
JFP 25, e2, 3 pages, 2015. c© Cambridge University Press 2015 1

Book review

Thinking Functionally with Haskell by Richard Bird, Cambridge University

Press, 2014.

doi:10.1017/S0956796815000076

With Thinking Functionally in Haskell Richard Bird steps up to continue a family of textbook

classics. Bird and Wadler jointly started the series with two editions of Introduction to

Functional Programming (in Haskell) in 1988 and 1998, respectively. Let me begin with the

outright spoiler that I think that this third edition breathes new life into the series and indeed

presents a worthy continuation.

The 12 chapters of the 340-page volume contain more material than most layouts of a

one-term introductory course on functional programming can accommodate. If the many

exercises are considered in depth and a discussion of Haskell-specifics is added (more on

both points below), we hold the syllabus of a two-term course in our hands. According to

the blurb, the book addresses first- or second-year undergraduates. I agree, but gained the

impression that true programming novices would probably struggle starting with the fifth

chapter when concepts, scripts, and exercises become more complex. This is also where the

exposition generally picks up speed.

From the outset, Bird consistently adopts a style of programming in which complex

functions are composed from simpler constituents that are useful on their own (“. . . functions

that seem to be basic in programming are often composed of even simpler functions. A bit like

protons and quarks.”) Already the earliest exercises in Chapter 1 adhere to this principle: an

elaborate pipeline of function types has to be designed even before students can be expected

to write the functions’ bodies. Early on lazy evaluation is established as a principle that makes

this rigorous compositional style viable. Here, and at many occasions later in the book, Bird

relates the discussion to the research literature or blog posts.1 This provides welcome entry

points for deep dives into the subject. When Chapter 4 introduces lists it carefully distinguishes

finite, infinite, and partial values, a discussion that has its dedicated Chapter 9 but permeates

the entire book.

Chapter 5 is entirely devoted to a Sudoku solver that readers of Bird’s Pearls of

Functional Algorithm Design (Cambridge University Press, 2010) will recognize. The present

book significantly expands on the earlier treatment through an in-depth discussion of the

many involved component functions. The derivation of an efficient solver from the “clearest

specification” also marks the first larger showcase of equational reasoning. Bird consequently

uses the “Wim Feijen style”

e1

= {justification}
e2

to simplify and optimize programs or to establish proofs of their properties. The rewriting

of compositions of functions remains one of Bird’s grand themes. Calculations pervade the

entire book, from its preface(!) to the final Chapter 12 where a (semi-)automatic equational

rewriter is developed. Lawful program construction encourages “wholemeal programming”,

1 Regarding a discussion of strict vs. lazy evaluation, Bird points to a blog post by Robert Harper and
the extensive thread of comments that followed (http://existentialtype.wordpress.com/2011/
04/24).

https://doi.org/10.1017/S0956796815000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000076


2 Book review

“prevent[s] a disease called indexitis”, and explains “why functional programming is the best

thing since sliced bread.” Richard Bird is not shy to advertise the style and consistently

lives by it. Chapter 6 on the induction over natural numbers and (partial and infinite) lists

consequently reads like a particular exercise in equational reasoning.

A lazy language promotes the compositional approach but makes it harder to assess

program performance. Chapter 7 addresses efficiency and provides an accessible introduction

to issues like common subexpression elimination and space leaks. Here is where Bird

introduces Haskell’s seq primitive, “the eager button on our dashboard” – one of the few

places where Haskell-specifics find their way into the text. A simpler eager evaluation model

is then also used in an asymptotic analysis of program run time, a reasonable trade-off to

make in a textbook.

Library design, and domain-specific languages in general, are the focus of Chapter 8. I felt

that the chosen pretty printer showcase turned out to be so intricate, however, that genuine

matters of library and DSL design were obscured. A related comment applies to the already

mentioned final chapter: the development and subsequent optimization2 of the equational

rewriter ultimately leads to many-page elaborate calculations of function definitions. While a

number of folklore techniques are presented along the way, the treatment in this final part of

the book provides students with few opportunities to acquire new skills.

Only from Chapter 10 on monads are on the table. Richard Bird first illustrates how

elements of imperative programming (I/O, state, mutable arrays) lead to various monad

instances. Chapter 11 then develops a library of monadic parsing combinators in the

established Hutton–Meijer style. Both chapters feature particularly nice and practical examples

(like an efficient variant of breadth-first search or the systematic conversion of context-free

grammars into a composition of parsing combinators). Still, Bird remarks that “[o]ur

best advice is to use the monadic style sparingly. . . the most important aspect of functional

programming, the ability to reason mathematically about its constructs, is lost.”3

This piece of advice, along with many others, reminds us that this is an opinionated book.

Bird has his list of “Good Things to Use in Moderation” – on which you will find monads just

like as-patterns or operator sections – and he is not cautious to share it. I personally like this

style and am convinced that these deliberate judgments, hints, and witty slogans (“tupling is

the dual of accumulating parameters”) serve the reader to gain a clear and memorable first

picture of functional programming.

This is not a tutorial book on Haskell itself and it is not advertised as such. Throughout the

entire book, Haskell is regarded as the vehicle, not the destination. From the very beginning,

the reader is encouraged to experiment with Haskell and learn from the instant feedback

given by the ghci REPL. Still, Haskell constructs that can be regarded core language features,

like newtype or the use of (module-)qualified names, first appear in the late Chapters 11

and 12, respectively. Many abstractions that are pervasive in idiomatic Haskell code today

(the Applicative type class or monad transformers, say) play no role at all. Richard Bird’s

emphasis is on fundamental programming techniques of wide applicability.

I do not want to close before I can underline what a treasure the book’s collection of

exercises presents. An extensive list of questions and programming assignments, always clearly

connected to the discussion in the preceding chapter, closes each of the 12 chapters. Not a

single exercise remains without a proposed answer or solution, rendering the book the ideal

companion for self-study. These exercises are never dull and some are outright challenging.

They have certainly inspired me as a teacher to rethink and improve the assignments I

hand out.

2 Through application of the rewriter to itself, remarkably.
3 Again, the book provides perspective with a reference to “Just do it: Simple monadic equational

reasoning”, Jeremy Gibbons’ and Ralf Hinze’s ICFP 2011 paper.

https://doi.org/10.1017/S0956796815000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000076


Book review 3

Overall, I do not hesitate to highly recommend Richard Bird’s new book on learning how

to think functionally. It will certainly play a major role in my preparations for upcoming

courses on functional programming. I am glad to see this series of textbook classics continue

with another strong entry.

TORSTEN GRUST

Universität Tübingen

https://doi.org/10.1017/S0956796815000076 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000076

