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ON A PROBLEM OF R. G. D. RICHARDSON
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In 1913 Richardson published necessary and sufficient conditions for a system of three Sturm-Liouville
equations, linked by three parameters, to possess eigenfunctions with arbitrarily many zeros. His work
contains errors, but we give conditions of his type valid for k self-adjoint equations, with k parameters.

1980 Mathematics subject classification (1985 Revision): 34B25

1. Introduction

In 1912 R. G. D. Richardson published a landmark paper [12] on coupled
Sturm-Liouville problems of the form

Y (l.i)

for k = 2. Richardson assumed Dirichlet end conditions on finite intervals, and analytic
coefficient functions pn>0, qm and rmn, and he obtained necessary and sufficient
conditions on the rmn guaranteeing existence of solutions with specified numbers of zeros
for the eigenfunctions ym. A year later he attempted [13] the more difficult case k = 2>.
His methods involved detailed examination of eigencurves and surfaces defined by single
equations in two and three parameters, and led to a unified oscillation theory for
indefinite, as well as the better known left ("polar") and right definite cases. In many
ways these investigations were far ahead of their time: for example, oscillation theory for
indefinite problems really restarted in the early 1970's (cf. [6], [7] etc.) and a systematic
study of the geometry of eigencurves and surfaces resurfaced with Turyn [14] in 1979,
although specific properties of eigencurves can be found in, say, [10], [1], [9] and [8].

Richardson's geometric reasoning can easily be put into a more modern (and
rigorous) analytical framework when k = 2, but there are difficulties when k = 3, as
observed by Turyn (loc. cit). In fact we shall show that Richardson's necessary and
sufficient conditions in [13] are both in error, but we shall examine special cases for
/c = 3 where his reasoning does lead to correct conclusions. Our general results will be
couched in terms of self-adjoint operators acting on k Hulbert spaces Hm, m=l,...,k,
and the Sturm-Liouville setting (1.1) will be deduced as a special case. Necessary and
sufficient conditions for the existence of eigenvalues can also be found in [15] and
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338 P. BINDING AND H. VOLKMER

relevant references therein, but under special "definiteness" conditions. Our methods
here are rather different, since, following Richardson, we presuppose no definiteness
conditions.

Our plan is as follows. In Section 2 we shall discuss a general necessary condition and
compare it with "left" and "right" definiteness, In Section 3 we specialise this to the
Sturm-Liouville case and we compare it with Richardson's fe=3 condition, which we
show is not in fact necessary. In Section 4 we establish a sufficient condition by a degree
theoretic argument. Finally Section 5 is devoted to comparisons between our sufficient
conditions, our necessary conditions, left definiteness (which although related is not
directly comparable with our conditions) and Richardson's sufficient conditions. We
conclude with an example to show that his k = 3 condition is not in fact sufficient.

2. A necessary condition

Let Tm, Vmn, n=l,...,k, be self-adjoint operators on separable Hilbert spaces Hm, Tm

being bounded below with compact resolvents and Vmn being bounded, and let
Wm(X) = Tm-Vm(X), where Vm(X) = £*=i K J , , m=l,...,k. Here and below we assume
A = [A1...Ak]

r6lR*. Let the eigenvalues of Wm(k) be listed as

counted by multiplicity. With Um as the unit sphere of Hm, the multiparameter
eigenvalue problem

Wm(k)um = 0, umeUmnD(Tm), m = l,...,fc, (2.1)

can be studied via the equations

ptr(A) = O, m=l,...,k. (2.2)

Indeed any solution of (2.2) yields nontrivial nullspaces for each Wm(k), and conversely
any X satisfying (2.1) also satisfies (2.2) for some index i=(il,...,ik). For examples of this
setting, we refer, for instance, to [15].

We use lower case letters to denote quadratic forms, e.g., tm(u) = (u, Tmu), and V(u) will
be the kxk matrix with (m,ri) entry vmn(um) and with /nth row vm(um). Our study of the
equations (2.2) depends mainly on the following representation of the functions p£
given by the minimax principle

pL-W = min{max{tm(u)-vm(u)A:Uel7mn£}:£c=D(rm),dim£ = im}. (2.3)

For any subspace G of Hm, we write
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It is convenient to make the assumption

(A) For each m and X, the maximum of the spectrum of Vm{X) is not an eigenvalue of
finite multiplicity.

Then we define

for any fixed finite i and by virtue of (A) we have

om{l) = sap{vm{u)kueUm}. (2.4)

We shall need three lemmas involving single equations, i.e. with m fixed.

Lemma 2.1. Let i = im be fixed and let the sequence Xj e Uk satisfy p'm(XJ) ^ 0 for all j ,
with ||A'||-+oo and XJ/\\lJ\\^X*. Then am(X*)^0.

Proof. For any i dimensional subspace F of D(Tm), (2.3) gives

; (2.5)

for some uJeUmnF. Assuming, without loss of generality, that uJ-+ueUmnF, we may
divide (2.5) by \\XJ\\ and proceed to the limit to give

for some ueUmnF. By definition of om(X*), this suffices for the result.

Lemma 2.2. As for Lemma 2.1, but with the inequalities reversed.

Proof. By assumption, pi,(A)gpjn(A)^O. Then (2.3) gives (2.5) (with the inequality
reversed) for some sequence uJe Um n D(Tm). We again divide by ||>f|| and obtain

Since tm{uj) is bounded below, we see that, for every given e > 0, vm(uJ)>l* > — e whenever
j is sufficiently large. The result now follows from (2.4). •

Lemma 2.3. Let i(j) be a sequence of positive integers converging to infinity and let
p^{Xj) = 0for all j . Then \\XJ\\-*oo.

Proof. For each i, p'm(XJ)^0 as ;->oo. Thus if k' has an accumulation point X* in Uk,
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340 P. BINDING AND H. VOLKMER

then, by continuity of p'm, it follows that pjn(A*)^O for all i. This contradicts the fact
tha t p'm(X*)~*oo as i-*oo. •

W e are now ready for the basic necessary condition.

Theorem 2.4. Fix m and positive integers in for n = l,...,k, n + m. If, for an infinite set
ofim, (2.2) admits eigenvalues X = X(m\ then there is ft^O such that

M) (2.6)

if n=\,...,k,

Proof. By Lemma 2.3, the eigenvalues k(m) satisfy ||A<m)||-KX> as im-*oo. Let ft be an
accumulat ion point of t the sequence A(m)/||A(m)||. Then an(fi) = 0 follows readily from
Lemmas 2.1 and 2.2. Moreover pjn(l

lm))^pi£(ttm)) = O so Lemma 2.2 gives 0^<xm(//). •

Corollary 2.5. / / there is a fixed index i so that (2.2) admits eigenvalues of any index
j j> i then for any nonempty subset X of {l,...,k} there is / i r # 0 so that (2.6) holds for
H = f^ ifme'L and n ^ Z .

Here and below we use the componentwise order on Uk.

3. Differential equations

With reference to (1.1), suppose l /p m and qm are L l with pm positive, and define

bm-\, -(pmy')' + qm

where BC represents separated boundary conditions. Then define

= -(pmy')' + qmy, (Vmny)(xm) = rmn(xm)y(xm)

so [11, §§ 18, 19] the hypotheses placed on Tm and Vmn in Section 2 are satisfied
provided the rmn are L ^ .

It is well known (cf. [15, Theorem 3.5.1]) that a solution of (2.1) has index i if and
only if the corresponding solution ym of (1.1) has im— 1 zeros in ]am, bm[. This leads us
to the following condit ion which is of Richardson's type, and which is a special case of
Corol lary 2.5. By virtue of (2.4), the functions am now become

am(k) = ess sup | X Krmn(xmY am^xm^ bm\. (3.1)

Corollary 3.1. / / (7.7) admits solutions with abritrarily many zeros for each ym, then
there exist p m # 0 , m = 1,...,k, such that, for all m,n=l,...,k,

<rn(C
m)=0 if m*n, (3.2)
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eJLDZO if m = n. (3.3)

For comparison, we state Richardson's necessary condition (for fe = 3 and with analytic
Pm> 4m> r™) m tne following form. Let R(x) be the 3 x 3 matrix with (m, n)th entry rmn(xm)
in (1.1).

(RNC) There exists vectors £m ( = — [A(mym)v(m)]T in his notation) such that, for all
m,n = 1,2,3,

)m£0 for all xn if (3.4)

(3.5)

(3.6)

(3.7)

It is evident that our conditions in Corollary 3.1 imply RNC except for the left-hand
inequality in (3.7), and the following example shows that this infimal condition is not
necessary.

Example 3.2. Let pm = 1, qm = 0 for m = 1,2,3, and let

and
(R(x)nm = 0 for some xm.

In our notation (2.4), (3.1) this means

ff.(f")^0 if m#n

and

n for all m.

R(x) =
l—Xi — *! 0

- x 2 l - x 2 0
0 0 1

We solve (1.1) over the interval [0,1] with Dirichlet end conditions; since the coefficients
are analytic, this is a problem of Richardson's type. We claim that solutions of (1.1)
exist for each index i 2: (1,1,1). This is a consequence of Theorem 4.1 below, but may
also be seen as follows.

For m = 3, we have the (right definite) problem —y'i = ̂ y^, which evidently has
solutions of any index i 3^ 1. For m= 1,2 we have a left definite system [15, p. 43], since
the cofactor matrix C(x) of

l - X j - X j l

-x2 1-xJ
satisfies

C(x)OHO-
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and Tm is positive definite for m= 1,2. Moreover the determinant of

-x2 l-x2

is not identically zero. Thus solutions Ax, X2 exist of any index ( I 1 , I 2 ) ^ ( 1 , 1) —see, e.g.,
[15, Theorem 3.5.2].

It follows that (3.2), (3.3) must hold: indeed it is enough to choose the ftm as the unit
coordinate vectors in (R3. On the other hand, (3.4) requires

and this forces £3 = [0 0 <x]r. Further, (3.5) requires [0 0 1] £? to vanish for some
x3, so <x = 0 and thus RNC fails if one excludes the triviality £3 = 0.

We conclude this section by comparing the above conditions with the standard ones
of right definiteness (RD) and left definiteness (LD). RD means that V(u) has
determinant of one sign for all choices of the um. This implies that, for each subset £
(including 0) of {1,..., k}, there is vE # 0 such that

an(^)^0^im(^,Um)(^m(v^) (3.8)

for all meZ and w£Z. See (2.4), (3.1) for the notation and [2, Theorem 9.7.1] for a
stronger result. Since [15, Theorem 3.5.2] RD implies that eigenvalues exist for all
indices i, Corollary 2.5 shows that (2.6) must hold for some pL for all Z#0. A direct
proof that RD implies (2.6) is not obvious in general, but for fe^3, simple geometric
arguments based on perturbing vs will suffice. In similar fashion one can show that RD
implies (3.7) and hence RNC.

Analogous reasoning holds for LD, which consists of a definiteness condition on the
Tm, and an "ellipticity" condition which requires existence of a unit ioeUk such that
C(u)eo>0, where C(u) is the cofactor matrix of V(u). Rotating axes so that a> =
[0...0 l ] r , we may use [3, Theorem 6.3] to show that ellipticity implies the existence
for each £ # 0 of v1, with v£ = 0, such that (3.8) holds. Thus the above implications of
RD also hold for LD.

4. A sufficient condition

The purpose of this section is to prove the following result for the operators Tm and
Vmn of Section 2. We recall assumption (A) and the subsequent definition of am.

Theorem 4.1. Suppose that

(i) the imth eigenvalue of Tm, i.e. p|^(0), os positive for m=l,...,k.
(ii) Vmn^0ifm,n = l,...,
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(iii) for some ft>0, (Tm(p) > 0 for all m = 1 , . . . , k.

Then (2.1) has a solution k>0 of any given index j ^ i .
Remarks, (a) Theorem 4.1 applies to Example 3.2 with /i = [l 1 1]T.

(b) By (iii), there are im-dimensional subspaces Em of D(Tm) such that, for some /i>0,

k

K(u)/i>0 forall u e £ : = X (EmnUm). (4.1)
m = 1

We also note by (i) and the minimax principle (2.3) that there is eeE such that

L 0 , m=\ k. (4.2)

(c) If we drop our assumption (A) on the spectra of the Vm(l) then Theorem 4.1
remains true if we replace assumption (iii) by (4.1).

We shall need two lemmas, the first involving the set

D = {XeUk:X>0 and t(n)> V{u)(X-p) for some u e £ }

where t = [tl...tk]
T.

Lemma 4.2. D is a nonempty open bounded subset of Uk.

Proof. Openness of D is elementary. For any ueE, (ii) and (4.1) give vmn(um)^0
whenever m^n and V(u)p>0, for some / />0. By a well known result, cf. [15, Lemma
5.5.1], K(u)"1 exists with all elements nonnegative. In particular

He):=V{e)-H(e)eD. (4.3)

Moreover, for any k e D there is u e E such that

0<k<fi+V(u)-it(u).

These bounds are uniform because K(u)"1t(u) is continuous on the compact set £. •

Our second lemma concerns the function g = [0,1] x R*-»R't given by

um e Um nFm, Re (em, um) = 0}: F,<=D(TJ, dim Fm = im}. (4.4)

Standard arguments using the semiboundedness of tm(um) show that g is continuous.

Lemma 43. For each <xe[0,1], the map g(a, •) does not vanish on the boundary 3D
ofD.

Proof. Elementary considerations show that if A e dD then for some m either
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(a) Am = 0

or
(b) max{tm(um)-vm(um)(k-p):umeEmnUm}=0. (4.5)

(a) For any im-dimensional subspace Fm of D(Tm), choose umeFmnUm so that
(u)^pt(0), Re(em,uJ = O and Re(Tmem,uJ^O-see (i). In the notation of (4.4), then,

) by (4.2). Thus from (ii) andAm = 0 we have

It follows that gm(oc, X) ^ p ^
(b) For any ume t /mn Em such that Re(em,um) = 0, we have by (4.1) and (4.5)

- v m « ) A = tm{u*m) -

andsogm(a,A)<0. D

We are now ready to prove Theorem 4.1. Since V(e) is invertible (as above) and

vanishes only at A(e)eD by (4.3) we have by Lemma 4.2 that the degree deg(g(a, •), D,0)
is well defined and nonzero for <x = l. By Lemma 4.3, this remains true for a = 0. Now
(2.3) shows that

so there must be a solution to (2.2) in D. For j ^ i we note that (i)-(iii) hold with i
replaced by j , so solutions also exist for such indices j. •

5. Discussion

We shall now compare the conditions of Theorem 4.1 with various others, specialising
for convenience to (1.1) with continuous rmn. Let us start with uniform left definiteness
(ULD) where it is required that the operators Tm should be positive definite and

C(x)a»0 for all xe X [am,hm]
m = l

for some to e Uk, where C(x) denotes the cofactor matrix of R(x). Continuity forces the
components of C(x)ca to have positive lower bounds, hence the "uniformity". It can be
shown [4, Lemma 2.1] that, after a nonsingular change of X coordinates, ULD implies

(i)u ^ (0 )>0 for all m = l,...,k
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(»)« rmn(xm)<0 for all xme[am,fcm] if m*n
(i»)u rmm(xm)>0 for all xme[am,fcm] if m=l,...,k
(iv)u cmn(x)>0 for all x m e[a m , fc j , m,n= l,...,k.

It should be noted that these four conditions are not quite sufficient for the existence
of eigenvalues. If

(v)u det R(x) / 0 for some x

then solutions of any index are guaranteed [15, Theorem 3.5.2] but otherwise there may
be no eigenvalues. As a trivial example, one could take:

-[-: -:}

Example 5.1.

k = 2,pm=l,qm = 0,

The two equations (1.1) then force X1 —12
 t o t a ^ e opposite signs for any index. It

follows that there are no eigenvalues under Dirichlet boundary conditions.

We now show that if we strengthen (v)u to

(v);, det R(x) > 0 for some x

then (i)u, (ii)u, (iv)u and (\)'u together imply our sufficiency conditions (i), (ii), (iii) of
Theorem 4.1. First, (i)u strengthens (i) by requiring i = l and (ii)u strengthens (ii) by
requiring strict inequality (and hence a negative upper bound). Moreover, a well known
result for real matrices [15, Lemma 5.5.1] shows that (iv)u, (v)^ imply (iii) which in the
present context becomes

(iii)s R(x)ji > 0 for some x and some fi > 0.

Hence we can state that, apart from (v)^, which must be compatible with the initial
change of k coordinates, our sufficient condition of Theorem 4.1 is weaker than ULD.
On the other hand the following example satisfies the conditions of Theorem 4.1 but
drastically fails ULD.

Example 5.2. As for Example 5.1 but with

s i n ^ l

on [am,6m] = [0,7t] and /< = [—1 1]T. It is impossible to satisfy any of (ii)u, (iii)u or (iv)u

even after a change of coordinates.
Let us also point out that (i)u, (ii)u, (iii)u and (v)u are sufficient for the existence of
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eigenvalues of arbitrary index if k^3. This is trivial if k = l. If fc = 2 then (ii)u and (iii)u

imply (iv)u so we have a uniform left definite problem (1.1). If fe = 3 then (i)u, (ii)u and
(iii)u imply local definiteness of (1.1) in the sense of [15, Theorem 3.3.2] which together
with (v)u gives the existence of eigenvalues of any index. If k>3, however, then (i)u, (ii)u,
(iii)u and (v)u do not guarantee existence of eigenvalues.

Weaker forms of (ii)u, (iii)u are

rm n(xJg0 for all xm if
rmm(xm)^0 for some xm, m=\,...,k,

which constitute Richardson's "normal form" for (1.1) (cf. [13, p. 301]) if the necessary
conditions of Corollary 3.1 are satisfied with linearly indpendent pm. In this case the fim

can be taken as X coordinate vectors after a nonsingular transformation. We should
point out that this normal form cannot be guaranteed, since it may be impossible to
choose linearly independent fim: cf. Example 5.2.

Let us turn now to Richardson's Theorem [13, p. 299] which is for analytic
coefficients and Dirichlet end conditions. Richardson assumes that nonzero solutions of
(1.1) with / = 0 and ym(am) = 0 have im— 1 internal zeros: this is easily seen to imply (i) of
Theorem 4.1. He also assumes (3.4) and the following strengthening of (3.5):

(R{x)$m)m takes both signs for xm e [am, fcm]. (5.1)

He then claims the existence of a solution to (1.1) so that each ym has im— 1 internal
zeros, i.e., a solution of index i.

The following example shows that Richardson's conditions are not sufficient as stated.

Example 5.3. Let k = 3, pm = — q2 = — <fo = 1, <h = 0,

R{x) =

0 Xj - 1

n + x2 0 —1
-K-x-, 0 - 1

with Dirichlet conditions on [am, bm] = — - , - ,

m= 1,2,3. We choose i = l since each Tm is positive definite, and with [0 1 1]T,
[1 0 7i]r and [ - 1 0 7i]T as §m we may check (3.4) and (5.1), so Richardson's
conditions are satisfied. We shall prove by contradiction that no solution of (1.1) exists
with index 1.

First we claim that m= 1 in (1.1) forces

A 3 £ - l . (5-2)

This follows because the eigenvalue A3 = A3(A2) of

- / ; =0 *2 *1 - -
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corresponding to it = 1, is a convex function having asymptotic slopes

min
max

as A2-» + oo: see, e.g. [5, Section 2]. Also the transformation Xj-* — x, shows that A3 is
even. Hence A3(i2)^A3(0)= - 1 for all A2.

On the other hand, m = 2 and 3 in (1.1) give

so integration by parts yields

*/2 */2

0 = A, J J
- * / 2 - K / 2

Since the integrand does not vanish, we see that Ax =0. Hence

= - ^ 3 .

and this contradicts (5.2).
We conclude by returning to Richardson's "normal form", which exists when the £m

are linearly independent, as is the case in Example 5.3. In "normal form", Richardson's
necessary conditions of the rmn become {u)N (i.e. (ii) of Theorem 4.1) and

("ORN rmm(xm) = 0 for some xm,

while his sufficiency conditions are (ii)N and

(i»)Rs rmm takes both signs on [ a m , b j .

In "normal form", Example 5.3 then satisfies (i) and (ii) of Theorem 4.1, and also (iii)RS.
Thus (iii)RS cannot be substituted for (iii) in Theorem 4.1.
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