London Mathematical Society ISSN 1461-1570
SYMBOLIC COLLECTION USING DEEP THOUGHT
C.R. LEEDHAM-GREEN anp LEONARD H. SOICHER

Abstract

We describe the “Deep Thought” algorithm, which can, among
other things, take a commutator presentation for a finitely generated
torsion-free nilpotent grou@, and produce explicit polynomials for
the multiplication of elements off. These polynomials were first
shown to exist by Philip Hall, and allow for “symbolic collection”
in finitely generated nilpotent groups. We discuss various practical
issues in calculations in such groups, including the construction of
a hybrid collector, making use of both the polynomials and ordinary
collection from the left.

1. Introduction
Let G be a finitely generated torsion-free nilpotent group. Thelmas a central series
G=G1>G2>- > Gupy1 = {1},

such that, for each X r < n, the central factoiG,/G,1 is infinite cyclic, generated
by G,11a,, for someq, € G,. Given thesey, ..., a,, each element € G has a unique
expression of the form

Xn

— M
x=ay ---a,",

with x1, ..., x, € Z. We call(xy, ..., x,,) thevector of exponent®r x.

Philip Hall [3, Theorem 6.5] showed that there are rational polynonfigls. ., f, (in2n
variables) angi, ..., g, (in n + 1 variables), which describe multiplication and powering
in G. More precisely, suppose € Z, and that(x1, ..., x,), V1, ---» Yn), 21, -+, Zn),
(w1, ..., w,) are the respective vectors of exponentsioyp, xy, x’ € G. Then, for 1<
r<n,

Zr = fr(X1, oo X0, V1, . yn) and we = gr(x1, ..., X, 1)

Now we know that

o Cijj+l Ci,j.n
aja; = a;a; aj+1 ceedy T,

for certain integers; ;x (1 < i < j < k < n). One thing we do in this paper is to
show how to compute polynomials in variables corresponding te;thg, c; ; «, such that
these polynomials have the properties described above for Hall's polynofialghen
restricted to specifi; ; r. These polynomials are very complicated indeed, and in practice
the construction and evaluation of the polynomials goes much faster when manyof the
are zero.

We acknowledge our great debt to the work of Philip Hall, who showedjrtte
existence of the polynomials of the form our “Deep Thought” algorithm calculates in the

Received 21st February 1997, revised 15th January;1888ished 1st June 1998
1991 Mathematics Subject Classification 20F12, 20F18, 20F05
© 1998, C. R. Leedham-Green and Leonard H. Soicher

https://doi.org/10.1112/51461157000000127 Publi¥dlofiREy dhribatiae LAl o2 reds

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/1
https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

case of finitely generated torsion-free nilpotent groups. Charles Sinpp[441-445] has
already described a method of constructing these polynomials of Hall (using interpolatic
and symbolic algebra), although we have not yet compared his approach to ours. An e\
more important influence is Philip Hall's earlier papg}.[There, he introduces the process
of collection, and the reader will see a very strong resemblance between our methods ¢
the work of Hall on the calculation afcy)™ in the free groupF (x, y) modulo some term

of its lower central series.

The natural setting for what we do is actually monoids, not groups. In the next section v
discuss monoid#/ satisfying certain relations like those of a finitely generated nilpotent
group, and we will develop the Deep Thought algorithm for such monoids.

In Section7 we show that the polynomials produced by Deep Thought can be used fc
the multiplication ofxy even when our monoid/ is a finitely generated nilpotent group,
and we allow thex;, y;, andc¢; ; « to be arbitrary integers. We also show how to invert
elements of such a grouy.

In Section8 we discuss efficiency issues related to the application of Deep Thought.

Deep Thought provides a form of symbolic collection for finitely generated nilpoten
groups, and in Sectidhwe discuss how to combine Deep Thought with ordinary collection
from the left @], to be able to compute effectively and efficiently in arbitrary finitely
generated nilpotent groups.

2. The monoid case
Let M be a monoid which is generated by elements
ai, ..., dy,
such that the the following relations hold:

aja; = ajaja it e (L<i< j<n), @)
for certain non-negative integers; « (1 <i < j < k < n). The relationg1) allow us to
rewrite an arbitrary wordv in as, ..., a, to a reduced wora, such that = w in M. A
reducedword is a word of the form

Xn

x1
al ...an .

wherexy, .. ., x, are non-negative integers. The rewriting process we use is calledtion
to the left introduced by Philip HallZ], and detailed in Figur#. (Note that since we have
no power relations or negative powers to cancel generators during the collection proce
collection to the left is probably the best strategy.)
Let
x:a;l...a;"’ y:a])jl...a;\;”
be reduced words. We can use collection to the left to determine a reduced word
= ail . .a;:”’

such thatcy = z in M. We shall show how each exponent(1 < r < n) is the value of a
certain polynomialf, evaluated on the;, y;, andc; ; «, by describing the algorithm, Deep
Thought, which calculates these polynomials, given the relatibns

https://doi.org/10.1112/51461157000000127 Published online by Cal\g'idge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

while w is not a reduced wordo
Leti* be the least such thatw contains a subword of the forma; withi < ;.

Among the subwords of the foraya;« with i* < j, let w* = aj-a;+ be the leftmost
such subword.
(.,‘i*,j*yj*Jrl . Cix %

Replacew™ in w by a;+a;- @iy ceag Tt
od;

Figure 1: Collection to the left, ob in M.

3. Letters occurring in a collection

Throughout this Section we keep the notation of Section

In order to analyse the process of collection (to the lefty pin M, we shall attach a
unique label to each specifi¢ which is introduced in the collection process. These labels
come from the set of “letters”, which are defined later. Each letter labelling a generator |
the final reduced word is either a letter labelling a generator from the original left-han
word x, or a letter labelling a generator from the original right-hand wgrdr is a letter
labelling a generator from a word of the fowfl;’** - - - @, , which is introduced when
ana;a; (withi < j) is collected. We emphasize that in a collection to the lefineach
generator (and its label) which is introduced will appear in the final collected reduced wor

since there are no power relations or inverses to cancel generators.

3.1. Atoms and non-atoms
We now (recursively) define the concept of a letter, and show how letters are used
label uniguely the generators which are introduced in the collectiany @f M. (As usual,
X = a)lcl ---ay" andy = ail ceap))
A letteris either an atom or a non-atom. Atomu is a 3-tuple

(sidg(), num(a), pos(a)),

suchthatsidex) € {L, R}, and nunie) and pos(« pre positive integers. We use the notation

sidg(a)

num(a)pos(a)

for an atono.
If x; > j > Othenthe atonj}- is used to label thg-th from the lefte; in x (theLeft-hand

word). Similarly, ify; > j > 0 theni]R is used to label thg-th from the lefta; in y (the
Right-hand word).
If a letter is not an atom then it is a non-atomnén-atomy is a 4-tuple

(left(a), right(a), num(«), pos(«)),

such that lefter) and right«) are letters, and nu¢a) and pos(«)are positive integers. We
use the notation

[left(a), right(a) ; NUM(et)pos(a)]
for a non-atonw. We also require that this recursion terminates, so that all letters can b

https://doi.org/10.1112/51461157000000127 Published online by Cal\lridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

described, using the above notation, as finite expressions involving only atoms. (Note tt
a letter is just a finite binary tree, with certain information attached to the nodes, and th
is how we view a letter from a computational point of view. The leaves of these trees a
atoms.)

Now supposé < j < k andc; ;x > r > 0, and that in a collection step we replace a

specificaja; by a,-aja;j’rji"“ ---a,""". We may assume (inductively) that these speaific
a; have respective labels y. They retain these labels, and we label tk from the left
a; which is introduced in this step by the let{ér y ; &,].

We have thus defined letters, and shown how to label uniquely each specific genera
introduced in the collection ofy. Indeed, we can now think of the collection process as
collecting letters rather than generators. We say that a lettairsin the collection ofxy
if it labels a generator introduced in this collection. Thus, a letter occurs in the collectio

of xy if and only if it labels a generator in the final collected reduced word.

Example 1. Define the monoidV to be generated by, az, as, asa, subject (only) to the
relations

azal = alazag, asdl = aidsds4, azdy = azagag, andasa; = ajas, (i =1, 2, 3).

Letx = a1a§a3 andy = a§a3a4. Examples of atoms which occur in the collectionof
in N are % and 1; An example of a non-atom which occurs in the collection ofis
[[25,1F: 311, 15; 411.

4. Relations on letters

We now define various relations on the set of letters, including the important equivalen
relation, ~. Given monoid relations of the forrl), the Deep Thought algorithm first
determines the--classes which can have elements occurring in a collection to the left. Fc
each such equivalence class, Deep Thought also determines a polynomial which evalu:
to the number of letters in that class that occur in a specified collection.

First we make clear what we mean for two letters8 to beequal (written o = B).
Simply, they must both be atoms or both non-atoms, and must be equal as 3-tuples ot
tuples, respectively. The conditions for letter,s8 to bealmost equalwrittena ~ g) are
the same as for them being equal, except that we allow the possibility tHa)pgpos(B).

Any letter is both equal and almost equal to itself.

Example 2. [[2}, 1}; 311, 1%; 4s]isalmostequal tp[2}, 1T; 311, 15; 431, butis not
equaltoit. Onthe otherhanid, 2}, 1%; 3;1, 18; 45 Jisnotalmostequaltf 2%, 1%; 3,1,
1%; 45]. Also note that § ~ 1}, but L # 1%

A letter o determines a finite sequence $epof (not necessarily distincgublettersof
«a, as follows. Ifa is an atom then S€q) = («); otherwise

Seqa) = Seqleft(x)) concatenate Sérght(«)) concatenatéw).

(In binary tree language, Seg) is a postorder transversal @f) Letm = Length(Seqw)).
For 1< i < m, we denote thé-th element of Se@) by Seda,i), and let

Sub(a)= {Seqa, i) | A <i < m)

denote the set of subletterswof

https://doi.org/10.1112/51461157000000127 Published online by Ca\1=12ridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

The first condition that must be satisfied to have- g is thate and8 have the same
structure, which roughly means thatandg are exactly the same if we (recursively) ignore
all pos attributes. More precisely, and 8 have the same structure if the following are
satisfied:

e «a, B must both be atoms or both be non-atoms.
 If , B are atoms they must be almost equal.

e If @, B are non-atoms, then num = num(B), left(o) has the same structure as
left(B), and righta) has the same structure as right

Note that ife andg have the same structure, we have Leli§t«)) = Length(SeqB)).
We are now in a position to define the relatisron letters. We have ~ g if each of
the following is satisfied:

e «a, B have the same structure.
e Forl<i < j < LengthSeqw)):
— Seqa, i) ~ Se(a, j) ifand only if Sedg, i) ~ Sed$s, j).
— If Seq(w, i) =~ Seqa, j) then pos(Seg, i)) and pos(Seg, j)) must be in ex-
actly the same relatiof, =, or >) as pos(Se@, i)) and pos(Se@, j)).

Example 3. We have
[125.15: 301,15 411~ (125,15 311,15 4s51.
As a more complicated example, we have
[[125.15; 421,15 611,125, 1F; 431,15: 511: 122]
~ 0025, 158 411,15 611, 1125, 15 431, 15: 511112,]
#1125 15 421,15 611, 1125, 15 421,15 511: 121,

Lemma 1. The relation~ is an equivalence relation on the set of letters.

Proof This follows from the fact that both “has the same structure as>aark equivalence
relations on the set of letters. O

For each~-class of letters, we define a well-orderiggon that class. Suppose~ B.
If « andp are both atoms then define< g8 if pos(a) < pos(B). Otherwisey < 8 ifin
lexicographic order we have

(left(a), right(a), pos(a)) < (left(B), right(8), pos(B)).
(Note that ife and 8 are non-atoms witke ~ 8, then lef{a) ~ left(8) and righfa) ~
right(8).)
Lemma 2. A lettera is least in its~-class if and only if for each:-classA of Sub(«), we
have{pos(p)| p €A} = {1, ..., |Al}.

We leave the straightforward proof as an exercise in understanding the many definitio
in this section.

Example 4. The least letter in the--class of
[[125.1F: 411,15 611, 1125, 1F; 431, 15: 511: 125]

(025,18 411,18 601, 112,18 421,18 51151211

https://doi.org/10.1112/51461157000000127 Published online by Calwgridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

earlier :=function(«, 8)

#

Suppose that andg are letters occurring in a collection (to the left),
such thaty, 8 are not both atoms, and if both g are

non-atoms then leftr) # left(8) or right(a) # right(8).

Then this boolean function returtrsie if and only if a

generator is labelled hy strictly earlier in the collection

than a generator is labelled By

#

if @ is an atonthen return true; fi;

if B is an atonthen return false; fi;

if right(a) = right(8) then return left_of(left(8), left()); fi;

if num(right(«)) = num(right(8)) then return left_of(right(«), right(8)); fi;
return num(right(e)) < num(right(8));

end;

Figure 2: The function “earlier”.

5. The functiorfleft _of”

One basic step in the Deep Thought algorithm is the following. Given two leitefs
which occur in a collection (to the left), with nuis) = j > i = num(8), we must decide
if at the first instance in the collection thatand 8 both label generators, the generator
labelled by is to the left of the generator labelled Byin the word being collected. If this
is so, then all the letterfsy, 8 ; k1 will occur for 1< r < ¢ j k-

This decision is made by the function “left_of”, detailed in FigBreperatingin adouble
recursion with the function “earlier”, detailed in Figu?e These functions are given in an
algorithmic language similar ©8AP [7]. In particular, “#” denotes a comment until the end-
of-line, “fi” denotes the end of aifrstatement, “od” denotes the end ofrile-statement,
and “return” followed by an expression means to return the value of that expression as tt
function value and then terminate the execution of the function.

It not difficult to prove that earligry,) and left_of«, 8) both return the correct results
when given valid input, by considering the various cases the functions handle, and usi
induction on LengtliSeqw)) + Length(Seqp)).

On examination of the functions left_of and earlier, we see that the following (useful
lemma holds.

Lemma 3. Supposer is a non-atom, witHeft(«) # right(e). Then if8 ~ «, we have
left_of(left(B), right(8)) if and only ifleft_of(left(«), right(x)).

(Note that left_ofleft(«), right(«)) holds when the non-atomoccurs in a collection.)

6. The Deep Thought algorithm

We are now in a position to describe the basic Deep Thought algorithm.

https://doi.org/10.1112/51461157000000127 Published online by Ca\lfgridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

left_of :=function(«, B)

#

Suppose that andg are letters occurring in a collection

(to the left), such that # 8.

Then this boolean function returtrsie if and only if

at the first instance that lettaxsand 8 both label generators,

the generator labelled hyis to the left of that labelled by.

#

if botha, B8 are atomghen
if sidg) = L and sidés8) = Rthen return true; fi;
if sidg(er) = Rand sidég) = L then return false; fi;
if num(a) = num(gB) then return pos(x) <pos(B);fi;
return num(a) < num(B);

fi;

if botha, 8 are non-atoms and rigtat) = right(8) and lefi{a) = left(8) then
if num(@) = num(B) then return pos(a) <pos(B);fi;
return num(a) < num(B);

fi;

if earlier(a, f then return not left_of (8, w); fi;

#

At this point, we know thag appears earlier tham, and sax must be a non-atom.

#

if num(8) < num(right(e)) then return false; fi;

if 8 = right(e) then return false; fi;

if num(8) = num(right(a)) then return left_of(right(x), B); fi;

#

At this point, we have nu8) > num(right(x)).

#

if B = left(e) then return false; fi;

return left_of(left(«), B);

end;

Figure 3: The function “left_of".

https://doi.org/10.1112/51461157000000127 Published online by Camidge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

The Deep Thought algorithm takes as input the integeaind relations of the form
(1). The algorithm outputs polynomialfi, ..., f, in indeterminates corresponding to
X1, ..., Xn, Y1, ..., Yo @and the non-zerg; ; x, such that i, is the value off, evaluated on
X1,...,%n, Y1, ..., yp and the non-zerg; ; r, then

Yn

Xn V1
”al ey,

ail...aﬁ" :ail...an
in a monoidM whose generatoksg, . . ., a, satisfy(1).
Remark The actual values of the non-zeeg; ; are only required in the evaluation of

the polynomials produced by Deep Thought. Indeed, Deep Thought produces polynomi

which are valid for all monoid®/ generated by, ..., b, satisfying relations
bibi = bib; b by (1< < j <),

as long ag/; ; = 0 whenever; ; ; = 0. The reason we only consider the non-zerp
in the algorithm (rather than to obtain more general formulae) is to keep the polynomia
fr of reasonable size for the given monoid relations.

Deep Thought starts by determining, for eack 1, ..., n, a setreps When complete,
reps is a set of representatives for all distinetclasses of lettera, with num(e) = r,
such thatx occurs in a collection ofy, for some values of the;, y;, and non-zera; ; x.
Then, we will define a polynomiaj,, in indeterminates corresponding to the y;, and
non-zeroc; j i, such thaf, evaluates to the number of letters occurring in thelass of
« inthe actual collection corresponding to given values ofi#he;, and non-zere; ; ;.

The procedure set_reps for determining the sets rigetailed in Figurel.

After set_reps has been executed, we see that eachisegpset of inequivalent letters
o, with num(a) = r, thata is least in its~-class, and that any lett@r, with num(8) = r,
occurring in the collection afy is equivalent to some element of reps

6.1. The polynomialg,
Let non-negative integens, y;, ¢; ; .« be given, and lep be any letter. Defing, by

Xnum(p) if p an atom, sidép) =L
Ip =1 Ynum(p) if pan gtom, sidep) =R
Chumright(p)),numeft(0)),num(p) ~ Otherwise.

Sot, depends only on the integets y;, ¢; j« and thex-classA of p. We definer, for
this ~-classA to bet,.

Theorem 1. Letx = ay*---ay", y = a;* - -a;". Then for eachr = 1, ..., n, and each
a € reps calculated by the proceduret repswith inputr and relations(1), the number
of elements in the--class ofe which occur in the collection (to the left) o) is

o= 1l <|t2|>' @

AeSub(a)/~

Proof For any letter, defineN («) to be the set of all letter8 ~ «, such that pag/) <
t, for eachy € Sub(p). Note that for eacB e Sub(a)/~this restriction gives us exactly
(Itlg\) possibilities for{pos(c)| o € B}, so N(x)has sizer,, wheren,, is given by(2).

Now if 8 is a letter occurring in the collection af, we plainly must have mggpos(o) |
o € B} < tp, for each~-classB of Sub(B). ThereforeN («) contains the sef («) of
letters which occur in the collection afy and are in the~-class ofa. We complete the
proof of the theorem by showing that(«) € C(«), whene is in one of the sets reps

https://doi.org/10.1112/51461157000000127 Published online by Cal\@ridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

set_reps :procedure(n, (g, k)

#
forr:=1,...,ndo #initialize reps with representative atoms
reps: = {rL, rRy;
od;
forr:=3,...,ndo # determine the representative non-atoms
#
Loop invariant: the sets reps .. ., reps_1 are complete.
#
for eachi, j,with1<i < j < r, such that*,-,j,j“ = =cjr-1=0%#cir do
#
Determine representatives for all letters which can possibly
occur when am;¢; is collected.
#
for eacha € reps, B € repg do
#
Lemma2 is useful in the tricky business of generating
efficiently the pairg, § to be looped over next.
#
for each pair y, § with
y ~a,8 ~ B,and[§, y ; r1]the least letter in its--classdo
if left_of (8, y) then
#
for eachk such that; ; x # 0,48, v ; k1]is the least letter in its--class
#
foreachk e {r,...,n} such that; ; x # 0doAdd[3, y; k1]to repg; od;
fi;
od,;
od;
od;
od;
end;

Figure 4: The procedure “set_reps”.

https://doi.org/10.1112/51461157000000127 Published online by Caleridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

Let R = U'_;reps. For each letter € R and for each8 € N(a), we show that
B € C(w), by induction onl = Length(Seqp)).

If I = 1theng is an atom, and p@g) < fg, that is, pos(8)< xnumg) if side(B) =L,
and pos(B)< ynump) if side() =R. Thus the result holds fér= 1.

Now assume thag8 € N(«) is a non-atom, and let be the least letter in the-class
of left(8) andp be the least letter in the-class of rightg). Sinces ~ «, it follows that
left(8) ~ left(a), and rightB) ~ right(«); so A is also the least letter in the-class of
left(a) andp is the least letter in the--class of righta). Sincea € R, from the set_reps
construction of the sets repst follows thath € R andp € R. Also 8 € N(«) implies
left(8) € N(A) and right{8) € N(p). Therefore, by our inductive hypothesis, lgfi and
right(8) occur in the collection afy. Sincex € R, we know that left_of (leftw), right(«))
holds, but then left_of(lefp), right(8)) also holds by Lemma. But pogp) < tg =
Cnumright(8)), numleft(8)),num() » SO poccurs in the collection ofy, and the proofis complete.

O

We now define the polynomigl, that evaluates to the number of letters equivalent under
~toa occurring in the collection ofyy. This definition is justified by the preceding theorem.

Let X;, Y;, C; j« be indeterminates, and letbe any letter. Define the indetermindig
by

Xnump) if p an atom, sidep) =L
T, =1 Ynump) if p an atom, sidep) =R
Crumight(p)).numeft(p)).num(p) ~ Otherwise.

SoT, depends only on the indeterminafés Y;, C; ; r and thex~-classA of p. We define
T, for this ~-classA to beT,. Let T be an indeterminatg, a non-negative integer, and
define the polynomia(}) by

k

<Z)=HT_;+1~

(i)

For example, i = [[2}, 15 311, 15; 411, thengs = (2) (%) (29) (4.
Note thatg, has total degree equal [Bub(«)|.

Now, finally, define

—

8a =
AeSub(a)/~

6.2. The output of Deep Thought
The final steps in the Deep Thought algorithm, after computing the sets apsto

calculate
fr= Z 8as

aereps

for 1 < r < n, and to output thesg..

Remark To evaluate arf, on given integers;, y;, ¢; j.x, we simply substitute for each
indeterminatel’s in the expression for,, the corresponding valug . Note thatf, is a
rational polynomial which takes integer values when evaluated on integers.

https://doi.org/10.1112/51461157000000127 Published online by Calﬂgridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

7. The group case and negative exponents

Let G be an arbitrary finitely generated nilpotent group. Then for sam@ contains
a generating sequenes, ..., a,, such that these generators satisfy relations of the form
(1), for certain (not necessarily non-negative) integers, (1 <i < j < k < n). Each
element ofG can be written in the form’l‘ -ay", wherexy, ..., x, are integers.

We may run the Deep Thought algorithm with inpuand the relationgl), even if some
of the¢; j « are negative, since the algorithm only cares whether a givep is zero or
not. Suppose this run produces sets {eps , reps,, and polynomials, .. ., f, as output.
Then we have the following:

Theorem 2. Let x1, ..., x,, ¥1, ..., yo be arbitrary integers, and fodl < r < n, let
z, be the integer obtained by evaluatir)g on the givenx,, yi, and non-zera; ;. If
x:a)lc . aif",andy:ai -a; ,andz—al ceayr, thenxy = zin G.
Proof SinceG is a polycyclic group, it is residually finite by a theorem of K. Hirsch (see
[6,5.4.17]), and say = z in G ifand only if xj = 7 in every finite quotient of G. Thus,
it suffices to prove the theorem under the assumptionGhiatfinite.

We now assume thaf is finite, butxy # z in G. Thenxy # z in G if we add to
each exponent,, y,, andz, of x, y, andz some multiple ofG|. Note that this would be a
consequence of adding to eaghy;, and non-zere; ; , a multiple of

max{|A| | A € Sub(a)/~, ac U;_jreps}! x |G,

and recalculating eacty. But then this would imply thaty # z in G even if eachy;, y;,
andc; ; is non-negative, which would contradict the fact that Deep Thought works whe!
all such exponents are non-negative. O

7.1. Inverting elements aff
We now show how to invert elements 6f using Deep Thought polynomials. More
generally, we show how to solve forin the equationry = z in G, where nowx =

ay'---ay" andz = aj'---a;" are given, and we wish to determine= a;* - - - a;" (of

course, calculating = x 1 is just the special casg = - - - = z, = 0).
We first make acopy of x. Then fori:=1, ..., n, given the loop invariant that' is
Zi-1 xi

oftheformal alya;
to calculater: = x'a;".

-ay", sety;: = z; — x/, and use the Deep Thought polynomials

7.2. Calculating normal forms of elements Gf

We have shown that Deep Thought polynomials can be used to multiply and inve
elements of an arbitrary finitely generated nilpotent group, and that Deep Thought ha
dles negative exponents correctly. The only problem is that the resita,* . .. a," of
such a multiplication or inversion need not be uniquely determined by the group eleme
represented bw. We get around this problem by using a consistent power-commutato
presentation, and we show how to use the power relations of such a presentation and D
Thought to convert a result into canonical (normal) form.

Let G be an arbitrary finitely generated nilpotent group. Tliemas (for somer) a
so-called consistent power-commutator presentation of the form

; Ciii+l cii, 1 gl
(al,...,an|a;’ alii_lll+ ceeap ", aja; = aiaja +11/ l]n i<pn) @

https://doi.org/10.1112/51461157000000127 Published online by Cal\gridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

such that eaclm; (1 < i < n) is a non-negative integer, and each element;dias a
unigue expression of the fomrgf1 ---ay", wherexy, ..., x, are integers, and i; > 0,
then 0< x; < m;. (If m; = Othenwe musthawg ; ;y1 = --- = ¢, = 0 andthe relation
with m; = 0 can effectively be ignored.) This unique expression for an elemeg@t isf
referred to as theormal formof that element.

Now if eachm; = 0 in the consistent power-commutator presenta®rfor G, then
Deep Thought polynomials can be used directly to multiply elemeng, isuch that the
result is always in normal form. Otherwise, we may obtain a reseita;* - - - a;", such
that for somea with m; > 0, we havez; < 0 orz; > m;. Suppose this is the case, and let
j be the least with this property. Then we need to “normalize” = a; - -- a3, that is,
replace it by a word in normal form representing the same elementloétz; = gm; +r,
whereq andr are integers and & r < m;. We calculate

wim @

wy

using Deep Thought polynomials, so thathas theforr‘raz}”ﬂ1 -+-a,".Wethen (recursively)
normalizew, and so the normal form far* is a; w, and the normal form for is
Zj-1

21 r
a; ---a laj w.

J—
7.3. Determining the order of an elementGf

Supposg3) is a consistent power-commutator presentationdfpandx is an element
of G in normal form. Then we can calculate the orgigrof x as follows.

If x is the empty word thefx| = 1. Otherwisex = a’ - a, with Jj <nandx; #0.
If mj = 0 then|x| = oco. Otherwise lein = m;/gcd(m;, x;). Now |x| = oo if and only if
|x™| = oo, and if the order ok is finite thenm divides|x|. We then calculate the normal
form of y = x™, whichiisa;" - - - a;", with/ > j, and recursively determirje|. If |y| = oo
then|x| = oo, otherwiselx| = m|y|.

7.4. On the degree of Deep Thought polynomials
Supposg3) is a consistent power-commutator presentation for the g@uguch that
the central series defined by, .. ., a, refines the lower central series

G =y1(G) > y2(G) > -+ > ye41(G) = {1}

of G. Leta be an element of a set repdetermined by Deep Thought with inp(&).
It is not difficult to see that S€q) contains at most elements which are atoms (since
[vi (G), v (G)] < vi+;(G)). It follows thatg,, considered as a polynomial in th& and
Y; only, has degree at mostand the same holds for the Deep Thought polynonjial
Suppose Sdg) has exactlyl elements which are atoms. Then

Length'Sequa)) =2d — 1

(proof by induction onz). It follows thatg, has total degree (in th¥;, ¥;, andC; ;) at
most 2/ — 1 < 2¢ — 1, and the same holds for the Deep Thought polynorfiial

8. Efficiency issues in applying Deep Thought

Let G be a group with presentatig8), and suppose we are interested in efficient mul-
tiplication and inversion of elements @, rather than in the polynomialg produced by
Deep Thought.

https://doi.org/10.1112/51461157000000127 Published online by Ca%g'idge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

forr:=1,...,ndo
if r = s then
reps,: = {rf, rit};
else
reps: = {ri};
fi;
od;

Figure 5: Initialfor-loop for the calculation of the sets reps

8.1. The polynomials,

The firstimportant observation is that we should not actually calculate and use the De
Thought polynomialsf, for multiplying and inverting elements @, but instead, closely
related polynomialg;, described below, which can be calculated by a small variant of the
Deep Thought algorithm.

Let repsg, ..., reps be the sets of representative letters produced by Deep Though
using input(3). For 1< r, s < n, define

repss =

{a e reps | if B € Sub(x), pan atom with side8) = R, then nunig) = s},
and
frs = Z 8a-
wErepss
Then for 1< r, s < n, we see that i, is the value off,; evaluated ony, ..., x,, ys, and
the (non-zeroy; ; «, then
ail...a’f” as’r :ail...a;” (4)

in the groupG.

To determinez = xy, for arbitraryy = ay* ---a;", we just set: = x, and then, for
si=1,...,n wesetz=za)*, using thef,,.

Furthermore, efficient multiplication of the forii) is exactly what we need when
inverting elements of; and, as it will turn out, what we also need for hybrid collection in
G, described in Sectio8.

Even better, calculating all the sets rgps computationally no harder (and is often
easier) than calculating all the sets repko calculate the sets regpsfor a fixed sand for
1 < r < n, we use an algorithm which is almost the same as that detailed in Figtires
first change is that the initidor-loop should be replaced by the code in FigGreThen,
thoughout the rest of the algorithm, every occurrence oftrap®uld be replaced by reps

8.2. More on efficiency

The next observation is that if (in our fixed presentati8y) somer; ; r > 0, then when
calculating the sets reps we need not include a representativevith an ~-classA of
subletters witily = C; ; x but|A| > ¢; j«, because i ~ « is a subletter of, theng,,

https://doi.org/10.1112/51461157000000127 Published online by Ca%lridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

while w is not in normal forndo

Let w* be the leftmost subword ab of the forma;ja; with i < j, or of the forma;",
wherem; > 0in (3).

if w* = a;a;, withi < j, then replacew* in w by a;a; a;ff“ Coalhin

Ciii+1

elsereplacew* in w by a; 3™ - - a,""" fi;

od;

Figure 6: Collection from the left, ab in G.

would always evaluate to O with thig ; ;.

Another obvious point is that we should substitute the actual valug for each in-
determinateC; ; x in a polynomial produced by Deep Thought, and try to simplify such
polynomials to make them easier to evaluate. For example, we should make use of the f
that if « and 8 are non-atoms with leftr) = left(8) and right) = right(8) then the
polynomialsg, andgg are nearly the same.

One small trick which has proved fruitful is to precompute the value§'pfor small
|m| andk (say 0< |m|, k < 20), and use these precomputed values when evaluating Dee
Thought polynomials.

If a generator; of G has finite order, we should work modulo this order when calculating
with the exponent of;, to reduce the work involved in integer arithmetic. The calculation
of the order of an element @ is described in Section.3, above.

9. Hybrid collection

We have discussed how to use Deep Thought polynomials to multiply and invert elemer
in the finitely generated nilpotent group defined by the consistent power-commutator
presentatior{3). However, it may sometimes be more efficient (in terms of space or time
to adopt another strategy, such as collection from the left [4], detailed in Fég(ifer ease
of exposition, we shall assume that all exponents are non-negative. This is certainly t
case for our implementation of collection from the left in (finitejroups.) Deep Thought
tends to be best for groups of low class and high exponent, and we now describe how
combine Deep Thought with collection from the left to be able to multiply and invert more
efficiently than one or the other approach could on its own.

The trick is to determine an integér< n, so that Deep Thought deals efficiently with
Gy = {aq, ...,a,). This may require some experimentation. We then calculate the Dee
Thought polynomialg;, ford < s < r < n,tobeableto multipl\;a’{1 ay a)® efficiently
using Deep Thought.

Now, in the process of collection, our hybrid collector is either in Deep Thought mod
or in from-the-left mode, and is multiplying a woxd= a;* - - - " in normal form (stored
as an exponent vector in practice) times some other wdstiored on a stack in practice).
(We have finished exactly whan= 1.)

Suppose we are in Deep Thought mode arsdarts with a word of the form* = a}"*.

If s > d, then we remove* from v, calculatex: = xv* using Deep Thought polynomials

https://doi.org/10.1112/51461157000000127 Published online by Cazgridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

(but not normalizing the result), and continue the process<ld then we first normalize

using Deep Thought polynomials, switch to from-the-left mode, and continue the proces
Suppose we are in from-the-left mode anstarts with a word of the form}*. If s > d,

then we switch to Deep Thought mode, and continue the process: if then we remove

the leading:; from v, and collect thig, into x using collection from the left in the ordinary

way, and then continue the process.

10. Implementations of Deep Thought

We have implemented the Deep Thought algorithm and the hybrid collector describe
here (the hybrid fop-groups only), in the C programming language. Our Deep Thought
implementation seems to work well for arbitrary finitely generated nilpotent groups up t
about class 8 or more, and the hybrid collector can speed up multiplicatiprgimoups
of much higher class. The Deep Thought C implementation has also been used by P
Igodt and his colleagues to study various aspects of finitely generated torsion-free nilpote
groups (see, for example, [1]).

More recently, Deep Thought has been implemented by Wolfgang Merkwitz teARe
system, and will thus be available for public use. This implementation is described in [5]

Merkwitz [5] comes to the conclusion that Deep Thought might be used to calculat
in a p-group if p > 11. He gives a detailed account of the experiments leading to thi:
conclusion. His evidence is very much in line with ours. He finds that, working on a Pentiur
PC operating at 166 MHz, the time taken to construct the Deep Thought polynomials
some p-groups of composition length 35 and nilpotency class 9 is about three seconc
regardless of the primg. He finds that multiplication using Deep Thought out-performs
collection (from the left) in evaluating the product of two random words by a factor of abou
7if p = 7, and a factor of about 10,000f= 47.

Merkwitz also finds that, for example, computing the derived subgroup of the group
he considers using collection take® @econds, regardless of the prime. This presumably
means that the collections performed are almost entirely trivial. The time required usir
Deep Thought is also, of course, effectively independent of the prime, but is almost fi\
times as long. This emphasises the fact that, as currently implemented, collection from t
left is out-performing Deep Thought multiplication in trivial calculations.

Acknowledgements

We thank Wolfgang Merkwitz, Joachim Neublser, Werner Nickel, Charles Sims an
Michael Vaughan-Lee for interesting and useful discussions. This research was partly st
ported by a European Union HCM grant in Computational Group Theory.

References

1. K. Dexivpe andP. Icopt, ‘Computational aspects of affine representations for torsion
free nilpotent groups via the Seifert constructiah’,Pure Appl. Algebra84 (1993)
165-190. 23

2. P.HaLL, ‘A contribution to the theory of groups of prime-power ordétipc. London
Math. Soc. (286 (1934) 29-95.10,10

https://doi.org/10.1112/51461157000000127 Published online by C3213|'idge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

3. P. Hart, ‘Nilpotent groups’, Notes of lectures given at the Canadian Mathematica
Congress 1957 Summer Seminar,Tine collected works of Philip HallClarendon
Press, Oxford, 1988) pp. 415-469, 9

4. C.R. LEEDHAM-GREEN andL.H. SoicHER, ‘Collection from the left and other strate-
gies’,J. Symbolic Com® (1990) 665-675.10, 22

5. W.W. MErkwiTz, ‘Symbolische multiplikation in nilpotenten Gruppen mit Deep
Thought', Diplomarbeit, RWTH Aachen, 1997223,23

6. D.J.S. RoBinsoN, A course in the theory of grougSecond Edition) (Springer, New
York and Berlin, 1996).19

7. M. SCHONERT et al., ‘GAP: groups, algorithms and programming’, version 3, release
4, Lehrstuhl D fur Mathematik, RWTH Aachen, 19924

8. C.C. Smus, Computation with finitely presented grouSambridge University Press,
Cambridge, 1994)9

C. R. Leedham-GreenC.R.Leedham-Green@gmw.ac.uk
Leonard H. Soicher L.H.Soicher@gmw.ac.uk

School of Mathematical Sciences
Queen Mary and Westfield College
Mile End Road, London E1 4NS, U.K.

https://doi.org/10.1112/51461157000000127 Published online by Ca%ﬂ'ridge University Press

mailto:C.R.Leedham-Green@qmw.ac.uk
mailto:L.H.Soicher@qmw.ac.uk
https://doi.org/10.1112/S1461157000000127

	Introduction
	The monoid case
	Letters occurring in a collection
	Atoms and non-atoms

	Relations on letters
	The function left_of
	The Deep Thought algorithm
	The polynomials g_alpha
	The output of Deep Thought

	The group case and negative exponents
	Inverting elements of G
	Calculating normal forms of elements of G
	Determining the order of an element of G
	On the degree of Deep Thought polynomials

	Efficiency issues in applying Deep Thought
	The polynomials f_rs
	More on efficiency

	Hybrid collection
	Implementations of Deep Thought

