
London Mathematical Society ISSN 1461–1570

SYMBOLIC COLLECTION USING DEEP THOUGHT

C. R. LEEDHAM-GREEN and LEONARD H. SOICHER

Abstract

We describe the “Deep Thought” algorithm, which can, among
other things, take a commutator presentation for a finitely generated
torsion-free nilpotent groupG, and produce explicit polynomials for
the multiplication of elements ofG. These polynomials were first
shown to exist by Philip Hall, and allow for “symbolic collection”
in finitely generated nilpotent groups. We discuss various practical
issues in calculations in such groups, including the construction of
a hybrid collector, making use of both the polynomials and ordinary
collection from the left.

1. Introduction

Let G be a finitely generated torsion-free nilpotent group. ThenG has a central series

G = G1 > G2 > · · · > Gn+1 = {1},
such that, for each 16 r 6 n, the central factorGr/Gr+1 is infinite cyclic, generated
by Gr+1ar , for somear ∈ Gr . Given thesea1, . . . , an, each elementx ∈ G has a unique
expression of the form

x = a
x1
1 · · · axn

n ,

with x1, . . . , xn ∈ Z. We call(x1, . . . , xn) thevector of exponentsfor x.
Philip Hall [3, Theorem 6.5] showed that there are rational polynomialsf1, . . . , fn (in 2n

variables) andg1, . . . , gn (in n + 1 variables), which describe multiplication and powering
in G. More precisely, supposet ∈ Z, and that(x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn),
(w1, . . . , wn) are the respective vectors of exponents forx, y, xy, xt ∈ G. Then, for 16
r 6 n,

zr = fr(x1, . . . , xn, y1, . . . , yn) and wr = gr(x1, . . . , xn, t).

Now we know that

ajai = aiaj a
ci,j,j+1
j+1 · · · aci,j,n

n ,

for certain integersci,j,k (1 6 i < j < k 6 n). One thing we do in this paper is to
show how to compute polynomials in variables corresponding to thexi, yi, ci,j,k, such that
these polynomials have the properties described above for Hall’s polynomialsfr , when
restricted to specificci,j,k. These polynomials are very complicated indeed, and in practice
the construction and evaluation of the polynomials goes much faster when many of theci,j,k

are zero.
We acknowledge our great debt to the work of Philip Hall, who showed in [3] the

existence of the polynomials of the form our “Deep Thought” algorithm calculates in the

Received 21st February 1997, revised 15th January 1998; published 1st June 1998.
1991 Mathematics Subject Classification 20F12, 20F18, 20F05
© 1998, C. R. Leedham-Green and Leonard H. Soicher

LMS J. Comput. Math. 1 (1998)9–24https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

http://www.lms.ac.uk
http://www.lms.ac.uk/jcm/
http://www.lms.ac.uk/jcm/1
https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

case of finitely generated torsion-free nilpotent groups. Charles Sims [8, pp. 441–445] has
already described a method of constructing these polynomials of Hall (using interpolation
and symbolic algebra), although we have not yet compared his approach to ours. An even
more important influence is Philip Hall’s earlier paper [2]. There, he introduces the process
of collection, and the reader will see a very strong resemblance between our methods and
the work of Hall on the calculation of(xy)m in the free groupF(x, y) modulo some term
of its lower central series.

The natural setting for what we do is actually monoids, not groups. In the next section we
discuss monoidsM satisfying certain relations like those of a finitely generated nilpotent
group, and we will develop the Deep Thought algorithm for such monoids.

In Section7 we show that the polynomials produced by Deep Thought can be used for
the multiplication ofxy even when our monoidM is a finitely generated nilpotent group,
and we allow thexi , yi , andci,j,k to be arbitrary integers. We also show how to invert
elements of such a groupM.

In Section8 we discuss efficiency issues related to the application of Deep Thought.
Deep Thought provides a form of symbolic collection for finitely generated nilpotent

groups, and in Section9we discuss how to combine Deep Thought with ordinary collection
from the left [4], to be able to compute effectively and efficiently in arbitrary finitely
generated nilpotent groups.

2. The monoid case

Let M be a monoid which is generated by elements

a1, . . . , an,

such that the the following relations hold:

ajai = aiaj a
ci,j,j+1
j+1 · · · aci,j,n

n (1 6 i < j 6 n), (1)

for certain non-negative integersci,j,k (1 6 i < j < k 6 n). The relations(1) allow us to
rewrite an arbitrary wordw in a1, . . . , an to a reduced wordv, such thatv = w in M. A
reducedword is a word of the form

a
x1
1 · · · axn

n ,

wherex1, . . . , xn are non-negative integers. The rewriting process we use is calledcollection
to the left, introduced by Philip Hall [2], and detailed in Figure1. (Note that since we have
no power relations or negative powers to cancel generators during the collection process,
collection to the left is probably the best strategy.)

Let

x = a
x1
1 · · · axn

n , y = a
y1
1 · · · ayn

n

be reduced words. We can use collection to the left to determine a reduced word

z = a
z1
1 · · · azn

n ,

such thatxy = z in M. We shall show how each exponentzr (1 6 r 6 n) is the value of a
certain polynomialfr evaluated on thexi , yi , andci,j,k, by describing the algorithm, Deep
Thought, which calculates these polynomials, given the relations(1).

10https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

while w is not a reduced worddo

Let i∗ be the leasti such thatw contains a subword of the formajai with i < j .

Among the subwords of the formajai∗ with i∗ < j , let w∗ = aj∗ai∗ be the leftmost
such subword.

Replacew∗ in w by ai∗aj∗ a
ci∗,j∗,j∗+1
j∗+1 · · · aci∗,j∗,n

n .

od;

Figure 1: Collection to the left, ofw in M.

3. Letters occurring in a collection

Throughout this Section we keep the notation of Section2.
In order to analyse the process of collection (to the left) ofxy in M, we shall attach a

unique label to each specificai which is introduced in the collection process. These labels
come from the set of “letters”, which are defined later. Each letter labelling a generator in
the final reduced word is either a letter labelling a generator from the original left-hand
word x, or a letter labelling a generator from the original right-hand wordy, or is a letter
labelling a generator from a word of the forma

ci,j,j+1
j+1 · · · aci,j,n

n , which is introduced when
anajai (with i < j) is collected. We emphasize that in a collection to the left inM, each
generator (and its label) which is introduced will appear in the final collected reduced word,
since there are no power relations or inverses to cancel generators.

3.1. Atoms and non-atoms
We now (recursively) define the concept of a letter, and show how letters are used to

label uniquely the generators which are introduced in the collection ofxy in M. (As usual,
x = a

x1
1 · · · axn

n andy = a
y1
1 · · · ayn

n .)
A letter is either an atom or a non-atom. Anatomα is a 3-tuple

(side(α), num(α), pos(α)),

such that side(α) ∈ {L, R}, and num(α) and pos(α)are positive integers. We use the notation

num(α)
side(α)
pos(α)

for an atomα.
If xi > j > 0 then the atomiL

j is used to label thej -th from the leftai in x (theLeft-hand
word). Similarly, if yi > j > 0 theniR

j is used to label thej -th from the leftai in y (the
Right-hand word).

If a letter is not an atom then it is a non-atom. Anon-atomα is a 4-tuple

(left(α), right(α), num(α), pos(α)),

such that left(α) and right(α) are letters, and num(α) and pos(α)are positive integers. We
use the notation

[left(α), right(α) ; num(α)pos(α)]
for a non-atomα. We also require that this recursion terminates, so that all letters can be

11https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

described, using the above notation, as finite expressions involving only atoms. (Note that
a letter is just a finite binary tree, with certain information attached to the nodes, and this
is how we view a letter from a computational point of view. The leaves of these trees are
atoms.)

Now supposei < j < k andci,j,k > r > 0, and that in a collection step we replace a
specificajai by aiaj a

ci,j,j+1
j+1 · · · aci,j,n

n . We may assume (inductively) that these specificaj ,
ai have respective labelsδ, γ . They retain these labels, and we label ther-th from the left
ak which is introduced in this step by the letter[δ, γ ; kr].

We have thus defined letters, and shown how to label uniquely each specific generator
introduced in the collection ofxy. Indeed, we can now think of the collection process as
collecting letters rather than generators. We say that a letteroccursin the collection ofxy

if it labels a generator introduced in this collection. Thus, a letter occurs in the collection
of xy if and only if it labels a generator in the final collected reduced word.

Example 1. Define the monoidN to be generated bya1, a2, a3, a4, subject (only) to the
relations

a2a1 = a1a2a
2
3, a3a1 = a1a3a4, a3a2 = a2a3a

5
4, anda4ai = aia4, (i = 1, 2, 3).

Let x = a1a
2
2a3 andy = a3

1a3a4. Examples of atoms which occur in the collection ofxy

in N are 3L1 and 1R2. An example of a non-atom which occurs in the collection ofxy is
[[2L

2, 1R
1 ; 31] , 1R

3 ; 41].

4. Relations on letters

We now define various relations on the set of letters, including the important equivalence
relation,∼. Given monoid relations of the form(1), the Deep Thought algorithm first
determines the∼-classes which can have elements occurring in a collection to the left. For
each such equivalence class, Deep Thought also determines a polynomial which evaluates
to the number of letters in that class that occur in a specified collection.

First we make clear what we mean for two lettersα, β to beequal (written α = β).
Simply, they must both be atoms or both non-atoms, and must be equal as 3-tuples or 4-
tuples, respectively. The conditions for lettersα, β to bealmost equal(writtenα ≈ β) are
the same as for them being equal, except that we allow the possibility that pos(α) 6= pos(β).
Any letter is both equal and almost equal to itself.

Example 2. [[2L
1, 1R

1 ; 31] , 1R
2 ; 45] is almost equal to[[2L

1, 1R
1 ; 31] , 1R

2 ; 43], but is not
equal to it. On the other hand,[[2L

1, 1R
1 ; 31] , 1R

2 ; 45] is not almost equal to[[2L
1, 1R

1 ; 32] ,

1R
2 ; 45]. Also note that 1L2 ≈ 1L

1, but 1L
2 6≈ 1R

2.

A letterα determines a finite sequence Seq(α) of (not necessarily distinct)sublettersof
α, as follows. Ifα is an atom then Seq(α) = (α); otherwise

Seq(α) = Seq(left(α)) concatenate Seq(right(α)) concatenate(α).

(In binary tree language, Seq(α) is a postorder transversal ofα.) Letm = Length(Seq(α)).
For 16 i 6 m, we denote thei-th element of Seq(α) by Seq(α,i), and let

Sub(α)= {Seq(α, i) | 1 6 i 6 m}
denote the set of subletters ofα.

12https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

The first condition that must be satisfied to haveα ∼ β is thatα andβ have the same
structure, which roughly means thatα andβ are exactly the same if we (recursively) ignore
all pos attributes. More precisely,α andβ have the same structure if the following are
satisfied:

• α, β must both be atoms or both be non-atoms.

• If α, β are atoms they must be almost equal.

• If α, β are non-atoms, then num(α) = num(β), left(α) has the same structure as
left(β), and right(α) has the same structure as right(β).

Note that ifα andβ have the same structure, we have Length(Seq(α)) = Length(Seq(β)).
We are now in a position to define the relation∼ on letters. We haveα ∼ β if each of

the following is satisfied:

• α, β have the same structure.

• For 16 i < j 6 Length(Seq(α)):

– Seq(α, i) ≈ Seq(α, j) if and only if Seq(β, i) ≈ Seq(β, j).
– If Seq(α, i) ≈ Seq(α, j) then pos(Seq(β, i)) and pos(Seq(β, j)) must be in ex-

actly the same relation(<, =, or >) as pos(Seq(α, i)) and pos(Seq(α, j)).

Example 3. We have

[[2L
4, 1R

3 ; 31] , 1R
4 ; 41] ∼ [[2L

2, 1R
1 ; 31] , 1R

3 ; 45].
As a more complicated example, we have

[[[2L
2, 1R

1 ; 42] , 1R
2 ; 61] , [[2L

2, 1R
1 ; 43] , 1R

3 ; 51] ; 122]
∼ [[[2L

2, 1R
1 ; 41] , 1R

2 ; 61] , [[2L
2, 1R

1 ; 43] , 1R
3 ; 51] ; 122]

6∼ [[[2L
2, 1R

1 ; 42] , 1R
2 ; 61] , [[2L

2, 1R
1 ; 42] , 1R

3 ; 51] ; 122].
Lemma 1. The relation∼ is an equivalence relation on the set of letters.

Proof This follows from the fact that both “has the same structure as” and≈ are equivalence
relations on the set of letters. 2

For each∼-class of letters, we define a well-ordering6 on that class. Supposeα ∼ β.
If α andβ are both atoms then defineα 6 β if pos(α) 6 pos(β). Otherwise,α 6 β if in
lexicographic order we have

(left(α), right(α), pos(α))6 (left(β), right(β), pos(β)).

(Note that ifα andβ are non-atoms withα ∼ β, then left(α) ∼ left(β) and right(α) ∼
right(β).)

Lemma 2. A letterα is least in its∼-class if and only if for each≈-classA of Sub(α), we
have{pos(ρ)| ρ ∈ A} = {1, . . . , |A|}.

We leave the straightforward proof as an exercise in understanding the many definitions
in this section.

Example 4. The least letter in the∼-class of

[[[2L
2, 1R

1 ; 41] , 1R
2 ; 61] , [[2L

2, 1R
1 ; 43] , 1R

3 ; 51] ; 122]
is

[[[2L
1, 1R

1 ; 41] , 1R
2 ; 61] , [[2L

1, 1R
1 ; 42] , 1R

3 ; 51] ; 121].

13https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

earlier :=function(α, β)
#
Suppose thatα andβ are letters occurring in a collection (to the left),
such thatα, β are not both atoms, and if bothα, β are
non-atoms then left(α) 6= left(β) or right(α) 6= right(β).
Then this boolean function returnstrue if and only if a
generator is labelled byα strictly earlier in the collection
than a generator is labelled byβ.
#
if α is an atomthen return true; fi;
if β is an atomthen return false; fi;
if right(α) = right(β) then return left_of(left(β), left(α)); fi;
if num(right(α)) = num(right(β)) then return left_of(right(α), right(β)); fi;
return num(right(α)) < num(right(β));
end;

Figure 2: The function “earlier”.

5. The function“lef t _of ”

One basic step in the Deep Thought algorithm is the following. Given two lettersα, β,
which occur in a collection (to the left), with num(α) = j > i = num(β), we must decide
if at the first instance in the collection thatα andβ both label generators, the generator
labelled byα is to the left of the generator labelled byβ in the word being collected. If this
is so, then all the letters[α, β ; kr] will occur for 1 6 r 6 ci,j,k.

This decision is made by the function “left_of”, detailed in Figure3, operating in a double
recursion with the function “earlier”, detailed in Figure2. These functions are given in an
algorithmic language similar toGAP [7]. In particular, “#” denotes a comment until the end-
of-line, “fi” denotes the end of anif-statement, “od” denotes the end of awhile-statement,
and “return” followed by an expression means to return the value of that expression as the
function value and then terminate the execution of the function.

It not difficult to prove that earlier(α, β) and left_of(α, β) both return the correct results
when given valid input, by considering the various cases the functions handle, and using
induction on Length(Seq(α)) + Length(Seq(β)).

On examination of the functions left_of and earlier, we see that the following (useful)
lemma holds.

Lemma 3. Supposeα is a non-atom, withleft(α) 6= right(α). Then ifβ ∼ α, we have
left_of(left(β), right(β)) if and only if left_of(left(α), right(α)).

(Note that left_of(left(α), right(α)) holds when the non-atomα occurs in a collection.)

6. The Deep Thought algorithm

We are now in a position to describe the basic Deep Thought algorithm.

14https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

left_of := function(α, β)
#
Suppose thatα andβ are letters occurring in a collection
(to the left), such thatα 6= β.
Then this boolean function returnstrue if and only if
at the first instance that lettersα andβ both label generators,
the generator labelled byα is to the left of that labelled byβ.
#
if bothα, β are atomsthen

if side(α) = L and side(β) = R then return true; fi;
if side(α) = Rand side(β) = L then return false; fi;
if num(α) = num(β) then return pos(α) <pos(β);fi;
return num(α) < num(β);

fi;
if bothα, β are non-atoms and right(α) = right(β) and left(α) = left(β) then

if num(α) = num(β) then return pos(α) <pos(β);fi;
return num(α) < num(β);

fi;
if earlier(α, β) then return not left_of(β, α); fi;
#
At this point, we know thatβ appears earlier thanα, and soα must be a non-atom.
#
if num(β) < num(right(α)) then return false; fi;
if β = right(α) then return false; fi;
if num(β) = num(right(α)) then return left_of(right(α), β); fi;
#
At this point, we have num(β) > num(right(α)).
#
if β = left(α) then return false; fi;
return left_of(left(α), β);
end;

Figure 3: The function “left_of”.

15https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

The Deep Thought algorithm takes as input the integern, and relations of the form
(1). The algorithm outputs polynomialsf1, . . . , fn in indeterminates corresponding to
x1, . . . , xn, y1, . . . , yn and the non-zeroci,j,k, such that ifzr is the value offr evaluated on
x1, . . . , xn, y1, . . . , yn and the non-zeroci,j,k, then

a
z1
1 · · · azn

n = a
x1
1 · · · axn

n a
y1
1 · · · ayn

n ,

in a monoidM whose generatorsa1, . . . , an satisfy(1).
Remark The actual values of the non-zeroci,j,k are only required in the evaluation of
the polynomials produced by Deep Thought. Indeed, Deep Thought produces polynomials
which are valid for all monoidsN generated byb1, . . . , bn satisfying relations

bjbi = bibj b
di,j,j+1
j+1 · · · bdi,j,n

n (1 6 i < j 6 n),

as long asdi,j,k = 0 wheneverci,j,k = 0. The reason we only consider the non-zeroci,j,k

in the algorithm (rather than to obtain more general formulae) is to keep the polynomials
fr of reasonable size for the given monoid relations.

Deep Thought starts by determining, for eachr = 1, . . . , n, a set repsr . When complete,
repsr is a set of representatives for all distinct∼-classes of lettersα, with num(α) = r,
such thatα occurs in a collection ofxy, for some values of thexi, yi, and non-zeroci,j,k.
Then, we will define a polynomialgα, in indeterminates corresponding to thexi , yi , and
non-zeroci,j,k, such thatgα evaluates to the number of letters occurring in the∼-class of
α in the actual collection corresponding to given values of thexi , yi , and non-zeroci,j,k.

The procedure set_reps for determining the sets repsr is detailed in Figure4.
After set_reps has been executed, we see that each repsr is a set of inequivalent letters

α, with num(α) = r, thatα is least in its∼-class, and that any letterβ, with num(β) = r,
occurring in the collection ofxy is equivalent to some element of repsr .

6.1. The polynomialsgα

Let non-negative integersxi, yi, ci,j,k be given, and letρ be any letter. Definetρ by

tρ =

xnum(ρ) if ρ an atom, side(ρ) = L
ynum(ρ) if ρ an atom, side(ρ) = R
cnum(right(ρ)),num(left(ρ)),num(ρ) otherwise.

So tρ depends only on the integersxi, yi, ci,j,k and the≈-classA of ρ. We definetA for
this≈-classA to betρ .

Theorem 1. Let x = a
x1
1 · · · axn

n , y = a
y1
1 · · · ayn

n . Then for eachr = 1, . . . , n, and each
α ∈ repsr calculated by the procedureset_repswith inputn and relations(1), the number
of elements in the∼-class ofα which occur in the collection (to the left) ofxy is

nα =
∏

A∈Sub(α)/≈

(
tA

|A|
)

. (2)

Proof For any letterα, defineN(α) to be the set of all lettersβ ∼ α, such that pos(γ) 6
tγ for eachγ ∈ Sub(β). Note that for eachB ∈ Sub(α)/≈this restriction gives us exactly(

tB|B|
)

possibilities for{pos(σ)| σ ∈ B}, so N(α)has sizenα, wherenα is given by(2).
Now if β is a letter occurring in the collection ofxy, we plainly must have max{pos(σ)|

σ ∈ B} 6 tB , for each≈-classB of Sub(β). Therefore,N(α) contains the setC(α) of
letters which occur in the collection ofxy and are in the∼-class ofα. We complete the
proof of the theorem by showing thatN(α) ⊆ C(α), whenα is in one of the sets repsr .

16https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

set_reps :=procedure(n, (ci,j,k))
#
for r := 1, . . . , n do # initialize repsr with representative atoms

repsr : = {rL
1 , rR

1 };
od;
for r := 3, . . . , n do # determine the representative non-atoms

#
Loop invariant: the sets reps1, . . . , repsr−1 are complete.
#
for each i, j , with 1 6 i < j < r, such thatci,j,j+1 = · · · = ci,j,r−1 = 0 6= ci,j,r , do

#
Determine representatives for all letters which can possibly
occur when anajai is collected.
#
for eachα ∈ repsi , β ∈ repsj do

#
Lemma2 is useful in the tricky business of generating
efficiently the pairsγ, δ to be looped over next.
#
for eachpairγ, δ with

γ ∼ α, δ ∼ β, and[δ, γ ; r1] the least letter in its∼-classdo
if left_of(δ, γ) then

#
for eachk such thatci,j,k 6= 0, [δ, γ ; k1] is the least letter in its∼-class
#
for eachk ∈ {r, . . . , n} such thatci,j,k 6= 0 do Add [δ, γ ; k1] to repsk; od;

fi;
od;

od;
od;

od;
end;

Figure 4: The procedure “set_reps”.

17https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

Let R = ∪n
r=1repsr . For each letterα ∈ R and for eachβ ∈ N(α), we show that

β ∈ C(α), by induction onl = Length(Seq(β)).
If l = 1 thenβ is an atom, and pos(β) 6 tβ , that is, pos(β)6 xnum(β) if side(β) =L,

and pos(β)6 ynum(β) if side(β) =R. Thus the result holds forl = 1.
Now assume thatβ ∈ N(α) is a non-atom, and letλ be the least letter in the∼-class

of left(β) andρ be the least letter in the∼-class of right(β). Sinceβ ∼ α, it follows that
left(β) ∼ left(α), and right(β) ∼ right(α); so λ is also the least letter in the∼-class of
left(α) andρ is the least letter in the∼-class of right(α). Sinceα ∈ R, from the set_reps
construction of the sets repsr , it follows thatλ ∈ R andρ ∈ R. Also β ∈ N(α) implies
left(β) ∈ N(λ) and right(β) ∈ N(ρ). Therefore, by our inductive hypothesis, left(β) and
right(β) occur in the collection ofxy. Sinceα ∈ R, we know that left_of(left(α), right(α))
holds, but then left_of(left(β), right(β)) also holds by Lemma3. But pos(β) 6 tβ =
cnum(right(β)),num(left(β)),num(β), so βoccurs in the collection ofxy, and the proof is complete.

2

We now define the polynomialgα that evaluates to the number of letters equivalent under
∼ toα occurring in the collection ofxy. This definition is justified by the preceding theorem.

Let Xi, Yi, Ci,j,k be indeterminates, and letρ be any letter. Define the indeterminateTρ

by

Tρ =

Xnum(ρ) if ρ an atom, side(ρ) = L
Ynum(ρ) if ρ an atom, side(ρ) = R
Cnum(right(ρ)),num(left(ρ)),num(ρ) otherwise.

SoTρ depends only on the indeterminatesXi, Yi, Ci,j,k and the≈-classA of ρ. We define
TA for this ≈-classA to beTρ . Let T be an indeterminate,k a non-negative integer, and
define the polynomial

(
T
k

)
by

(
T

k

)
=

k∏
i=1

T − i + 1

i
.

Now, finally, define

gα =
∏

A∈Sub(α)/≈

(
TA

|A|
)

.

For example, ifδ = [[2L
1, 1R

1 ; 31] , 1R
2 ; 41], thengδ = (

X2
1

)(
Y1
2

)(C1,2,3
1

)(C1,3,4
1

)
.

Note thatgα has total degree equal to|Sub(α)|.

6.2. The output of Deep Thought
The final steps in the Deep Thought algorithm, after computing the sets repsr , are to

calculate

fr =
∑

α∈repsr

gα,

for 1 6 r 6 n, and to output thesefr .
Remark To evaluate anfr on given integersxi, yi, ci,j,k, we simply substitute for each
indeterminateTA in the expression forfr , the corresponding valuetA. Note thatfr is a
rational polynomial which takes integer values when evaluated on integers.

18https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

7. The group case and negative exponents

Let G be an arbitrary finitely generated nilpotent group. Then for somen, G contains
a generating sequencea1, . . . , an, such that these generators satisfy relations of the form
(1), for certain (not necessarily non-negative) integersci,j,k (1 6 i < j < k 6 n). Each
element ofG can be written in the formax1

1 · · · axn
n , wherex1, . . . , xn are integers.

We may run the Deep Thought algorithm with inputn and the relations(1), even if some
of the ci,j,k are negative, since the algorithm only cares whether a givenci,j,k is zero or
not. Suppose this run produces sets reps1, . . . , repsn, and polynomialsf1, . . . , fn as output.
Then we have the following:

Theorem 2. Let x1, . . . , xn, y1, . . . , yn be arbitrary integers, and for1 6 r 6 n, let
zr be the integer obtained by evaluatingfr , on the givenxi , yi , and non-zeroci,j,k. If
x = a

x1
1 · · · axn

n , andy = a
y1
1 · · · ayn

n , andz = a
z1
1 · · · azn

n , thenxy = z in G.

Proof SinceG is a polycyclic group, it is residually finite by a theorem of K. Hirsch (see
[6, 5.4.17]), and soxy = z in G if and only if x̄ȳ = z̄ in every finite quotient̄G of G. Thus,
it suffices to prove the theorem under the assumption thatG is finite.

We now assume thatG is finite, butxy 6= z in G. Thenxy 6= z in G if we add to
each exponentxr , yr , andzr of x, y, andz some multiple of|G|. Note that this would be a
consequence of adding to eachxi , yi , and non-zeroci,j,k a multiple of

max{|A| | A ∈ Sub(α)/≈, α∈ ∪n
r=1repsr }! × |G|,

and recalculating eachzr . But then this would imply thatxy 6= z in G even if eachxi , yi ,
andci,j,k is non-negative, which would contradict the fact that Deep Thought works when
all such exponents are non-negative. 2

7.1. Inverting elements ofG
We now show how to invert elements ofG using Deep Thought polynomials. More

generally, we show how to solve fory in the equationxy = z in G, where nowx =
a

x1
1 · · · axn

n andz = a
z1
1 · · · azn

n are given, and we wish to determiney = a
y1
1 · · · ayn

n (of
course, calculatingy = x−1 is just the special casez1 = · · · = zn = 0).

We first make a copyx′ of x. Then, fori: = 1, . . . , n, given the loop invariant thatx′ is

of the forma
z1
1 · · · azi−1

i−1 a
x′
i

i · · · ax′
n

n , setyi : = zi −x′
i , and use the Deep Thought polynomials

to calculatex′: = x′ayi

i .

7.2. Calculating normal forms of elements ofG

We have shown that Deep Thought polynomials can be used to multiply and invert
elements of an arbitrary finitely generated nilpotent group, and that Deep Thought han-
dles negative exponents correctly. The only problem is that the resultw = a

w1
1 . . . a

wn
n of

such a multiplication or inversion need not be uniquely determined by the group element
represented byw. We get around this problem by using a consistent power-commutator
presentation, and we show how to use the power relations of such a presentation and Deep
Thought to convert a result into canonical (normal) form.

Let G be an arbitrary finitely generated nilpotent group. ThenG has (for somen) a
so-called consistent power-commutator presentation of the form

〈a1, . . . , an | a
mi

i = a
ci,i,i+1
i+1 · · · aci,i,n

n , aj ai = aiaj a
ci,j,j+1
j+1 · · · aci,j,n

n (i < j) 〉, (3)

19https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

such that eachmi (1 6 i 6 n) is a non-negative integer, and each element ofG has a
unique expression of the formax1

1 · · · axn
n , wherex1, . . . , xn are integers, and ifmi > 0,

then 06 xi < mi . (If mi = 0 then we must haveci,i,i+1 = · · · = ci,i,n = 0 and the relation
with mi = 0 can effectively be ignored.) This unique expression for an element ofG is
referred to as thenormal formof that element.

Now if eachmi = 0 in the consistent power-commutator presentation(3) for G, then
Deep Thought polynomials can be used directly to multiply elements inG, such that the
result is always in normal form. Otherwise, we may obtain a resultz = a

z1
1 · · · azn

n , such
that for somei with mi > 0, we havezi < 0 or zi > mi . Suppose this is the case, and let
j be the leasti with this property. Then we need to “normalize”z∗ = a

zj
j · · · azn

n , that is,
replace it by a word in normal form representing the same element ofG. Letzj = qmj + r,
whereq andr are integers and 06 r < mj . We calculate

w: = (a
cj,j,j+1
j+1 · · · acj,j,n

n)q a
zj+1
j+1 · · · azn

n ,

using Deep Thought polynomials, so thatw has the forma
wj+1
j+1 · · · awn

n . We then (recursively)
normalizew, and so the normal form forz∗ is ar

j w, and the normal form forz is

a
z1
1 · · · azj−1

j−1 ar
j w.

7.3. Determining the order of an element ofG

Suppose(3) is a consistent power-commutator presentation forG, andx is an element
of G in normal form. Then we can calculate the order|x| of x as follows.

If x is the empty word then|x| = 1. Otherwise,x = a
xj

j · · · axn
n , with j 6 n andxj 6= 0.

If mj = 0 then|x| = ∞. Otherwise letm = mj/gcd(mj , xj). Now |x| = ∞ if and only if
|xm| = ∞, and if the order ofx is finite thenm divides|x|. We then calculate the normal
form of y = xm, which isa

yl

l · · · ayn
n , with l > j , and recursively determine|y|. If |y| = ∞

then|x| = ∞, otherwise|x| = m|y|.

7.4. On the degree of Deep Thought polynomials
Suppose(3) is a consistent power-commutator presentation for the groupG, such that

the central series defined bya1, . . . , an refines the lower central series

G = γ1(G) > γ2(G) > · · · > γc+1(G) = {1}
of G. Let α be an element of a set repsr determined by Deep Thought with input(3).

It is not difficult to see that Seq(α) contains at mostc elements which are atoms (since
[γi(G), γj (G)] 6 γi+j (G)). It follows thatgα, considered as a polynomial in theXi and
Yi only, has degree at mostc, and the same holds for the Deep Thought polynomialfr .

Suppose Seq(α) has exactlyd elements which are atoms. Then

Length(Seq(α)) = 2d − 1

(proof by induction ond). It follows thatgα has total degree (in theXi , Yi , andCi,j,k) at
most 2d − 1 6 2c − 1, and the same holds for the Deep Thought polynomialfr .

8. Efficiency issues in applying Deep Thought

Let G be a group with presentation(3), and suppose we are interested in efficient mul-
tiplication and inversion of elements inG, rather than in the polynomialsfr produced by
Deep Thought.

20https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

for r := 1, . . . , n do
if r = s then

repsrs : = {rL
1 , rR

1 };
else

repsrs : = {rL
1 };

fi;
od;

Figure 5: Initialfor -loop for the calculation of the sets repsrs .

8.1. The polynomialsfrs

The first important observation is that we should not actually calculate and use the Deep
Thought polynomialsfr for multiplying and inverting elements ofG, but instead, closely
related polynomialsfrs , described below, which can be calculated by a small variant of the
Deep Thought algorithm.

Let reps1, . . . , repsn be the sets of representative letters produced by Deep Thought,
using input(3). For 16 r, s 6 n, define

repsrs =
{α ∈ repsr | if β ∈ Sub(α), βan atom with side(β) = R, then num(β) = s},

and

frs =
∑

α∈repsrs

gα.

Then for 16 r, s 6 n, we see that ifzr is the value offrs evaluated onx1, . . . , xn, ys , and
the (non-zero)ci,j,k, then

a
x1
1 · · · axn

n a
ys
s = a

z1
1 · · · azn

n (4)

in the groupG.
To determinez = xy, for arbitraryy = a

y1
1 · · · ayn

n , we just setz: = x, and then, for
s: = 1, . . . , n, we set z: = za

ys
s , using thefrs .

Furthermore, efficient multiplication of the form(4) is exactly what we need when
inverting elements ofG and, as it will turn out, what we also need for hybrid collection in
G, described in Section9.

Even better, calculating all the sets repsrs is computationally no harder (and is often
easier) than calculating all the sets repsr . To calculate the sets repsrs , for a fixed sand for
1 6 r 6 n, we use an algorithm which is almost the same as that detailed in Figure4. The
first change is that the initialfor -loop should be replaced by the code in Figure5. Then,
thoughout the rest of the algorithm, every occurrence of reps2 should be replaced by reps2s .

8.2. More on efficiency
The next observation is that if (in our fixed presentation(3)) someci,j,k > 0, then when

calculating the sets repsrs , we need not include a representativeα with an ≈-classA of
subletters withTA = Ci,j,k but |A| > ci,j,k, because ifβ ∼ α is a subletter ofγ , thengγ

21https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

while w is not in normal formdo

Let w∗ be the leftmost subword ofw of the formajai with i < j , or of the forma
mi

i ,
wheremi > 0 in (3).

if w∗ = ajai , with i < j , then replacew∗ in w by aiaj a
ci,j,j+1
j+1 · · · aci,j,n

n ;

elsereplacew∗ in w by a
ci,i,i+1
i+1 · · · aci,i,n

n fi;

od;

Figure 6: Collection from the left, ofw in G.

would always evaluate to 0 with thisci,j,k.
Another obvious point is that we should substitute the actual valueci,j,k for each in-

determinateCi,j,k in a polynomial produced by Deep Thought, and try to simplify such
polynomials to make them easier to evaluate. For example, we should make use of the fact
that if α andβ are non-atoms with left(α) = left(β) and right(α) = right(β) then the
polynomialsgα andgβ are nearly the same.

One small trick which has proved fruitful is to precompute the values of
(
m
k

)
for small

|m| andk (say 06 |m|, k 6 20), and use these precomputed values when evaluating Deep
Thought polynomials.

If a generatorai of G has finite order, we should work modulo this order when calculating
with the exponent ofai , to reduce the work involved in integer arithmetic. The calculation
of the order of an element ofG is described in Section7.3, above.

9. Hybrid collection

We have discussed how to use Deep Thought polynomials to multiply and invert elements
in the finitely generated nilpotent groupG defined by the consistent power-commutator
presentation(3). However, it may sometimes be more efficient (in terms of space or time)
to adopt another strategy, such as collection from the left [4], detailed in Figure6. (For ease
of exposition, we shall assume that all exponents are non-negative. This is certainly the
case for our implementation of collection from the left in (finite)p-groups.) Deep Thought
tends to be best for groups of low class and high exponent, and we now describe how to
combine Deep Thought with collection from the left to be able to multiply and invert more
efficiently than one or the other approach could on its own.

The trick is to determine an integerd 6 n, so that Deep Thought deals efficiently with
Gd = 〈ad, . . . , an〉. This may require some experimentation. We then calculate the Deep
Thought polynomialsfrs for d 6 s 6 r 6 n, to be able to multiplyax1

1 · · · axn
n a

ys
s efficiently

using Deep Thought.
Now, in the process of collection, our hybrid collector is either in Deep Thought mode

or in from-the-left mode, and is multiplying a wordx = a
x1
1 · · · axn

n in normal form (stored
as an exponent vector in practice) times some other wordv (stored on a stack in practice).
(We have finished exactly whenv = 1.)

Suppose we are in Deep Thought mode andv starts with a word of the formv∗ = a
ys
s .

If s > d, then we removev∗ from v, calculatex: = xv∗ using Deep Thought polynomials

22https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

(but not normalizing the result), and continue the process. Ifs < d then we first normalizex
using Deep Thought polynomials, switch to from-the-left mode, and continue the process.

Suppose we are in from-the-left mode andv starts with a word of the formays
s . If s > d,

then we switch to Deep Thought mode, and continue the process. Ifs < d then we remove
the leadingas from v, and collect thisas intox using collection from the left in the ordinary
way, and then continue the process.

10. Implementations of Deep Thought

We have implemented the Deep Thought algorithm and the hybrid collector described
here (the hybrid forp-groups only), in the C programming language. Our Deep Thought
implementation seems to work well for arbitrary finitely generated nilpotent groups up to
about class 8 or more, and the hybrid collector can speed up multiplication inp-groups
of much higher class. The Deep Thought C implementation has also been used by Paul
Igodt and his colleagues to study various aspects of finitely generated torsion-free nilpotent
groups (see, for example, [1]).

More recently, Deep Thought has been implemented by Wolfgang Merkwitz in theGAP
system, and will thus be available for public use. This implementation is described in [5].

Merkwitz [5] comes to the conclusion that Deep Thought might be used to calculate
in a p-group if p > 11. He gives a detailed account of the experiments leading to this
conclusion. His evidence is very much in line with ours. He finds that, working on a Pentium
PC operating at 166 MHz, the time taken to construct the Deep Thought polynomials in
somep-groups of composition length 35 and nilpotency class 9 is about three seconds,
regardless of the primep. He finds that multiplication using Deep Thought out-performs
collection (from the left) in evaluating the product of two random words by a factor of about
7 if p = 7, and a factor of about 10,000 ifp = 47.

Merkwitz also finds that, for example, computing the derived subgroup of the groups
he considers using collection takes 0.2 seconds, regardless of the prime. This presumably
means that the collections performed are almost entirely trivial. The time required using
Deep Thought is also, of course, effectively independent of the prime, but is almost five
times as long. This emphasises the fact that, as currently implemented, collection from the
left is out-performing Deep Thought multiplication in trivial calculations.

Acknowledgements

We thank Wolfgang Merkwitz, Joachim Neubüser, Werner Nickel, Charles Sims and
Michael Vaughan-Lee for interesting and useful discussions. This research was partly sup-
ported by a European Union HCM grant in Computational Group Theory.

References

1. K. Dekimpe andP. Igodt, ‘Computational aspects of affine representations for torsion
free nilpotent groups via the Seifert construction’,J. Pure Appl. Algebra84 (1993)
165–190. 23

2. P. Hall, ‘A contribution to the theory of groups of prime-power order’,Proc. London
Math. Soc. (2)36 (1934) 29–95.10,10

23https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000127

Symbolic Collection using Deep Thought

3. P. Hall, ‘Nilpotent groups’, Notes of lectures given at the Canadian Mathematical
Congress 1957 Summer Seminar, inThe collected works of Philip Hall(Clarendon
Press, Oxford, 1988) pp. 415–462.9, 9

4. C.R. Leedham-Green andL.H. Soicher, ‘Collection from the left and other strate-
gies’,J. Symbolic Comp.9 (1990) 665–675.10,22

5. W.W. Merkwitz, ‘Symbolische multiplikation in nilpotenten Gruppen mit Deep
Thought’, Diplomarbeit, RWTH Aachen, 1997.23,23

6. D.J.S. Robinson, A course in the theory of groups(Second Edition) (Springer, New
York and Berlin, 1996).19

7. M. Schönert et al., ‘GAP: groups, algorithms and programming’, version 3, release
4, Lehrstuhl D für Mathematik, RWTH Aachen, 1994.14

8. C.C. Sims, Computation with finitely presented groups(Cambridge University Press,
Cambridge, 1994).9

C. R. Leedham-GreenC.R.Leedham-Green@qmw.ac.uk
Leonard H. Soicher L.H.Soicher@qmw.ac.uk

School of Mathematical Sciences
Queen Mary and Westfield College
Mile End Road, London E1 4NS, U.K.

24https://doi.org/10.1112/S1461157000000127 Published online by Cambridge University Press

mailto:C.R.Leedham-Green@qmw.ac.uk
mailto:L.H.Soicher@qmw.ac.uk
https://doi.org/10.1112/S1461157000000127

	Introduction
	The monoid case
	Letters occurring in a collection
	Atoms and non-atoms

	Relations on letters
	The function left_of
	The Deep Thought algorithm
	The polynomials g_alpha
	The output of Deep Thought

	The group case and negative exponents
	Inverting elements of G
	Calculating normal forms of elements of G
	Determining the order of an element of G
	On the degree of Deep Thought polynomials

	Efficiency issues in applying Deep Thought
	The polynomials f_rs
	More on efficiency

	Hybrid collection
	Implementations of Deep Thought

