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In a previous paper1 in these Proceedings the author discussed
conditions for a maximum or minimum of functions of integrals of
the type

4> ' / ( * > y> y') dx> 9 (*> y , y') &* >
'—>xl Ji, -1

using the methods of the Calculus of Variations. In the effort to
establish a third necessary condition for a minimum—the analogue
of Jacobi's condition in the ordinary variational problem2—it was
found that the analogue of Jacobi's Equation was an integro-
differential equation of the form

dx2 ^dx + mWu + n(x)) \_p(x)u+q(x) —jdx = O. (1)

In the ordinary variational problem Jacobi's Equation is a
second order homogeneous linear differential equation, and the
important property is Sturm's result that the zeros of two linearly
independent solutions are interlaced. In the present paper a method
of solving equation (1) will be given, and it will be shown that
any solution of the equation can be expressed in terms of linearly
independent solutions, whose zeros are interlaced exactly as in the
case of the ordinary differential equation. This is the property which
was required for the variational problem.

§ 1. It is assumed that the functions I (z), m (x), n(x), p (x), q (x)
in equation (1) are continuous in the range with which we are dealing.
Now if u = u(x) is any solution of equation (1), the expression

1 R. P. Gillespie, Pioc. Edinburgh Math. Soc. (2), 3 (1932), 87-98.
2 Cf. O. Bolza, Vorlesungen iiber Variationsrechnung (1909), 68-87.
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where u = u (x), has a definite value, A say, independent of x. Thus
u =u (x) satisfies the differential equation

d ) ( ^ + m(x)u + X7i(x) = 0, (2)
dx

so that each solution of equation (1) is also a solution of a certain
second order differential equation. If

ait, (x) + fill., (x)

is the general integral of the equation

d'-u , , . . du , . . . ,„>
(h? ^ dx + mWu=0' (3)

where u± (x) and u2 (x) are linearly independent integrals and a and j3
are arbitrary constants; and if % (x) is any particular integral of the
equation

(^ + l(x)p + m(x)u + n(x) = O, (4)
dx2- dx

then it is clear that

u = aux {x) + jStt2 (a) + AM3 (x)

is the general integral of equation (2). On substituting this value of
u in the expression defining A, we obtain

A

so that

= [p (a% + jS«2 + Aw3) + q (au\ + j8%'2 + Aw'3)] dx,
•>x,

rx..

[

A = J-^ F , (5)
1 — [^% + ^"'3] dx
f2

assuming that 1 — [pu:i + qu'3] dx is not zero.
Jx,

Hence we have proved that the general integral of equation (1)
can be expressed in the form

[p (a?*! + pu2) + q (au\ + /3w'2)] dx
J-± — u3(x). (6)

1 — [pu3 + qu'3] dx
J x,

This solution may be written in the form

u = aO^i (x) + /?M2 (x),
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where
1 + qu\] dx

u2(x) =u2(x)

Jx,
rx~

[pu
Jx,

iu's] dx

t'ol dx

- — I
J x.

i'z] dx

U3{x).

§ 2. It will now be shown that ux (x) and u2 (̂ ) are linearly inde-
pendent. If this is not so, a relation % (a;) = Au2 [x) exists, where A
is a constant. This requires

-f u3

Cx..

i x ^
+ qit'i] dx

1 —
= A

s +
u»

}x.
%2 -\- i dx

from which we can deduce that either
(i) ux = Au2,

• p 2 p .
I [Pui + S^'i] dx — A \ \
Jx, J£,or (ii) M3

2 +
ex..

— [
Jx,

dx

The first result is impossible since ux and «2
 a r e linearly independent.

The second states that u3 (x) can be expressed in the form
Oux(x) + Duo(x), where C and D are independent of x; i.e. us(x) is
a solution of equation (3), which is impossible since it is a solution of
equation (4). Thus we have proved that the general integral of
equation (1) is expressible in the form

u = aUi (x) + /?M2 (x),

where a, j8 are arbitrary constants, and ii1{x), u.,(x) are linearly
independent.

It will now be shown that one and only one solution of equa-
tion (1) exists which satisfies the conditions

u {x0) = u0, u' (x0) = w'o,

where nQ and u'o are any numbers. If u(x) is a solution of equa-
tion (1) which satisfies the conditions u(xo)—uo, it'(xo)=u'o, we
know that u (x) is of the form

au,x (x) + flu., (x) + A«3 (x),
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where
= a«i (ar0) + fai (ar0),

' o - A«'3(a:0) = att'

Xow, since «j and w2 are linearly independent solutions of equation (3),

is not zero, and equations (7) can be solved for a and jS in the form

a = a + 6A, jS = c + dX,

where a, 6, c, cZ are uniquely determined. On substituting these
values for a and /$ in equation (5), and solving for A, we obtain

[P (aui + cu-2> + 1 (au'i + cu>2)] dx

*= r*,Xl • • (8)
1 — I IP (Uli + ^ 1 + ^^2) + 1 iu'z + ^^ ' I + du'z)] dx

Hence A, and consequently a and jS, are uniquely determined, and
we have proved that one and only one solution of equation (1) exists
which satisfies the conditions u (ar0) = u0, u' (x0) = u'o.

§ 3. From this result we can deduce at once that since u = 0 is a
solution of equation (1), it is the only one which satisfies the
conditions u (x0) = 0,u' (XQ) = 0. In other words, a particular integral
of equation (1), which is not identically zero, cannot vanish at the
same time as its first derivative at any value x0 of x.

We are now in a position to use the reasoning employed in
discussing differential equations to show that a particular integral
v (x), not identically zero, has only a finite number of zeros in a
given interval (a, b).

If we assume that u (x) has an infinite number of zeros in (a, b),
this set of zeros has at least one limiting point, c say. Now if
u(c) =j=0, then, from continuity conditions, there exists a neighbour-
hood of c in which w(a;)=}=0, which is impossible. Again, if «(c) = 0,
then we have just shown that vf (c)=j=O.
But

u(c + h) = h [u' (c) + a/],

where w -> 0 as h -> 0, so that there exists a neighbourhood of c in
which c is the only zero of u (x), which is impossible. Thus there
can be only a finite number of zeros of u (x) in (a, b).
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If tt] (x) and u% (x) a r e linearly independent solutions of equa-
tion (1), it is clear that the determinant

is not identically zero. It will now be shown that D (xo)=^O, for
any value x0 of x in the interval under consideration. We know
that one and only one solution of equation (1) exists which satisfies
the conditions

u (z0) = u0, u'(x0) = u'Q:

so that the equations
u0 =au\ (x0) +/S«o (x0),
u'0 = a u\{x0) + fi u', (x0)

determine a and ft exactly. In order that this may be possible, we
must have D (x0) =j= 0.

The usual proof of Sturm's Theorem may now be given, and
thus we have the result:

/ / u\ (a;) and u\ (x) are linearly independent solutions of equation
(1), then between each two consecutive zeros of «1; there lies one and only
one zero of %•

§ 4. To illustrate the method of solution and the properties of
the zeros, we shall consider briefly the equation

o

The solution of this equation is

u = a cos x + p sin x + A/8 sin 3#,

where A is determined by the equation
fir/2

A = [ (a + /?) cos x + (/3 — a) sin x + A/8 sin 3a: + 3A/8 cos 3x] dx,
J o

giving

A = 24/3/13.

The general solution of the equation is therefore

u = a cos x -\- ft [sin x + 3/13 sin 3a;],
where cos x and sin x + 3/13 sin 3a; are the linearly independent
solutions, whose zeros (n + \) n and nn alternate.
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