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INVERSION OF THE STRUVE TRANSFORM
OF HALF INTEGER ORDER
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Abstract

Defining a spherical Struve function hn(/) = ^jr /2rHn + | / 2 ( ' ) w e show that the Struve
transform of half integer order, or spherical Struve transform,

where n is a non-negative integer, may under suitable conditions be solved for/(r):

7 = 0

where 2"J=oan,JX'2J is the sum of the first n + 1 terms in the asymptotic expansion of
4>n(x) as x — oo. The coefficients in the asymptotic expansion are identified as

It is further shown that functions 4>n{x) which are representable as spherical Struve
transforms satisfy n + 1 integral constraints, which in turn allow the construction of
many equivalent inversion formulae.
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1 . Introduction

The standard inversion theorem for the Struve transform, namely that under
suitable conditions if

)dx, (1)
•'o

then

r d t , (2)

was established by Titchmarsh [14] for the case -\ <v< {. This result was
generalised in various ways by Hardy [11], Cooke [6] and Fox [7]. Recently there
has been some discussion in the optics literature by Box and McKellar [3] and
Fymat [8] of the solution of equation (1) for/(x) for the case v = §; a case which
is not covered by any of the above generalisations. Fymat [9] generalised Cooke's
result to allow the inversion of (1) for { =s v =£ §, but his method fails for larger
values of v. It is the purpose of this note to describe the inverse transform to (1)
for the case v = n + { (n integral and non-negative), and give conditions under
which the inversion is valid.

The classical inversion formula (2) is invalid for v = n + \ because <f>(t)
defined by (1) does not decrease fast enough as / -> oo for it to be possible to
represent/(x) as an integral transform of <>(/). Box and McKellar [2] showed how
one can overcome this problem by subtracting certain "badly behaved" terms
from <t>(t), leaving a function which is also represented by an integral transform
of f(x). This new integral transform can be inverted by standard techniques. The
analysis of [2] was purely formal. One aim of this paper is to provide a proof of
their result which is expressed as Theorem 1 below. Our proof relies on induction.

In the course of reconciling the different inversion formulae of Box and
McKellar [3] and Fymat [8] for the case v — f, Box and McKellar [4] found a set
of integral constraints satisfied by the function <j> of (1). They are generalised to
v = n + { in Theorem 2.

Further investigation of the relationship between the inversion formulae of Box
and McKellar [3], Fymat [8] and Perelman and Shifrin [13] for the case v = § led
Box and McKellar [5] to yet another inversion formula for this case. This
inversion formula is generalised to v — n + \ in Theorem 3. Finally the gener-
alisation of Fymat's inversion formula for values of v = n + j for n > 1 is given
as Theorem 4.

The existence of a number of apparently different inversion formulae is related
to the existence of the integral constraints of Theorem 2. In fact these constraints
make it possible to construct a large number of inversion formulae. In any
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[31 Inversion of Struve transform 163

numerical application this freedom should be exploited to obtain a rapidly
convergent inversion integral.

2. Statement of results

Firstly we introduce some definitions. Since we are concerned with Struve
functions of half integer order it is convenient to introduce a "spherical Struve
function"

/ ^ (3)

for x > 0, by analogy with the familiar spherical Bessel functions ([1], Chapter 10)

n+,(x). (4)

We also introduce the auxiliary functions^ which we define recursively by

fJ + x(x)=±£fJ(x), /„(*)=/(*). (5)
Our results are then contained in Theorems 1,2,3 and 4.

THEOREM 1. Let n be a non-negative integer and the functions f^x) defined in (5)
be such that

(i) fj(x) is locally absolutely continuous in (0, oo) for 0 <_/ < n,
(ii) fj(x) -> 0 as x -> oo for 0 < y < n,
(iii)jf (0) = 0 andfj is differentiable at x = OforO <j < n,
(iv) (1 + x)fj(x) is absolutely integrable on (0, oo)for 0 <j < n; also let

Then the Struve transform

is inverted by

" ° ^ It, (8)
7 = 0

for each x > 0 at which f is differentiable. Also

y=0
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The next theorem shows that, under the conditions of Theorem 1, a Struve
transform <j>n given by (7) satisfies n + 1 integral constraints, namely (10).

THEOREM 2. Under the hypotheses of Theorem 1, including (6) and (7), the
relationship

U x = 0 (10)
\ 7 = 0 x--> /

holds for 0 < r < n. For 0 < r = n the same equation holds if the upper terminal oo

of the integral is replaced by -» oo.

A different inversion formula is obtained in the next theorem, with the help of
the constraint /„ „ = 0 given in Theorem 2.

THEOREM 3. Under the hypotheses of Theorem 1, including (6) and (7), and with yn

defined as in (4), another inversion formula for (7) with n positive is

f "-' a )
x\t>n(t)- 2 -17[* , ( i i )

/or eac/i x > 0 a ( which f is differentiable. For n = 0 (11) is replaced by

,i \ 2 c
t)-aQ0)dt, (12)

under the same conditions on x and f.

The next theorem gives another inversion formula, this time using the con-
straint /„ „_, = 0 given in Theorem 2.

THEOREM 4. Under the hypotheses of Theorem 1, n = 0 Z»e//jg «OM> excluded, the
transform (7) w inverted by (11) modified by replacing 2" = , fey 2"= 2 ' / n 3* 2, owo1 Zy
Oifn= \. As in Theorem 3, //ie inversion formula holds for each x > 0 at which f is
differentiable.

The differentiability condition in our theorems arises from inversion of Fourier
cosine transforms by means of Lemma 1 below. It could be replaced by other, less
restrictive, conditions arising from more usual inversion theorems, such as [15,
Theorems 3 and 6]. However, the more general conditions are more complicated,
and we content ourselves with the simple differentiability condition.
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3. Preliminary lemmas

LEMMA 1. Iffis absolutely integrable on [0, oo), then for each x > 0 at which f is
differentiate,

f{x)=-f °° cos xsds (Xf(t) cos stdt. (13)
IT Jo JQ

PROOF. Define/(X) for negative x to make / an even function. Then by [15,
page 14, Theorem 4],

1 r->ao /.oo
f(x) = — / ds I f(t) (cos xs cos st + sin xs sin st} dt,

"" J0 •'-oo

for every x at which / is differentiable. The inner integral can be written as the
sum of two integrals, the latter of which vanishes since /(/) sin st is odd. And
since/(0 cos st is even, (13) follows.

For x — 0 this argument may fail, since if / is originally differentiable at 0 it
may have unequal one-sided derivatives at 0 when made into an even function.
Nevertheless, [f(y) — f(O)]/y is bounded in some interval — S <y «£ 5, and this
ensures the applicability of the theorem in [15].

The proof of the key Theorem 1 is by induction, so to establish an initial case
we first consider n = 0. Note that this corresponds to v = { in (1), and is itself
outside the range of validity of Titchmarsh's theorem.

LEMMA 2. / / f(x) is absolutely integrable on (0, oo), differentiable at 0, and
/(0) = 0,

<fc,(0= rho{xt)xtf{x) dx and aOS)= f°°f(x)dx, (14)
•'o •'o

then

«*>o(O - aO,o ^ 0 ast^oo, (15)

and for each x > 0 at which f is differentiable,

~ "Co] dt. (16)

PROOF. Noting that ho(x) = x'](\ — cosx), both of the integrals in (14) exist
by the absolute integrability of f{x). The first result of the lemma is an immediate
consequence of the Riemann-Lebesgue theorem, since

{x)-aoo= ~ f°°f(t)cosxtdt. (17)
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Using (17) in the integral in (16),
/• — 00 [—' OO yOO

/ ho(xs)xs{<j>o(s) — a00) ds = I (cosxs—\)dsj f{t)cosstdt

J>—* 00 y-00

= / cos xs ds I f(t) cos stdt

(— OO /-00

cosOsdsl f(t)cosstdt, (18)
•'O •'O

provided these two repeated integrals separately exist. This is so by Lemma 1 if/
is differentiable at x; and Lemma 1 also gives

lfo~"*ho(xs)xs{4o{s)-a0fi}ds=f(x)-f(0)=f(x), (19)

completing the proof of Lemma 2.

LEMMA 3. For hn defined in (3), and n a non-negative integer,

(a)

(b)

K(x) = ^ 7 * ^ ^ C"
 3) a sx - oo.

PROOF. Result (a) is an immediate consequence of the power series for Hn(x)
([1], 12.13). Result (b) is obvious in the case n = 0 from the explicit form of ho(x).
Since for all n

H-2r—I

(20)

([10], 8.522(3)), the asymptotic series for the spherical Neumann function^ ([1],
10.1.9) gives, as x -» oo,

hfl(*) = -cos(x - i«w) + O(x"2) + ^ ( f ) " ' + O(x"->); (21)

from this (b) follows if n > 0, since then « — 3 > -2.

LEMMA 4. Le/ /m a/irf / m + , 6e absolutely integrable on (0, 00), /m fee locally
absolutely continuous in (0, 00),
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also let

^r(x)=rK(xt)(xtr+]fr(t)dt, (22)

and

hpM*- (23)

for r — m and m + 1, and for each non-negative integer n. Then for each such n,
and positive real x,

*»+i.«(*) = *„+..« + *"2+B.«+i(*)- (24)

PROOF. For fixed positive x, Lemma 3 ensures that the integrand in (22) is
O(t2fr(t)) for small t and 0(/r(O) for large t, so that the assumed absolute
integrability of fr ensures the existence of \pn r(

x) for r = m and r = m + 1.
A recurrence relation for Ht(x), equation (8) on page 329 of [16], with v = n + {,

may be written as

^ - h . ( x ) ) = 2 . + 1 (
1

+ 1 ) ! - x - h . + ,(*), (25)

so

,(t)d,. (26)

The existence of the integrals in (26) follows from the absolute integrability
hypothesised for/m. The assumption that/m is locally absolutely continuous shows
that/^, exists almost everywhere and allows the integration by parts of the integral
in equation (26). Lemma 3 and the assumed behaviour of fm(x) as x -» 0 and
x -» oo ensure that the integrated terms vanish. Thus

\xt)-hH(xt)Mt)dt
x J-*o

x'-'-o

As the integral in (27) has been shown to be absolutely convergent, (24) follows.

We are now in possession of the results needed to prove our theorems.
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4. Proof of Theorem 1

Lemma 2 gives the conclusions (8) and (9) if n = 0. We therefore suppose that
n> \. Repeated application of Lemma 4 with m = 0 ,1 , . . . ,n — 1 gives

<*>„(*) = tnflU) = K* + ^ * . - i . i ( * ) (28)

y=o

Now bn^j = anJ, and

*>.„(*) = f ° ( l - cos */)/ ,( /) * = fl,.» + "(I) (30)
•'o

as x -» oo by the Riemann-Lebesgue theorem. Thus

*,(*)= 2 °n.J*-ij + O(X-2"), (31)
7 = 0

proving one result of the theorem, namely (9).
We have in addition from (29) and (30),

*,(*) = 2 «..jX-2J ~ x-2" Ffm(t) cosxtdt, (32)
7 = 0 •'O

for all n, including n = 0. We note in passing that the standard results on
asymptotic expansion of Fourier integrals permit the construction of further
terms in the asymptotic expansion of <£„(*), should that be desired.

We now proceed to prove (8) by induction. We already know that it holds for
n = 0, by Lemma 2, so we may continue to assume that n ~s* 1. The hypotheses of
the theorem as stated imply the corresponding hypotheses with n replaced by
n — 1, and we assume the latter case of the theorem to hold. By this case (8) holds
with n replaced by n — 1, and with (32) it implies

OOhB_1(»)(«)V2-+2
<fc/Videos*/*, (33)

for each x > 0 at which f(x) is differentiable.
Hypothesis (i) of Theorem 1 allows the integration of the inner integral in (33)

by parts, (ii) and (iii) show that the integrated terms vanish, and (iv) shows that
the resulting integral is absolutely convergent. Thus

-*/""/„_,( /) cosst dt = /""//„(/) sin st dt. (34)
•'0 •'0
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Integration of this equation over (0, «) gives

X (M) = - ("sds C'/„_,(/) cos st dt = CdsCttXt) sin stdt. (35)
•'o •'o •'o Jo

Since tfn(t) is absolutely integrable by (iv), the double integral on the right side of
(35) converges absolutely, and the order of integration may be changed, giving

x ( u ) = I™tfn(t) dt f sin st ds = f /,(*)( 1 - cos ut) dt

= rW)dt- Cat)costudt, (36)
•'0 J0

since (iv) allows the separation of the integrals in the last step. The outer
integration in (35) is permissible because the left side of (34) is a continuous
function of s\ this follows from

If fn-i(t)[cosst~cos(s {ht dt

l / . i ( 0 l
•'o

which -» 0 as h -» 0, using (iv). This continuity also permits differentiation of
(35), giving

X'(s)= -sT/„_,(!) cos stdt. (37)
•'o

Thus x(s) has a continuous derivative in s > 0; and so also has s~"+*hn_l(xs),
by (25) and Lemma 3. These facts together permit the following integration by
parts of the outer integral in (33):

* . (38)

Using (36), the integrated terms vanish by Lemma 3 and the Riemann-Lebesgue
theorem with (iv). Using (36) and (25),

f fix) = -*'-'/o--£[h._I(«)(«)-+1] dsj~fn{t) dt

The first double integral is the product of two convergent integrals, one of which
vanishes on using Lemma 3; its existence justifies the separation into two double
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integrals in (39). We may split the second double integral into two parts to get

7 / ( * ) = ^ T T / cosOs ds f fn(t)cosstdt

- f^0O{xs)n+]hn(xs)s-2" ds r/Jt) cos stdt. (40)
•'o •'o

The splitting is valid because the first of the double integrals converges by Lemma
1. In fact it is a multiple of /n(0) which vanishes by (iii). Again using (32) we
finally obtain

^ ) (41)

This completes the proof of Theorem 1 by induction.

5. Proof of Theorem 2

Let Jn r denote the integral in (10) modified by replacing the upper terminal by
— oo. For the case r = n we deduce the modified (10) from (32), including the
existence of /„ „, as follows.

= - / dx I fn(t)cosxtdt

= - r°°^osOx dx f"fn(t) cos xtdt = -jfn(O) = O> (42)
•'o •'o l

using Lemma 1 and hypotheses (iii) and (iv) in the last line of Theorem 1.
The cases 0 =£ r < n may be proved by making r + 1 applications of Lemma 4

to </>,,(;c) = \pn_0(x), as in the steps from (28) to (29), to obtain

(43)
j=0

for 0 < r < n. So, if /„ r exists,

— 00

(44)
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The double integral

171

n-r-\{u)u-" + rdu (45)

is absolutely convergent, by hypothesis (iv) and Lemma 3, since hn_r_,(w)M~"+r

is 0(1) as u -* 0 and O(u~2) as u -» oo. Consequently the order of integration can
be changed, and

(46)

What is more, this double integral is absolutely convergent. Hence so is that in
(44). This ensures that /„_,. exists, and also that the upper terminal -> oo can be
replaced by oo. Thus by (46), (44), (43) and (22),

= Jn.r = dx = / , , (47)

By hypothesis (iv), followed by (5) and hypotheses (i), (ii) and (iii),

J0 ' — 0 •' —0

This, with (45) and (47), shows that /„ r = 0, completing the proof of Theorem 2.

6. Proof of Theorem 3

By Theorem 2 with r — n ** 0,

0 = (48)

We subtract this from (8), which holds since / is differentiable at x. Supposing
n > 1 we obtain, rearranging terms,

2 /— n+1
n - l

7 = 0 '
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provided one of these two integrals exists. Actually the latter exists and is zero,

because by (25) it is the same as

] 0 " , (50)
and this vanishes by Lemma 3. Also (20) shows that

and Theorem 3 for n >> 1 then follows from (49), (50) and (51).
If n — 0 (49) is invalid, because the last integral in it is divergent, its integrand

being -cos xt. Instead, the result of subtracting (48) from (8) is now

f(x) = -J [(xt)ho(xt) - l][<£0(f) - a00] dt,

which with (20) gives (12).

7. Proof of Theorem 4

In Theorem 3, the term r = 1 in (11) can be separated out if it exists. It is

2 /•-« (xt),2(1-1)

"Jo 2 " - ' ( / 7 - l ) !

n - l

y=o

By Theorem 2 with r = n — 1, this exists and is zero; this proves Theorem 4.

8. Concluding remarks

The existence of the constraints /„ r — 0 established in Theorem 2 allows the
construction of many different inversion formulae, including as special cases
those already given in the literature. A further example (given in [5] for the case
n = 1) is obtainable from Theorem 1 by subtracting a multiple of /„ „; it is
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In analytical work it may be unimportant which inversion formula is used, but
in numerical work some experimentation with the range of possible formulae to
obtain one with good convergence and stability properties would be useful.

Finally, we point out that the same procedure (of subtracting " badly behaved"
terms from <f>(0) will permit the construction of inversion formulae for (1) in the
more general case \ < v ¥= n + \ for integral n. In this case the inversion is
ultimately reduced to Titchmarsh's original formula (2). An example, for v — 1,
has been given by McKellar [12].
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