every integer j

A(x,._,,...,x,.+m)>0. (4.2)

We claim that equality holds for all j , i.e. that x is a solution of (2.4).
To reach a contradiction assume that for some j strict inequality holds in (4.2).

Then we must have x, < x,, or x, = x,.
In the first case we define

ifjVfc

The monotonicity of A implies that A(x£_,,..., x£+m) — 0 whenever k ^j and e >0.
Since we have strict inequality in (4.2) and A is continuous we also have
A(xJ_;,..., Xj+m) a:0 if e > 0 is small enough. So for small e > 0, xe beongs to S,
but xe > x which is a contradiction.

In the other case, i.e. x, = x,, we observe that, due to the monotonicity of A,

But x is a supersolution so that we have a contradiction again.
We must conclude therefore that x = sup S is a solution of the recurrence relation.
It should be clear from the proof that if we had defined

5 = {xeXJx>x and x is a supersolution}

then inf S would also be a solution of the recurrence relation. In general one expects
inf 5 and sup 5 to be different.

The theorem can also be used to construct Birkhoff orbits or sequences.

ADDENDUM 4.3. If at least one of x and x is a Birkhoff sequence, then there exists a
solution x of (2.4) which lies between x and x, and is a Birkhoff sequence.

Proof. Let x be a Birkhoff sequence. Then we shall prove that x = sup (S) also is a
Birkhoff sequence.

Let m, n be given integers. Then we have rm n(x)<x or rm n(x)ax.
In the first case we have, for any yeS,

so that Tn,_n(y)eS (note that the translations rmn preserve the ordering on X, and
that y is a sub(super)solution if and only if rmn(y) is one).
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Monotone recurrence relations 23

Thus Tmn(5)<=S and

V" (*) = Tm,n (sup S) = sup rm>n (S) < sup 5 = x

In the other case we have T_m_n(x)<x, so that the same argument shows that
r_m_n(x)<x or, rmn(x)>x.

The conclusion is, that for any m,neZ, one has either rm n(x) < x o r rm n(x) > x,
so that x is a Birkhoff sequence.

If x is not a Birkhoff sequence, but x is then one shows in the same way that
inf (S) is a Birkhoff sequence.

ADDENDUM 4.4. If at least one of x or x is periodic of type (p, q), then there exists
a solution x of (2.4) which lies between x and x, and is periodic of type (p, q).

Proof. Let x be periodic of type (p, q). Then rpq{x) = x, and therefore yeS implies
T

P,q(y)e §• But then Tpq(sup S) = sup S, so that sup S is periodic of type p, q.
Likewise, if x is periodic of type (p, q) then so is inf S.

5. A generalization of HalVs theorem
In [Hal] Hall proved that any monotone twist map, which has a periodic orbit of
type (p, q), must have a Birkhoff orbit of the same type. The following theorem
generalizes this result.

THEOREM 5.1. Let xe X be a solution of the monotone recurrence relation (2.4) for
which one can find a real number co such that

M = sup \xk - k • a) | < oo.

Then (2.4) has a Birkhoff solution whose rotation number equals a>.

Proof. Any translate rm n(x) of x is also a solution. Our assumption implies that

x = sup {rmn(x)\n ^ m • w}
and

x = inf{Tmn(x)|«>m-w}

both exist and that

0 < x k - x k = sup (xk_m + n-Xfc)

holds. So if we define yk = xk-2M and yk = xk + 2M then y is a subsolution, y is
a supersolution and y s y.

Moreover, y and y are Birkhoff sequences.

To see this let r,seZbe given and consider rrs(x):

Tr,s(x) = sup (Tm+r,n+s(x) | n < raw)

= sup (Tmn(x)|M< ma) + s-rw)

s x if * > «o

s x if s s rw.
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24 S. B. Angenent

Thus x is a Birkhoff sequence, and therefore y is one too. A similar argument proves
that y is a Birkhoff sequence.

The addendum to Theorem 4.2 implies that the recurrence equation (2.4) has a
Birkhoff solution y, between y and y. Clearly y must have rotation number co.

6. Quasiperiodic orbits with prescribed rotation number
In this section we assume that for some wo<w, there exist a subsolution x and a
supersolution x of (2.4) such that

lim inf—^o>x,k

.. xkhm sup — s o>1;
k^-x. k

l i m i n f — £ u)0,
k k

(6.1)

hm sup—So)0,
k^+<x> k

holds. The main result of this section is:

THEOREM 6.1. For any a> e [w0, w,] there is a Birkhoff solution of (2.4) with rotation
number 10.

Proof. The inequalities (6.1) imply that

lim inf |fc|~' • (xk - w k) > min (w , -w ,w- &J0) > 0
k-»±oc

and
lim sup Ifcl"1 • (xk - w fc)<max (w-o>,, wo-w)<0.

k->±oo

H e n c e t h e r e i s a n i n t e g e r TV a 0 s u c h t h a t f o r a l l k e Z o n e h a s :

xk>wk-N and xk<<ok + N. (6.2) j
i

Now define

Then, on the ground of arguments similar to those which were used in the proof
of Theorem 5.1, one concludes that y is a Birkhoff supersolution with rotation
number w, and that y is a Birkhoff subsolution with the same rotation number.

Furthermore (6.2) implies that

yk>a>k>yk,

i.e. that >><y. By Theorem 4.2 and the Addendum 4.3 there must be a Birkhoff
solution y between y and y. This Birkhoff solution has rotation number to.
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Monotone recurrence relations 25

7. A criterion for positive entropy
Under the hypotheses of § 6 we can construct a great number of orbits of <pA. This
construction leads us to the following conclusion.

THEOREM 7.1. Let the monotone recurrence relation (2.4) have a sub- and a super-
solution, x and x respectively, which satisfy (6.1) for some w0<col.

Then the map <pA has positive topological entropy. In fact there is a compact subset
K of Al+m such that some iterate of <pA leaves K invariant, and has a Bernoulii shift
as a factor, when restricted to K.

Since the existence of K implies positivity of the topological entropy of <pA we
only have to construct it to prove the theorem.

The construction proceeds in three steps. In the first step we use x and x to
construct a nicer pair of sub- and supersolutions w and w, which are wedge shaped,
as in figure 1.

keZ

FIGURE 1. Graphs of w and w.

Then, in the next step we consider a biinfinite sequence of translates of w and
w. These translates of our original wedges are chosen in such a manner that, if W
denotes the supremum of all subsolutions in question, and W the infimum of the
translated supersolutions, then M"— W and from the results in section four we know
that there is a solution W between W and W. It turns out that we have so much
freedom in choosing the translated sub- and supersolutions that we can let the
constructed solution W follow any 'zig-zag pattern' we like (see figure 2).

Now let us fill in the details.

The wedge like sub- and supersolution. Choose two rational numbers p0, p\ such that
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26 S. B. Angenent

Translates of w

Translates of w

FIGURE 2.

holds, and define the functions

Z{t) = P\t+ — Pot^,

where t+ = max (/, 0) and /_ = max (-/, 0).
From our sub- and supersolution x and x we construct new sub- and supersolutions

w = sup {Tmn(x): n £ z(m)}

w = inf {Tm,n(x): n >Z(m)}.
(7.1)

Lemma 4.1 assures us that w is a subsolution, and that w is a supersolution.
Our hypothesis (6.1) on x and x implies that

XkS:Z(k)-M
and

holds for all ke Z, with M independent of k. For any (m, n) with n < z(m) one has

(note that -z(t) is sub additive, so that -z(fc) a -z(k -m)-z(m)). Thus after taking
the supremum over all m, n with n<z(m) one finds

wk<z{k) + M.

Furthermore, if one puts m = k and n = [z(k)\ (the largest integer below z{k)) then

wk^(Tm<nx)k = xo+ [z(k)\.
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Without loss of generality we may assume that the constant M is so large that
M > \xo\ +1. Then we have just proved that

\wk-z(k)\*M (7.2)

for all k e Z.
A similar argument gives

\*k-Z(k)\*M (7.3)

(it may be necessary to increase the constant M one more time).

Construction of a zig-zag solution. In the previous step we had chosen two rational
numbers po,Pi- Let Q be a common multiple of their denominators, so that p0Q
and pxQ are integers. We choose Q so large that

(Pi~Po)'Q — 4M. (7.4)

Let {ek;keZ} = e be an arbitrary biinfinite sequence of zeroes and ones (i.e.
ek = 0 or ek = 1 for all ke Z). Given such a sequence we define two functions, Xe(t)
and £€(t). On the i n t e r v a l e s t<(j + l)Q we define

i.e. p, if e, = 1 and p0 if e, = 0. The other function is given by

f t

L(0= Xe(s)ds.

Jo

For any integer j , £e(jQ) is an integer, and we always have the inequalities

whatever e is.
Now define

We = sup {rjQtUjQ}(w)\j e Z}

^ e = inf {T;afcW)(w) | j e Z}.

PROPOSITION 7.2.

Proof. For any m e X we have

Cm

z(m~jQ)- Xe
JjQ

Xe() ds
jQ

where we have used (7.2) in the last step, and the inequality

e{s) ds (Vf €R, xeR)
r x

J x
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(which follows from p0 — Xe — Pi) in the second last step. This proves one half of
the first inequality. To prove the second half we choose an integer j such that

If e} = 0 then

= (.UQ)-M-
In case e}, = 1 one compares Wem with T(J+1)<?^j(j+1)(3)(vy)m to arrive at the same
conclusion.

Therefore the first inequality in the Proposition holds. The proof of the second
inequality is analogous to that of the first.

It follows immediately from this proposition that We - M and We + M are a sub-
and supersolution, and the We - M < We + M, so that there must be at least one
solution W of (2.4) which lies between We - M and We + M.

Construction of the set K. Let 1e denote the set of solutions of (2.4) such that
We - M < W < We + M. We have just seen that ~Le is nonempty.

Let 2 be the union of all 2 e where e ranges over all possible {0, l}-sequences.
To define K, we recall that it has to be a subset of R ' + m /Z, where Z acts on R'+m

via (x^h ..., xm_,) +1 = ( x _ , + 1 , . . . , xm_, + 1).
Then we put

Ke = { (*_ , , . . . , xm-i) mod Z\x e S J
and

K = {(x_, , . . . , xm_,) mod Z\xe 2}.

PROPOSITION 7.3. K and the Ke are compact.

Proof. Since Se is contained in the order interval [ We — M, We + M] it is precompact
in the product topology on X. Since it is closed 1e is in fact compact.

Each Ke is the image of 1e under the projection map from X to R/ + m/Z, which
is defined by

n(x) = ( x_ , , . . . , xm_,)(mod Z)

for XG X. Thus Ke = T T ^ ) is also compact (the projection map is continuous).
We claim that 2 is also compact. To verify this we observe that 2 is contained

in the order interval {x e X \ z(k) - M < xk < Z(k) + M} and therefore is precompact.
It remains to show that 2 is closed. Since X is metrizable we only have to check
for sequential closedness. So let {wim)}msl be a sequence in 2 which converges to
w*eX. Then for every w > l there is a {0,1} sequence eim) = {e[m)}k£Z such that
w{m>e1e(m). Now, by passing to a subsequence if necessary, we can arrange things
so that for any k the sequence {ei

k
m)}ksl is eventually constant. If one runs through

the definition of the We and We one more time then one sees that this implies that
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the We(m) and We(m) converge to We* and We, respectively (where

e? = limbec e(
k

m)).

It follows that w* € Xe. and thus w* e 2.
Hence 2 is closed, and even compact.
We may conclude the proof of the proposition by noting that K = TT(2) is the

continuous image of a compact set, and therefore also compact.

PROPOSITION 7.4. The sets Ke are pair wise disjoint.

Proof. Let ( x _ ; , . . . , *„,_,) e R/+m represent a point in Ke. Then we can form its orbit
under the diffeomorphism Fs (denned in § 2—it is a lift of <pA), which gives us a
biinfinite sequence {x,}J£Z = x

On the other hand, there must be an xe 2 such that (x_ , , . . . , xm_!)(mod Z) = TT(X).

Since x is a solution of (2.4) it is uniquely determined by its components
(x_i,..., xm_,), and we see that x = x (mod Z).

By Proposition 7.2 we see that

\(xu+l)0-xj.Q)-Pe.- Q\s2M+\MU+i)Q)-UjQ)-Per Q\

= 2M.

We had assumed that (p\-p0)' Q>4M, so that the inequality cannot be true for
both e} = 1 and e, = 0. In other words, given our point in Ke we can find x, and from
x we can compute the sequence e. Hence two different Ke's cannot overlap.

The proof of the last proposition also shows that we have a continuous mapping
e: K -* C where C = {0,1}Z is the space of all {0,1} sequences equipped with the
product topology (C is homeomorphic to the Cantor set).

The mapping e is surjective.
On C we have a homeomorphism, called the shift. It acts by o-(e)k = ek+l. Using

the fact that if w € Xc, then

w = T_<?,_P(W) with P = -p€j • Q

belongs to 2f f ( e ) , and also the fact that

one can verify that
(i) K is invariant under

(ii) e- (<pA)<? = o-- e, i.e. (<pA)° maps Ke onto KaM.
We can restate this by saying that (C, a) is a factor of (K, (<p&)Q). By a standard

result of ergodic theory this implies that <pA has positive topological entropy (see
[Wa]).

We conclude this section with the following observation. If e e C is a periodic
sequence then the corresponding sub- and supersolution, We and We, are also
periodic of type (k, /) for suitable k and /. By the second addendum to Theorem
4.2 we know that there must be a (k, /)-periodic solution We between We and We.
Thus we obtain the existence of many periodic orbits of the map <pA.

Indeed, if the sequence eeC has period fe0, then k = k0- Q. It follows that the
number of periodic orbits of (p^ whose period divides k0 • Q is at least 2*".
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8. Twist maps with zero entropy
Using the criterion for positivity of the topological entropy which we derived in the
last section, we now study monotone twist maps of the (two dimensional) annulus
A = RxS\ whose entropy vanishes.

Let <p be such a map, and let F be its lift to R2. We assume it satisfies the conditions
which were described in § 2. To any point P e A we associate the sequence {xk(P)}
where xk(P) is the x coordinate of Fk(P') and P' is a lift of P. The sequence
xk(P) depends on the particular lift P' of P which we choose, but the sequence
xk(P)-x0(P) does not.

We define the forward- and backward-rotation numbers of P to be the limits

to\ v xk(P)-x0(P)
P±(P) = hm ,

if they exist. We shall allow p±{P) to be +oo or -oo.
The main result of this section is:

THEOREM 8.1. If the map <p has zero topological entropy, then every PeA has a
forward and backward rotation number.

Our other result is:

THEOREM 8.2. / / the map <p has zero topological entropy and P is a periodic point of
type (p,q) with gcd (p, q) = 1, then the orbit of P is a Birkhoff orbit.

This was originally proven by Boyland, using Thurston's classification of surface
diffeomorphisms.

We begin our proof of these theorems by assuming that we have transformed the
problem of finding orbits of the map <p to the problem of finding solutions to the
recurrence equation (2.2).

Let x, y € X be two biinfinite sequences. We shall say that x and y intersect at the
integer k if either

(yk-xk)(yk+i-xk+l)<0

or

I

yk=xk and (yk-i-xk^)(yk+l-xk

holds.t
Clearly x and y are ordered if and only if they do not intersect at any integer k.

In particular x is a Birkhoff sequence iff it does not intersect any of its translates,

V«(*)-
Given a sequence x e X, it can happen that, for some pair of integers (m, n), with

m>0, xand rmn(x) intersect at an infinite number of positive integers fc,, k2, fc3

t The idea of looking at the intersections of the graphs of two sequences x\x2e X is not new, as the
referee kindly pointed out to me. Indeed, V. Bangert uses this notion in his paper [Ba], and it was also
used in [A].
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We shall denote the set of (m, n) for which this occurs by J(x). In addition we
define the corresponding set of ratios:

R(x) = \ -\m

LEMMA 8.3. If R(x) is finite, then x has a forward rotation number.

Proof. Define

5 = lim sup— and p = liminf—.
jc-oo k - fc-°° k

If x does not have a forward rotation number, then p < p, and there has to be a
rational number a/b such that p<a/b<p. Moreover we can choose a/b in the
complement of R(x).

Then x and rba(x) intersect only at a finite number of positive integers, and there
must exist a k > 0 such that for all j > k one has

Xj > Xj-b + a

or, for all j s: k one has Xj < Xj^b + a.
In the first case one proves inductively that xk+ib zxk + la, so that p>a/b which

is impossible. The second case also leads to a contradiction.
Thus we have p = p.
Note that we cannot exclude the possibility that the forward rotation number,

which was shown to exist, is infinite.

LEMMA 8.4. If R(x) contains two or more elements, then the map <p has positive
topological entropy.

Proof. Let a/b< c/d be two different elements of R(x), and assume that we actually
have (b, a)e J(x) and (d, c) e J(x). In particular we have b > 0 and d > 0.

We shall construct a supersolution y whose backward rotation number is a/b,
and whose forward rotation number is c/d.

Since x and Tha(x) intersect infinitely often at a positive integer there must exist
a j > 0 such that

xi+\ > Tb,a(x)j+i = Xj+\-b + a

holds. In other words there must exist a j a O such that x,-T(,a(x), increases from
negative to positive at /

For i s ; we define yt as follows:

Pj = xh Pj-l ~ xj-\ > • • • > Pj-b + l = xj-b+l

Pj-h =Xj-a, pj-b-i = * , _ , - a , . . . , pj-2h+i = Xj-fc+i - a

and in general for t = 0,1 ,2 , . . . , b — \, and s>0:

#_.,,,_, = *,-_,-so.
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Then we claim that for i^j — l one has A(pi-.-[,yi,j>,+1)<0. Since the sequence yt

is per iodic we only have to verify this for i =j — \,j - 2 , . . . ,j- b. Forjz isij-b + l
one has pt = x,, so that

MPi-i, Pi, j'i+i) = A(xf_,, x,, x1+1) = 0 0" - 1 s= 12J - 6 + 2).

At / = j - b +1 one has

A(j,_i, j , , £•+,) = A(x,_fc+2, x,_b+,, Xj - a)

< A(X,_fc + 2, X;_6+1 , Xj_b) = 0

since A is increasing in its third argument, and x, - a < *,-_(,. A similar argument can
be used to verify the case i =j - b.

It remains to define yt for i>j. Since x and rdc(x) also intersect at an infinite
number of positive integers there must be a k > 0 such that

I

xk + l < xk-d + l + c-

holds. Moreover we can choose k (much) larger than j . Given this k we define
pi = x, f o r ; < i < k, for any t = 1 ,2 , , . . . , d and s = 0 , 1 , 2 , . . . we put

As above one easily verifies that y is a supersolution. Furthermore y has a forward
and backward rotation number equal to c/d and a/b respectively.

A similar construction can be used to construct a subsolution y with forward
rotation number a/b and backward rotation number c/d.

The sub- and supersolution, y and y, satisfy the hypothesis (6.1) so that Theorem
7.1 tells us that the map (p has positive topological entropy. This completes the
proof of Lemma 8.4.

Proof of Theorem 8.1. If <p has zero topological entropy, then by Lemma 8.4, the
set #(x) has at most one element, for any given solution x of (2.2). By Lemma 8.3
this sequence must have a forward rotation number.

Observe that the reversed sequence x̂  =x^k satisfies the recurrence relation

A(x,_,,x,, x,+1) = 0,

where A(r, s, t) = A(t, s, r). The map corresponding to this (monotone) recurrence
relation is conjugate to the inverse of <p and therefore also has zero topological
entropy. Therefore the sequence x has a forward rotation number, and the sequence
x has a backward rotation number.

Proof of Theorem 8.2. Let x e X be a sequence which is periodic of type (p, q). Then
for any (m, n) the sequences x and Tmn(x) either do not intersect, or they intersect
infinitely often (since they are periodic with the same period).

The periodicity also implies that if x and rmn(x) intersect then x and
Tm+q,n+P(x) do too. So if (m, n) e J(x), then (m + q, n +p) 6 J{x) and both n/m and
(n+p)/(m + q) beong to R(x). Since we are assuming that <p has zero topological
entropy we can apply Lemma 8.4 to conclude that n/m = (n+p)/(m + q). But this
implies that n/m= p/q.
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Our other assumption was that gcd (p, q) = 1. Therefore there is an integer / > 1
such that (m, n) = (Iq, Ip). This cannot be true, however, since we then would have
Tm,n{x) = x so that they do not intersect.

We see that the assumption that x and Tmn(x) intersect for some (m, n) leads to
a contradiction. So x does not intersect any of its translates, which means that it is
a Birkhoff sequence.

9. Existence of Birkhoff sub- and supersolutions in general
We return to the more general monotone recurrence relation (2.4). Given any we R
the equation (2.4) need not have a Birkhoff solution with rotation number a>. Instead
of this, we have the following.

THEOREM 9.1. For any ia e R there is a Birkhoffsequence x e B such that for some A e R

A(xk_,,...,xk+m) = \ (fceZ) (9.1)

(where A does not depend on k), and such that x has rotation number a>. In particular,
x is either a subsolution or a supersolution.

Using this theorem we shall also prove the next result.

THEOREM 9.2. If (2.4) has a Birkhoff subsolution xw and a Birkhoff supersolution
x('' then it also has a Birkhoff solution x.

If Wj is the rotation number ofxu) then the rotation number ofx, to, can be chosen
between &>0 and w, (i.e., (o0— <w — &>i or w, s a> < <y0, depending on how a>0 and w, are
ordered).

Although there is a superficial resemblance between this theorem and Theorem
4.2, they are really different. The difference is of course that we do not assume that
the sub- and supersolution in the last theorem are in any way ordered.

We would also like to point out that, in the case of monotone twist maps, relation
9.1 reduces to

Y(xk+l,xk) =

in the notation of § 2. Therefore solutions of 9.1 correspond to orbits of the 'translated
twist map' given by

(again we use the notation of § 2).
These maps have been studied before, e.g. by Chenciner in [Ch, § 6]. Our main

motivation for studying (9.1), or the FA's is that they seem to be a natural one-
parameter family of maps, or recurrence relations associated to A. Moreover Theorem
9.1 leads to a convenient proof of Theorem 9.2.

We begin the proof of Theorem 9.1 with the following observation. If there is a
dense set of w's in R, for which the theorem holds then it is true for any real w.
Indeed, suppose we can construct Birkhoff orbits xij)eB with rotation numbers
to1'1 and suppose the a>iJ> converge to some o>eR. Then we may assume that the
xiJ) satisfy O s x | / ' < 1 , and by the compactness criterion of § 3 (see 3.1) we can
extract a convergent subsequence. The limit of this subsequence will be the desired
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Birkhoff orbit with rotation number <o. (This trick is not without precedent, see
[Kal].)

The theorem is also true if it holds for any A which satisfies the following strict
monotonicity condition

A = A(x_;, . . . , x+m) is strictly monotone in each x} except x0. (9.2)

To see why this is true, let A be any function which satisfies a, b and c from § 2.
Then

AF(x-r • -x+m) = A(x_,- • -xm) +

still satisfies a, b and c, and in addition satisfies condition (9.2), for any e > 0. So
for any e>0, AE has a Birkhoff sequence xF which satisfies (9.1), and has rotation
number «. Again we may take a cluster point of the xe as e I 0 to obtain a solution
of (9.1) for our original A with the appropriate rotation number.

So from here on we assume that w = p/q, and that A satisfies (9.2). Moreover we
suppose gcd (p, q) = 1, and q > 4.

We shall show that a solution of (9.1) must exist by means of a homotopy argument.
Let Bpq denote the set of (p, q) periodic Birkhoff sequences. Then Bpq is not

empty; it contains the sequence x, =jp/q- The set Bpq is a closed convex subset of
of the vectorspace X. If we let Xpq denote the affine subspace of X which comprises
all (p, ^-periodic sequences, then Bpq has nonempty interior in Xpq.

By the compactness criterion of § 3, the set

D = {xeBM:xo = 0}

is compact. In fact D is homeomorphic to the (q -1) dimensional unit ball in R*"1,
and the mapping

x e Bpq -»(x0) x(0,xl~xo,...,xq-xo)eRxD (9.3)

is a homeomorphism of BM with RxD.
The Z-action on BM induces a Z-action o n R x D . This induced action is given

by 'addition to the first coordinate', i.e. (x, d) • k->(x+ k,d) if xe R and d e D.
We let K denote the quotient

K = BM/Z

and let dK be its boundary dK = (dBpq)/Z, where dBM is the boundary of Bpq in

Using the homeomorphism (9.3) we see that K = SlxD and dK = Slx Sq~2.

On K we define a continuous mapping into R*, given by
5 : K -> R"

«5,(x) = A(x<_, , . . . ,x 1 + m ) ( l < i < < 7 ) .

At first sight it looks as if 5 is only defined on Bpq, but the periodicity of A makes
that 8 is also well defined on the quotient.

Given 8 we define one more mapping, e:

ek(x) = 8k(x)--i Sj(x) (k = l,2,...,q).
q .> = i
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Thus, e is a map from K to the subspace

of R'. We have constructed e in such a manner that solutions of (9.1) are exactly
the zeroes of e.

LEMMA 9.2. e does not vanish on dK.

Proof Let x and y be any pair of solutions of (9.1), and assume that x s j . Then
we claim that the strict monotonicity hypothesis (9.2) implies x « y.

Indeed, if for some k we would have xk = yk then

A(xfc_,,..., xk+m) = b(yk-i,..., 3'k+m)( = A)

combined with the strict monotonicity of A shows that we really have xk_j = yk_j

for —/<y<+m. By repeating this argument one finds that xi=yi, or x,<>), holds
for all i e Z

An x e X p , belongs to Bpq if and only if for any pair of integers (k, I) one has
T M ( X ) > X or T M ( X ) < X . The same point will belong to the boundary of Bpq if, in
addition, for some (k, 1) one has T M ( X ) > X (or T M ( X ) < X ) but not rkJ(x)»x (or
Tk,;(x)« x respectively).

If this point were a solution of (9.1), then rkl(x) would be one too so that
Tfc,(x)>x would imply Tkl{x)»x. But that would contradict xedBpq.

We conclude that e does not vanish on the boundary of K.
This lemma shows that e defines a mapping from dK into A\{0}. We consider

the associated homomorphism Trq-2{e): TTq-2(dK)^ TT<,_2(A\{0}) of homotopy-
groups. Note that these groups are well defined since we have assumed that q > 4.

We already saw that dK = Slx Sq~2 so that

nq-2(dK) = w,_2(S') x 7 T V 2 ( S " - 2 ) = Z

Furthermore, A\{0} has the homotopy type of Sq~2 so that vq-2(A\{0}) = Z. It
follows that the homomorphism 7T,-2(e) is represented by an integer, which we
shall call its degree. This degree is defined up to its sign, which depends on the
choice of generators of the groups Trq-2(dK) and TT,_2(A\{0}) which we have
implicitly made.

If the degree of e is nonzero then e must vanish somewhere in K. Indeed, if
e(x) 5* 0 for all xe K, then we may write e\dK = e °j, wherey: dK -» K is the inclusion
mapping. Since irq-2(K) = TTq_2{Sx x D) = 0 (here we use g > 4 , and the convexity
of D) the composition TTq_2(£) • irq-2{j) vanishes, so that the degree of e is zero.
Therefore we can complete the proof by showing that this degree is nonzero.

With this end in mind we observe that the set

{AeC°(R'+ m + l ) |A satisfies a, b, c of § 2, and also (9.2)}

is convex and therefore certainly connected. This means that all the maps e which
we have just considered are homotopic on dK, and they all have the same degree.
We can compute this degree by looking at any particular example that pleases us.
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Consider the following choice of A:

A(x_,, . . . ,xm) = x_, + - • • + xm-(l+m + l) • x0.

We choose coordinates $x,..., gq on Xpq which are defined by

For k<0or k>q + lwe define gk by assuming that t;k+q = gk holds. We may identify
Xpq with the group ring of Z/ qZ, so that multiplication on Xpq is defined by
convolution of the ^-coordinates:

q-l

j = 0

The map S: Xpq -» R' is simply given by

)(m-Q p
q

where y = Y*+~7 e,--(/+m + l) • e0, and ej represents jeZ/qZ in the group ring of
Z/qZ. The map e is given by

e(i) = y * ij — Av(y * £) = y * (f — 1

where Av f = ( î + - • • + ̂ q)/q-
The characters of Z/ qZ are given by

for J, &e Z/ qZ.
One finds that

so that if j'<¥• 0 mod (q) one has

and thus Re (X;(y)) <0, and in particular one sees that Xj(y) ^ 0.
This implies that the only zeros of e are given by ijk = constant, i.e. by

*k = (kp/q) + x0. This discussion also allows us to compute the degree of the map
e. Indeed, the map e is linear, and the kernel of its restriction to {xeXpq: xo = 0}
consist of all constant f with £0 = 0; in other words, e restricted to {x e Xp ,: x0 = 0}
is injective. Hence the degree of e \dD-* A-{0} is ±1. Since the inclusion of 3D in
dK = 5' xsD induces an isomorphism on the (q-2) dimensional homotopy groups
the degree of e: dJ£-» A-{0} is also given by ±1.

The proof of Theorem 9.1 is complete.
We turn to Theorem 9.2.
Define the following two subsets of R.

Rot+ = {a> £ R13x e B: x is a supersolution and x has rotation number w}

Rot_ = {weR\3xe B: x i s a subsolution and x has rotation number w}.
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It follows directly from Theorem 9.1 that the union of Rot+ and Rot_ is all of R.
Moreover if we define:

Rot0 = {weR|there exists a Birkhoff solution of rotation number co}

then we have Roto = Rot+n Rot_. Indeed, the inclusions '<=' are trivial, and if co
belongs to Rot+ and Rot_ then there exists a Birkhoff subsolution x and a Birkhoff
supersolution x, both of which have rotation number co. For a suitable large integer
M one will have x-M <x + M (in view of the inequalities (3.1)) and Theorem 4.2
plus the addendum following it tell us that there exists a Birkhoff solution between
x - M and x + M. Hence to e Rot0.

Using the compactness property described in § 3 one easily shows that the sets
Rot+ and Rot_ are closed.

The hypothesis of Theorem 9.2 is that w0£Rot and w,eRot+. Assume that
wo<(D|. Then we have just shown that there are two closed sets A± = [w0, «,] n Rot±

whose union is the interval [co0, &>,], and neither of which is empty. Since the interval
is connected the intersection A+ n A- is nonempty. Therefore there exists a Birkhoff
orbit with rotation number co e [coo, wj . The same line of reasoning can be followed
when w, •£ co0, so that we have completed the proof of Theorem 9.2.

If we are dealing with the two lowest dimensional cases / = 0, m = 1 (i.e. degree
one circle maps) and / = m = 1 (i.e. twist maps of a 2-dimensional annulus) then
we can improve the previous results.

THEOREM 9.3 (/ = 0, m = 1). If <p: S1 -* Sl has degree one then it has a Birkhoff orbit.

Proof. Let /:R-»R be a lift of <p, i.e. /eC°(R,R) and f(x) + l =f(x+l). Then
M = sup | / (x ) -x | is finite, and one easily verifies that

xn = — n • M, xn=+n- M

are a sub- and a supersolution for A(x0, x,) = x, -f(x0). By Theorem 9.2 we know
that there exists a Birkhoff solution of A(xn, xn+1) = 0.

In the next Theorem we consider a monotone twist map <p of the two dimensional
annulus S1 xR.

THEOREM 9.4. If there exist a<b such that ip maps the ring S' x [a, b~\ into itself then
if has a Birkhoff orbit.

Proof. Let F = (f,g) be lift of <p, and define the functions Y, Y and A as in the
beginning of section two. In addition, we consider two auxiliary functions defined
by/ .(x)=/(x,a) and/fc(x)=/(x,b).

Then /„ represents a degree-one circle map, and the previous theorem says that
there exists a Birkhoff sequence xn for which xn+, =fa(xn) (n eZ) holds. If one
checks the definition of Y, Y and A then one finds:

Y(xn,xn+I) = a

Y(xn-,,xn) = g(xn_l, K(xn_,,xJ)>a

->A(xn_,,xn,xn+1)>0.
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So xn is a Birkhoff subsolution. By a similar argument a Birkhoff orbit for the map
fh must be a Birkhoff supersolution for A.

It follows that the map tp has a Birkhoff orbit.

10. The symplectic case
In this final section we draw the reader's attention to a subclass of monotone
recurrence relations whose associated map preserves a symplectic structure. Not
surprisingly, these recurrence relations are those which can be derived from a
variational principle.

Our construction goes like this. Let h e C2(Rd+1) satisfy

hxtXls:S (10.1)

for some constant S > 0. Then we define the formal sum W(x) for x e X by

W(x) = I h(xj, Xj+t,..., xj+d).

This sum will not converge in general, but if x,yeX coincide except for a finite
number of components, then the a priori formal expression W(x) - W(y) will lead
to a finite sum. Hence one can define the derivative of W at an x e X. One finds that:

dW
• + ho{Xj,..., xj+d)

def
= A ( x , _ d , . . . , Xj

The requirement that W be stationary at x e X is therefore equivalent to the
recurrence relation

A(x,_d,...,x,+rf) = 0 G/eZ). (10.2)

If we assume that our original 'generating function' h is periodic in the sense that

h(xo+1,..., xd +1) = h(x0,..., xd) + <&

holds for some constant $ e R then A satisfies the periodicity requirement of § 2. From

— • • + ho,i(xo, ...,

if 0<i<d and a similar expression for dA/3x, if - d < i < 0 one sees that A also
satisfies the monotonicity condition, and the coerciveness condition of § 2. We
conclude that the recurrence relation (10.2) is monotone as we have defined the term.

The recurrence relation (10.2) therefore defines a C1 diffeomorphism of the
2d-dimensional annulus A2d — S1 x R2d~\ We denote this map by <pA (as in § 2).

We proceed to construct an invariant symplectic form for <pA.
Consider the 'partial action' function

d

S(xl,..,xd,x1,...,xd)= £ h(xj- • -xdxx- • -xj).
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If x € X is a solution of (10.2), then

Si = S ( x _ d + 1 , . . . , Xo, * i , . . . , xd) + SyXx • • • xd, X j + 1 , . . . , x2d)

is stationary with respect to variations of x , , . . . , xd. Regarding 5, as a function of
xx,... ,xd the relation dS{ — 0 may be written as

I Yj(x^d+l,...,xd)dXj = Y. YJ(x[,...,x2d)dxJ, (10.3)
where

YJ(xl,...,xd,Xi,...,xd) = — ( l < j < d )
j

- dS
Y( ) ( l j d )

It follows from (10.3) that, if we write 6 for Yldxl + - • -+Yddxd then

so that <pA preserves the two form -dd = <o. The matrix whose (i, j) entry is d Yj/dxi+d

is lower-triangular, with positive numbers on the diagonal, so that the 2-form
da) = ~(dYx A dxx + • • • + dYd A dxd) has maximal rank, and is a symplectic form.

A very special case arises if one takes

d fc
h{xo,...,xd) = -\ I y,(xo-x,.)2 + -— COS2TTX0

with -y,, . . . , yd > 0 and k e R constants. The assoicated A is

j

and the corresponding map <p& generalizes the so called 'standard map' (i.e. the
case d = 1, -y, = 1).

As an application of the results of § 7 we note that when

d

k s I hi

one has a supersolution x,=|+|./ ' | and a subsolution x_/=3~[/l which satisfy (6.1),
so that the map (pA has positive entropy.

By analogy with the Aubry-Le Daeron theory [ALD] one could say that the
solutions of (10.2) describe the equilibrium states of a bi-infinite chain of particles
in which any sequence of d +1 consecutive particles contributes an amount equal
to -h(xj,..., xj+d) to the total energy of the chain. The number x, then represents
the position of they'th particle. See figure 3. From here on we assume that h is truly
periodic, i.e. that <t> = 0.

As in the Aubry-Le Daeron theory one can show that the function

https://doi.org/10.1017/S014338570000537X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570000537X


40 S. B. Angenent

V(x)

FIGURE 3. A chain of particles with nearest and second nearest neighbour interaction.

is well defined on Xpq/Z, and in fact is proper on this space. Hence W achieves
its maximum on Xpq, and for any (p, q) we obtain the existence of a periodic orbit
of «pA of type (p,q).

Using the positivity of the mixed derivatives one also shows that for x, ye XM

one has

W(x) + W(y) s W(x v y) + W(x A y)

where v and A denote the usual lattice operations on Xpq (one could adapt the
proof on p. 520 of [Mai]). Thus if x maximizes W on Xpq then so does TK,X for
any k, I and one finds that

2 W(x) < W(x v rkJ(x)) + W(x A < 2 W(x).

Hence x v rfc ,(x) and x A TkJ{x) also maximize W, and therefore must be solutions
of (10.2). Since our A satisfies condition (9.2) the proof of Lemma 9.2 indicates that
we either have xvTkJ(x)»x or x v TM(X) = x; in other words x and TM(X) are
ordered.

The conclusion is that any x e Xp„ which maximizes W is a Birkhoff sequence.
Finally we note that, just as in the Aubry-Le Daeron case, one can obtain Birkhoff

orbits with prescribed rotation number by taking limits of similar orbits with rational
rotation number.
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