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The Thickness of the Cartesian Product of
Two Graphs

Yichao Chen and Xuluo Yin

Abstract. _e thickness of a graphG is theminimumnumber of planar subgraphswhose union isG.
A t-minimal graph is a graph of thickness t that contains no proper subgraph of thickness t. In this
paper, upper and lower bounds are obtained for the thickness, t(G ◻ H), of the Cartesian product
of two graphs G and H, in terms of the thickness t(G) and t(H). Furthermore, the thickness of the
Cartesian product of two planar graphs and of a t-minimal graph and a planar graph are determined.
By using a new planar decomposition of the complete bipartite graph K4k ,4k , the thickness of the
Cartesian product of two complete bipartite graphs Kn ,n and Kn ,n is also given for n /= 4k + 1.

1 Introduction

In this paper all graphs are simple. A graph G is o�en denoted by G = (V , E), where
V(G) is the vertex set and E(G) is the edge set. _eorder and the size ofG are denoted
by ν(G) and ε(G), respectively. A complete graph is a graph in which any two vertices
are adjacent. A complete graph on n vertices is denoted by Kn . A complete bipartite
graph is a graph whose vertex set can be partitioned into 2 parts such that every edge
has its ends in diòerent parts and every two vertices in diòerent parts are adjacent.
We use Kp1 ,p2 to denote a complete bipartite graph in which the i-th part contains p i
(1 ≤ i ≤ 2) vertices.
A graph is said to be planar if it can be drawn on the plane in such a way that

its edges intersect only at their endpoints. Such a drawing is called a plane graph. A
planar graph is maximal planar if it is not possible to add an edge such that the graph
is still planar. _e thickness t(G) of a graph G is the minimum number of planar
spanning subgraphs into which G can be decomposed. _e thickness of a graph was
inaugurated by W. T. Tutte [15] in 1963. As a topological invariant of a graph, it plays
an important role in graph drawing and VLSI circuit design [1]. In [11], Mansûeld
proved that determining the thickness of a graph is NP-complete. _us, it is very
diõcult to get the exact value of thickness for arbitrary graphs. _e only types of
graphs whose thickness have been obtained are complete graphs [2, 4, 16], complete
bipartite graphs [5], and hypercubes [10]. _e reader is referred to [6, 12, 18] for more
background and results about the thickness problem.

_e cartesian product of graphs G and H is a graph G ◻ H with vertex set V(G ◻
H) = V(G) × V(H), that is the set {(g , h) ∣ g ∈ G , h ∈ H}. _e edge set of G ◻ H
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consists of all pairs (g , h)(g′ , h′) of vertices with g g′ ∈ E(G) and h = h′ or hh′ ∈
E(H) and g = g′ . For any h ∈ V(H), we denote byGh the subgraph ofG◻H induced
by V(G) × {h}; it is isomorphic to G and called a G-ûber. _e H-ûber gH is deûned
analogously, where g ∈ G. _e Cartesian product is a very important graph operation;
we refer the reader to [9] for topics on Cartesian product of graphs.

In the past forty years, the topological invariants of the Cartesian product of two
graphs, e.g., genus (see [13,17] etc.) crossing number (see [9] etc.) were o�en discussed
in topological graph theory. In this paper, the thickness of the Cartesian product of
arbitrary two graphs is studied. _is paper is organized as follows. In Section 2, the
upper and lower bounds for t(G ◻ H) are given. When m or s is even, the value of
t(Km ,n ◻ Ks ,t) is determined when n and t are large enough. _e thickness of the
Cartesian product of two planar graphs is given in Section 3. In Section 4, the thick-
ness for the Cartesian product of a t-minimal graph and a planar graph is presented.
In the ûnal section, we show that t(Kn ,n ◻ Kn ,n) = ⌈ n+1

2 ⌉, for n /= 4k + 1.

2 Bounds for the Thickness of the Cartesian Product of Two Graphs

_e union G ∪H of two graph G and H is the graph (V(G) ∪V(H), E(G) ∪ E(H)).
_e intersection G1 ∩ G2 of G1 and G2 is deûned analogously. _e join G + H of two
vertex disjoint graphs G and H is obtained from G ∪ H by joining every vertex of G
to every vertex of H. In [19], Yang and Chen presented an explicit formula for the
thickness of the Cartesian product Kn ◻ Pm , for m ≥ 2 and n /= 6p + 3. We have the
following general bounds for the thickness of the Cartesian product of two arbitrary
graphs.

_eorem 2.1 _e thickness of G ◻H satisûes the inequality

Max{ t(G), t(H)} ≤ t(G ◻H) ≤ t(G) + t(H).

Proof Since both G and H are subgraphs of G ◻H, we have that

t(G ◻H) ≥ Max{ t(G), t(H)} .

Suppose that V(G) = {v1 , v2 , . . . , vn} and V(H) = {u1 , u2 , . . . , um}. From the
deûnition of the Cartesian product of two graphs, the graph G ◻ H contains ν(G)
number of disjoint copies gH ofH and ν(H) number of disjoint copiesGh ofG, where
g ∈ V(G) and h ∈ V(H). Let {Gu i

1 ,G
u i
2 , . . . ,G

u i
t(G)} be a planar decomposition of

Gu i , for i = 1, 2, . . . ,m, and let {v jH1, v jH2 , . . . ,v jHt(H)} be a planar decomposition
of v jH, for j = 1, 2, . . . , n. Deûne G j = Gu1

j ∪Gu2
j ∪ ⋅ ⋅ ⋅ ∪Gum

j , for j = 1, 2, . . . , t(G) and
H i = v1H i ∪ v2H i ∪ ⋅ ⋅ ⋅ ∪ vnH i , for i = 1, 2, . . . , t(H).

It is easy to see that G j , for j = 1, 2, . . . , t(G), and H i , for i = 1, 2, . . . , t(H), are
planar subgraphs. _us, {G1 ,G2 , . . . ,Gt(G) ,H1 ,H2 , . . . ,Ht(H)} is a planar decompo-
sition of G ◻H, which shows that t(G ◻H) ≤ t(G) + t(H). Summarizing the above,
the result follows.

Let G1 and G2 be subgraphs of a graph G. If G = G1 ∪ G2 and G1 ∩ G2 = {v} (a
vertex of G), then we say that G is the vertex amalgamation of G1 and G2 at vertex v,
denoted G = G1 ∨v G2.
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Lemma 2.2 ([19]) If G is the vertex amalgamation of G1 and G2, t(G1) = n1 and
t(G2) = n2, then t(G) = max{n1 , n2}.

Let G1 be a graph with a vertex v of degree k and NG(v) = {u1 , u2 , . . . , uk}. Let G2
be a graphwith a vertex v of degree k andNH(v) = {w1 ,w2 , . . . ,wk}. Delete the vertex
v fromG1 andG2. _en construct a graphG by adding k edges u1w1 , u2w2 , . . . , ukwk .
_e edges u1w1 , u2w2 , . . . , ukwk are called the product edges and the resulting graph
G is called a dot product of G1 and G2, denoted by G = G1 ○G2 , as in Figure 1.

uk

u2

u1

...
...

...
...

G1 ∨v G2 G1 ◦G2

wk

w2

w1

uk

u2

u1

wk

w2

w1

v

Figure 1: _e dot product G1 ○G2 of G1 and G2 .

In [19], Yang and Chen obtained the thickness for Kn ◻ K2 . By generalizing the
techniques in [19], we have the following result.

Lemma 2.3 Let the graph G + v denote the join of the graph G and a vertex v; then
the thickness of G ◻ K2 equals t(G + v).

Proof Suppose that V(G) = {v1 , v2 , . . . , vn} and V(K2) = {x , y}. Given a planar
decomposition of G ◻ K2, by contracting the subgraph from Gx (or G y) to a single
vertex in every planar subgraph, we can obtain a planar decomposition of G + v , i.e.,
t(G + v) ≤ t(G ◻ K2).

Let G′ be a disjoint copy of G and V(G′) = {v′1 , v′2 , . . . , v′n}. Let H = G + v ∨v
G′ + v . From Lemma 2.2, we infer that t(H) = t(G + v). We now construct a planar
decomposition of G ◻ K2 from H. Let {G1 ,G2 , . . . ,Gn} be a planar decomposition
of G + v. For 1 ≤ i ≤ n, let G′

i be a copy of G i such that G i ∩ G′

i = {v} and G i − v
is isomorphic to G′

i − v . _us, {G′

1 ,G′

2 , . . . ,G′

n} is a planar decomposition of G′ + v .
Deûning H i = G i ○ G′

i , for i = 1, 2, . . . , n, it is easy to see that {H1 ,H2 , . . . ,Hn} is a
planar decomposition of G ◻ K2 . _us, we have t(G + v) ≥ t(G ◻ K2). Combining
the above, we have the desired result.

_eorem 2.4 If ε(G) ≥ 1 and ε(H) ≥ 1, the thickness of G◻H satisûes the inequality
t(G ◻H) ≥ Max{t(G + v), t(H + v)}.

Proof Since both G ◻ K2 and H ◻ K2 are subgraphs of G ◻ H, from Lemma 2.3,
t(G ◻H) ≥ Max{t(G + v), t(H + v)}. _e result follows.
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_e bounds in _eorem 2.1 are best possible if one of the graphs G andH is empty,
since the empty graph has thickness 0. _e following theorem gives another example
to show that upper bound of _eorem 2.1 is sharp.

_eorem 2.5 Suppose that at least one of the numbers m and s is even. _en

t(Km ,n ◻ Ks ,t) = t(Km ,n) + t(Ks ,t) = ⌈ m + s
2

⌉

if n ≥ 2m2 −m and t ≥ 2s2 − s.

Proof From the deûnition of Cartesian product of two graphs, we have

ν(Km ,n ◻ Ks ,t) = (m + n)(s + t),
ε(Km ,n ◻ Ks ,t) = mn(s + t) + (m + n)st.

From Euler’s formula, the maximum planar subgraph of Km ,n ◻Ks ,t contains at most
2(m + n)(s + t) − 4 edges. _us, we have

t(Km ,n ◻ Ks ,t) ≥ ⌈ mn(s + t) + (m + n)st
2(m + n)(s + t) − 4

⌉(2.1)

= ⌈ m + s
2

− m2(s + t) − 2m
2(m + n)(s + t) − 4

− s2(m + n) − 2s
2(m + n)(s + t) − 4

⌉ .

_e following two cases are considered.
(a) Both m and s are even. If n ≥ m2 −m and t ≥ s2 − s, then

m2(s + t) − 2m
2(m + n)(s + t) − 4

+ s2(m + n) − 2s
2(m + n)(s + t) − 4

< 1.

Combining the inequality (2.1), we have

t(Km ,n ◻ Ks ,t) ≥ ⌈ m + s
2

⌉ .

From [5,_eorem 1], t(Kp1 ,p2) = ⌈ p1
2 ⌉when p1 is even and p2 > 1

2 (p1 −2)2, or
p1 is odd and p2 > (p1 − 1)(p1 − 2). By _eorem 2.1,

t(Km ,n ◻ Ks ,t) ≤ t(Km ,n) + t(Ks ,t)
_us,

⌈ m + s
2

⌉ ≤ t(Km ,n ◻ Ks ,t) ≤ ⌈ m
2
⌉ + ⌈ s

2
⌉ ,

where n ≥ m2 −m and t ≥ s2 − s. Since both m and s are even, we have ⌈m+s
2 ⌉ =

⌈m
2 ⌉ + ⌈ s

2 ⌉, and the result follows.
(b) One of m and s is even and the other is odd. In this case, if n ≥ 2m2 − m and

t ≥ 2s2 − s, then
m2(s + t) − 2m

2(m + n)(s + t) − 4
+ s2(m + n) − 2s

2(m + n)(s + t) − 4
< 1

2
.

Combining inequality (2.1), we have

t(Km ,n ◻ Ks ,t) ≥ ⌈ m + s
2

⌉ .
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In a similar way to case (a) above, we have t(Km ,n◻Ks ,t) = ⌈m+s
2 ⌉, for n ≥ 2m2−m

and t ≥ 2s2 − s.
Summarizing the above, the proof is completed.

3 The Thickness of the Cartesian Product of Two Planar Graphs

In this section, we determine the thickness of the Cartesian product of two planar
graphs. We will provide more examples to show that the bounds in _eorem 2.1 are
sharp. In [3], Behzad and Mahmoodian proved the follows two theorems.

_eorem 3.1 ([3]) Let G and H be connected graphs on at least three vertices. _en
G◻H is planar if only if both G and H are paths or one is a path and the other is a cycle.

_eorem 3.2 ([3]) Let G be an outerplanar graph. _en G ◻K2 is planar if only if G
is outerplanar.

We have the following theorem.

_eorem 3.3 Let G and H be two planar graphs. _e thickness of G ◻H is

t(G ◻H) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if both two graphs are paths,
1 if one is a path and the other is a cycle,
1 if one is outerplanar and the other is K2 ,
2 otherwise.

Proof From _eorem 2.1, we have 1 ≤ t(G ◻ H) ≤ 2. However, from _eorems 3.1
and 3.2, we infer that the only planar Cartesian products are Pm ◻ Pn , Pm ◻ Cn and
G ◻ K2 , where G is outerplanar. _e result follows.

4 The Thickness of the Cartesian Product of a t−minimal Graph
and a Planar Graph

A graph G is said to be t-minimal if all of its proper subgraphs have thickness less
than t. _is concept was introduced by Tutte [15] in 1963. In [15], Tutte also proved
that every graph G with thickness t > k, contains a k-minimal subgraph of G . In [8],
Hobbs and Grossman proved that there exists a t-minimal graph with connectivity 2,
for every t ≥ 2. In [14], Širáň and Horák gave an explicit construction of an inûnite
number of t-minimal graphs with connectivity 2, edge-connectivity t, and minimum
degree t. In [19], Yang and Chen determined the thickness for the Cartesian product
of a t-minimal graph and an outerplanar graph. We have the following result.

_eorem 4.1 Let G be t-minimal graph and H be a planar graph; then t(G ◻ H) =
t(G).

Proof Suppose that V(G) = {v1 , v2 , . . . , vm} and V(H) = {u1 , u2 , . . . , un}. For
1 ≤ i ≤ n, let the vertex set of the G-ûber graph Gu i be G × {u i}. For 1 ≤ j ≤ m, let
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the vertex set of the H-ûber v jH be {v j} × H. Suppose that {G1, i ,G2, i , . . . ,Gt , i} be
a planar decomposition of Gu i , for i = 1, 2, . . . , n. Since Gu i is a t−minimal graph,
without the loss of generality, we suppose that the graph Gt , i contains only one edge
(v1 , u i)(v2 , u i), for i = 1, 2, . . . , n, and where v1v2 is an edge of G . In the following
discussion, we will construct a planar subgraph decomposition ofG◻H with t planar
subgraphs G1 ,G2 , . . . ,Gt .
Deûning

G1 = G1,1 ∪G1,2 ∪ ⋅ ⋅ ⋅ ∪G1,n ∪ v1H,
G j = G j,1 ∪G j,2 ∪ ⋅ ⋅ ⋅ ∪G j,n ,
Gt = Gt ,1 ∪Gt ,2 ∪ ⋅ ⋅ ⋅ ∪Gt ,n ∪ v2H ∪ ⋅ ⋅ ⋅ ∪ vmH

for 2 ≤ j ≤ t − 1. Now let us show that {G1 ,G2 , . . . ,Gt} is a planar decomposition of
G ◻H.

(a) LetV(v1H) = {(v1 , u i)∣i = 1, 2, . . . , n}. Since the graphsG1,1 ,G1,2 , . . . ,G1,n are
disjoint andV(v1H)∩V(G1, i) = {(v1 , u i)}, we amalgamate the two planar graphsG1, i
and v1H at the vertex (v1 , u i) for i = 1, 2, . . . , n, and denote the resulting graph by G1 .
Since the amalgamation of two planar graphs is still planar, G1 is planar.

(b) Since the graphs G j,1 ,G j,2 , . . . ,G j,n are mutually disjoint planar graphs, this
implies that the graph G j is planar, for j = 2, 3, . . . , t − 1.

(c) Recall that the planar subgraphs v2H,v3H, . . . , vmH are mutually disjoint and
each graph Gt , i contains only one edge {(v1 , u i)(v2 , u i)}, for i = 1, 2, . . . , n. Since
V(Gt , i) ∩ V(v2H) = {(v2 , u i)}, for each i(1 ≤ i ≤ n) we amalgamate the graph Gt , i
and v2H at the vertex (v2 , u i), the union Gt ,1 ∪ Gt ,2 ∪ ⋅ ⋅ ⋅ ∪ Gt ,n ∪ v2H is still a planar
graph. From the fact thatV(Gt , i)∩V(v jH) = ∅, for i = 1, 2, . . . , n, and j = 3, 4, . . . ,m,
we infer that the graphs

Gt ,1 ∪Gt ,2 ∪ ⋅ ⋅ ⋅ ∪Gt ,n ∪ v2H, v3H, v4H, . . . , vmH

are mutually disjoint, thus the graph Gt is planar.
Summarizing the above, a planar decomposition of G ◻ H with t subgraphs

G1 ,G2 , . . . Gt is constructed, which shows t(G ◻ H) ≤ t. On the other hand,
G ⊂ G ◻H, so we have t(G ◻H) ≥ t. _e theorem follows.

5 The Thickness of Kn,n ◻ Kn,n

In [5], Beineke, Harary, andMoon constructed a planar decomposition of Km ,n when
m is even. By using the planar decomposition, they determined the thickness for
Km ,n for most values of m and n. Up to now, determining the thickness of bipartite
graph Km ,n is still open, when m and n are odd and there exists an integer k satisfying
n = ⌊ 2k(m−2)

(m−2k) ⌋. _e theorem of Beineke, Harary, and Moon implies the following
result.

_eorem 5.1 ([5]) _e thickness of the complete bipartite graph Kn ,n is

t(Kn ,n) = ⌈ n + 2
4

⌉ .
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_eorem 5.2 _e thickness of the Cartesian product of two complete bipartite graphs
Kn ,n and Kn ,n satisûes the inequality

t(Kn ,n ◻ Kn ,n) ≥ ⌈ n + 1
2

⌉ .

Proof It is easy to see that ν(Kn ,n ◻Kn ,n) = 4n2 and ε(Kn ,n ◻Kn ,n) = 4n3. Suppose
H be a maximum planar subgraph of Kn ,n ◻ Kn ,n . Since the graph Kn ,n ◻ Kn ,n does
not contain triangles, from Euler’s Formula, we have ∣E(H)∣ ≤ 8n2 − 4.
For n ≥ 1, we have 0 ≤ 1

2 −
n

4n2−2 <
1
2 , thus

t(Kn ,n ◻ Kn ,n) ≥ ⌈ 4n3

8n2 − 4
⌉ = ⌈ n + 1

2
+ 1

2
− n

4n2 − 2
⌉ = ⌈ n + 1

2
⌉ .

5.1 A Planar Decomposition for K4k ,4k

Let the 2-partite sets of K4k ,4k beU = {u1 , u2 , . . . , u4k} andV = {v1 , v2 , . . . , v4k}. We
will construct a new planar decomposition for the complete bipartite graph K4k ,4k .
Let {G1 ,G2 , . . . ,Gk+1} be the planar decomposition of K4k ,4k . _e construction has
three steps.

v4i−3

v4i−1

v4i−2

v4i

u4i−1 u4i u4i−3 u4i−2

Figure 2: _e graph H i .

(a) We ûrst construct a subgraph H i of G i , for i = 1, 2, . . . , k. _e vertex set
V(H i) of H i , for i = 1, 2, . . . , k, consists of the vertices u4i−3 , u4i−2 , u4i−1 , u4i ,
v4i−3 , v4i−2 , v4i−1, and v4i . _e edge set E(H i) consists of two 4-cycles and four
independent edges between them. _e two 4-cycles are u4i−3v4i−2u4iv4i−1u4i−3
and v4i−3u4i−2v4iu4i−1v4i−3 . _e four independent edges are v4i−3u4i , v4i−2u4i−1 ,
v4iu4i−3, and v4i−1u4i−2 , as shown in Figure 2.

(b) Add 2k − 2 parallel edges between v4i−3 and v4i−1 in H i and insert 2k − 2 new
vertices

k
⋃
r=1
r/=i

{u4r−3 , u4r−2}
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on these 2k − 2 parallel edges respectively. In a similar way, we do this for the vertex
pairs {v4i−2 , v4i}, {u4i−3 , u4i−2} and {u4i−1u4i} in H i , and insert 6k − 6 vertices

k
⋃
r=1
r/=i

{u4r−1 , u4r},
k
⋃
r=1
r/=i

{v4r−2 , v4r},
k
⋃
r=1
r/=i

{v4r−3 , v4r−1}

on these 6k − 6 parallel edges, respectively. _e resulting graph is denoted by G i , for
i = 1, 2, . . . , k.

(c) _e graph Gk+1 consists of 4k independent edges u1v1 , u2v2 , . . . , u4kv4k ; i.e.,
Gk+1 = ⋃4k

i=1{u iv i}.

v1

v3

v2

v4

u3 u4 u1 u2

v5

v7

v6

v8

u5
u6

u7
u8

v5

v7

v6

v8

u7 u8 u5 u6

v1

v3

v2

v4

u1
u2

u3 u4

u1 u2 u3 u4 u5 u6 u7 u8

v1 v2 v3 v4 v5 v6 v7 v8

Figure 3: A planar decomposition of K8,8 .

Now a planar decomposition {G1 ,G2 , . . . ,Gk+1} of K4k ,4k is completed. By using
the construction above, a planar decomposition of the graph K8,8 is shown in Figure
3.

Remark 5.3 For 1 ≤ i ≤ 4k, we ûrst connect u4k+1 and v4k+1 to v i and u i by new
edges u4k+1v i and v4k+1u i in Gk+1 , respectively, then connect u4k+1 to v4k+1 by a new
edge u4k+1v4k+1 . _us, the planar decomposition of K4k ,4k above implies a planar
decomposition of K4k+1,4k+1 .

5.2 The Thickness of Kn ,n ◻ Kn ,n

In this subsection, we will determine the thickness of Kn ,n ◻ Kn ,n , for n /= 4k + 1. Let
the 2-partite sets of Kn ,n be U = {u1 , u2 , . . . , un} and V = {v1 , v2 , . . . , vn}. Let the
G-ûbers of Kn ,n ◻ Kn ,n be Ku i

n ,n and Kv i
n ,n , for i = 1, 2, . . . , n, and let the H-ûbers of

Kn ,n ◻ Kn ,n be u jKn ,n and v jKn ,n , for j = 1, 2, . . . , n.
We ûrst construct a planar decomposition for K4k ,4k . From the construction of

Subsection 5.1 for K4k ,4k , for 1 ≤ i ≤ n, we suppose that {G1, i ,G2, i , . . . ,Gk , i ,Gk+1, i}
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and {G′

1, i ,G′

2, i , . . . ,G′

k , i ,G
′

k+1, i} are the planar decompositions of Ku i
n ,n and Kv i

n ,n , re-
spectively. Similarly for 1 ≤ j ≤ n, let

{G1, j ,G2, j , . . . ,Gk , j ,Gk+1, j} and {G′1, j ,G′2, j , . . . ,G
′

k , j ,G′
k+1, j}

be the planar decompositions for u jKn ,n and v jKn ,n respectively.
Deûning

G j =
n
⋃
i=1

G j, i ∪
n
⋃
i=1

G′

j, i , Gk+ j =
n
⋃
i=1

G j, i ∪
n
⋃
i=1

G′ j, i ,

G2k+1 =
n
⋃
i=1

Gk+1, i ∪
n
⋃
i=1

G′

k+1, i ∪
n
⋃
i=1

Gk+1, i ∪
n
⋃
i=1

G′
k+1, i

for 1 ≤ j ≤ k. Let us show that {G1 ,G2 , . . . ,G2k+1} is a planar decomposition of
Kn ,n ◻ Kn ,n . _ere are three cases.
● _e graph G j is planar, for 1 ≤ j ≤ k, because the planar graphs G j,1 ,G j,2 , . . . ,

G j,n ,G′

j,1 ,G′

j,2 , . . . ,G′

j,n are mutually disjoint.
● From the planar graphs G j,1 ,G j,2 , . . . ,G j,n ,G′ j,1 ,G′ j,2 , . . . ,G′ j,n are mutually dis-

joint, the graph G j+k is also planar, for 1 ≤ j ≤ k.
● Recall that

Gk+1, i =
4k
⋃
j=1

(u j , u i)(v j , u i), G′

k+1, i =
4k
⋃
j=1

(u j , v i)(v j , v i),

Gk+1, i =
4k
⋃
j=1

(u i , u j)(u i , v j), G′
k+1, i =

4k
⋃
j=1

(v i , u j)(v i , v j),

for i = 1, 2, . . . , 4k. In this case the graphG2k+1 is the union of 16k2 disjoint 4-cycles
(u i , u j)(v i , u j)(v i , v j)(u i , v j)(u i , u j), for i , j = 1, 2, . . . , 4k, thus G2k+1 is planar.

Summarizing the above, K4k ,4k ◻ K4k ,4k can be decomposed into 2k + 1 planar sub-
graphs G1 ,G2 , . . . ,G2k+1 , which shows that
(5.1) t(K4k ,4k ◻ K4k ,4k) ≤ 2k + 1.
By using the procedure above, a planar decomposition

G1 =
4
⋃
i=1

G1, i ∪
4
⋃
i=1

G′

1, i , G2 =
4
⋃
i=1

G1, i ∪
4
⋃
i=1

G′1, i ,

G3 =
4
⋃
i=1

Gk+1, i ∪
4
⋃
i=1

G′

k+1, i ∪
4
⋃
i=1

Gk+1, i ∪
4
⋃
i=1

G′
k+1, i

of the graph K4,4 ◻ K4,4 is shown in Figures 4, 5, and 6.
Wenow turn to construction of a planar decomposition forK4k−1,4k−1 ◻ K4k−1,4k−1.

For 1 ≤ i ≤ n, let
{H1, i ,H2, i , . . . ,Hk , i ,Hk+1, i} and {H′

1, i ,H′

2, i , . . . ,H′

k , i ,H
′

k+1, i}
be the planar decompositions of Ku i

n ,n and Kv i
n ,n , respectively. For 1 ≤ i ≤ n, let

{H1, i ,H2, i , . . . ,Hk , i ,Hk+1, i} and {H′

1, i ,H
′

2, i , . . . ,H′
k , i ,H′

k+1, i}
be the planar decompositions of u iKn ,n and v iKn ,n respectively. From [7], we know
K4k−1,4k−1 is a k + 1-minimal graph, hence we suppose that each of the graphs
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(v1, ui)

(v3, ui)

(v2, ui)

(v4, ui)

(u3, ui) (u4, ui) (u1, ui) (u2, ui)

(v1, vi)

(v3, vi)

(v2, vi)

(v4, vi)

(u3, vi) (u4, vi) (u1, vi) (u2, vi)

Figure 4: _e graphs G1, i and G′1, i for i = 1, 2, 3, 4.

(ui, v1)

(ui, v3)

(ui, v2)

(ui, v4)

(ui, u3) (ui, u4) (ui, u1) (ui, u2)

(vi, v1)

(vi, v3)

(vi, v2)

(vi, v4)

(vi, u3) (vi, u4) (vi, u1) (vi, u2)

Figure 5: _e graphs G1, i and G′1, i , for i = 1, 2, 3, 4.

(u1,u1) (u1,v1) (u1,u2) (u1,v2) (u1,u3) (u1,v3) (u1,u4) (u1,v4) (u2,u1) (u2,v1) (u2,u2) (u2,v2) (u2,u3) (u2,v3) (u2,u4) (u2,v4)

(v1,u1) (v1,v1) (v1,u2) (v1,v2) (v1,u3) (v1,v3) (v1,u4) (v1,v4) (v2,u1) (v2,v1) (v2,u2) (v2,v2) (v2,u3) (v2,v3) (v2,u4) (v2,v4)

(u3,u1) (u3,v1) (u3,u2) (u3,v2) (u3,u3) (u3,v3) (u3,u4) (u3,v4) (u4,u1) (u4,v1) (u4,u2) (u4,v2) (u4,u3) (u4,v3) (u4,u4) (u4,v4)

(v3,u1) (v3,v1) (v3,u2) (v3,v2) (v3,u3) (v3,v3) (v3,u4) (v3,v4) (v4,u1) (v4,v1) (v4,u2) (v4,v2) (v4,u3) (v4,v3) (v4,u4) (v4,v4)

Figure 6: _e graph G3 .

Hk+1, i ,H′

k+1, i ,Hk+1, i , andH′
k+1, i contains only one edge. In the following discussion,

we suppose the subscripts u i , v i in Ku i
n ,n , Kv i

n ,n , u iKn ,n and v iKn ,n are taken modulo n
for i > n.
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First, we deûne

Hk+1, i = {(u i+1 , u i)(v i+2 , u i)}, H′

k+1, i = {(u i+1 , v i)(v i+2 , v i)},
Hk+1, i = {(u i , u i)(u i , v i)}, H′

k+1, i = {(v i , un+i−1)(v i , vn+i−1)}.

Suppose that

(u i , u i)(v i+1 , u i) ∈ H1, i , (u i , v i)(v i+1 , v i) ∈ H′

1, i ,

(u i , un+i−1)(u i , vn+i−1) ∈ H1, i (v i , un+i−2)(v i , vn+i−2) ∈ H′1, i .

We further deûne

G̃1 =
n
⋃
i=1

H1, i ∪
n
⋃
i=1

H′

1, i ∪
n
⋃
i=1

Hk+1, i ∪
n
⋃
i=1

H′
k+1, i ,

G̃ j =
n
⋃
i=1

H j, i ∪
n
⋃
i=1

H′

j, i ,

G̃k+1 =
n
⋃
i=1

H1, i ∪
n
⋃
i=1

H′1, i ∪
n
⋃
i=1

Hk+1, i ∪
n
⋃
i=1

Hk+1, i ,

G̃k+ j =
n
⋃
i=1

H j, i ∪
n
⋃
i=1

H′ j, i ,

for j = 2, 3, . . . , k. We now show that G̃ j is planar, for j = 1, 2, . . . , 2k. _ere are four
cases.
● For 1 ≤ i ≤ n, let Ĥ i = H1, i ∪H′

1, i ∪Hk+1, i ∪H′
k+1, i+1 . Suppose that the edge (u i , u i)

(v i+1 , u i) lies in the outer face of the planar embedding of H1, i . Recall that H′

1, i is a
copy of H1, i ; hence we assume that the edge (u i , v i)(v i+1 , v i) lies in the outer face
of the planar embedding ofH′

1, i . We join H1, i andH′

1, i by two edges (u i , u i)(u i , v i)
and (v i+1 , u i)(v i+1 , v i); the resulting graph is a planar embedding of Ĥ i ; i.e., Ĥ i is
a planar graph. Since the planar graphs Ĥ1 , Ĥ2 , . . . , Ĥn are mutually disjoint and
G̃1 = ⋃n

i=1 Ĥ i , the graph G̃1 is planar.
● Let Ĥ′ i = H1, i ∪H′1, i+1 ∪Hk+1,n+i−1 ∪H′

k+1,n+i−1 . With a similar discussion to the
case above, we have that Ĥ′ i is a planar graph. Since G̃k+1 = ⋃n

i=1 H̃′ i and the graphs
Ĥ′1 , Ĥ′2 , . . . , Ĥ′n are mutually disjoint, we have that the graph G̃k+1 is planar.

● From the planar graphs H j,1 ,H j,2 , . . . ,H j,n ,H′

j,1 ,H′

j,2 , . . . ,H′

j,n are mutually dis-
joint, we have that the graph G̃ j is planar, for j = 2, 3, . . . , k.

● For 2 ≤ j ≤ k, the graph G̃ j+k is also planar, because the planar graphs

H j,1 ,H j,2 , . . . ,H j,n ,H′ j,1 ,H′ j,2 , . . . ,H′ j,n

are mutually disjoint.
Summarizing the above, we obtain a planar decomposition {G̃1 , G̃2 , . . . , G̃2k} of

K4k−1,4k−1 ◻ K4k−1,4k−1 with 2k planar subgraphs. _us,

(5.2) t(K4k−1,4k−1 ◻ K4k−1,4k−1) ≤ 2k.

By using the procedure above, a planar decomposition {G̃1 , G̃2} of K3,3 ◻ K3,3 is
shown in Figures 7 and 8.
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(u1,u1)

(u1,v1)

(v3,v1)

(v3,u1)

(v2,u1)

(v2,v1)

(u3,v1)

(u3,u1)

(v1,u1)

(v1,v1)

(u2,v1)

(u2,u1)
(u2,u2)

(u2,v2)

(v1,v2)

(v1,u2)

(v3,u2)

(v3,v2)

(u1,v2)

(u1,u2)

(v2,u2)

(v2,v2)

(u3,v2)

(u3,u2)
(u3,u3)

(u3,v3)

(v2,v3)

(v2,u3)

(v1,u3)

(v1,v3)

(u2,v3)

(u2,u3)

(v3,u3)

(v3,v3)

(u1,v3)

(u1,u3)

Figure 7: _e graph G̃1 .

(u1,u3)

(v2,u3)

(v2,v1)

(u1,v1)

(u1,v3)

(v2,v3)

(v2,u2)

(u1,u2)

(u1,v2)

(v2,v2)

(v2,u1)

(u1,u1)
(u2,u1)

(v3,u1)

(v3,v2)

(u2,v2)

(u2,v1)

(v3,v1)

(v3,u3)

(u2,u3)

(u2,v3)

(v3,v3)

(v3,u2)

(u2,u2)
(u3,u2)

(v1,u2)

(v1,v3)

(u3,v3)

(u3,v2)

(v1,v2)

(v1,u1)

(u3,u1)

(u3,v1)

(v1,v1)

(v1,u3)

(u3,u3)

Figure 8: _e graph G̃2 .

_eorem 5.4 _e thickness of the Cartesian product of two complete bipartite graphs
Kn ,n and Kn ,n is

t(Kn ,n ◻ Kn ,n) = ⌈ n + 1
2

⌉ (n /= 4k + 1).

Proof From_eorem5.2 and inequality (5.1), we obtain t(K4k ,4k ◻ K4k ,4k) = 2k + 1.
From _eorem 5.2 and inequality (5.2), we obtain t(K4k−1,4k−1 ◻ K4k−1,4k−1) = 2k.
Because K4k−2,4k−2 ◻ K4k−2,4k−2 is a subgraph of K4k−1,4k−1 ◻ K4k−1,4k−1, combin-
ing _eorem 5.2, we know that t(K4k−2,4k−2 ◻ K4k−2,4k−2) = 2k. Summarizing the
discussion above, the theorem follows.

Remark 5.5 _ough we fail to determine the value of t(K4k+1,4k+1 ◻ K4k+1,4k+1),
from _eorems 2.1, 5.1, and 5.2, we infer that

2k + 1 ≤ t(K4k+1,4k+1 ◻ K4k+1,4k+1) ≤ 2k + 2.
For k = 1, we will construct a planar decomposition of K5,5 ◻ K5,5 and show that
t(K5,5 ◻ K5,5) = 3. Suppose the 2-partite sets of K5,5 are U = {u1 , u2 , . . . , u5} and
V = {v1 , v2 , . . . , v5}. For 1 ≤ i , j ≤ 5, let a i j = (u i , u j), a′i j = (u i , v j), b i j = (v i , u j),
and b′i j = (v i , v j); then a planar decomposition {B1 , B2 , B3} of K5,5 ◻ K5,5 is shown
in Appendices A, B, and C.
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We pose the following problem for possible further study.

Problem 5.6 Find an explicit formula for t(Km ,n ◻ Ks ,t), for any positive integers
m, n, s, and t.

A The Graph B1

a′55 a55 b55 b′55

a52 b12 b′12 a′52

b52 a12 a′12 b′52

a42 a′42

b42 b′42

b15 b′11 a′11 a15

b′15 b11 a11 a′15

b14 a14

b′14 a′14

b′51 a′21 a21 b51

a′51 b′21 b21 a51

b′31 b31

a′31 a31

b′25 b22 a22 a′25

b25 b22 a′22 a25

b′23 a′23

b23 a23

a53 b13 b′13 a′53

b53 a13 a′13 b′53

a43 a′43

b43 b′43

b45 b′41 a′41 a45

b′45 b41 a41 a′45

b44 a44

b′44 a′44

b′54 a′24 a24 b54

a′54 b′24 b24 a54

b′34 b34

a′34 a34

b′35 b32 a32 a′35

b35 b32 a′32 a35

b′33 a′33

b33 a33
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B The Graph B2

a31 a41
b51 a11 a21

a51 a′55 a54 a24 a14
b54 a44 a34

b11

b31

b21

b41

b14

b34

b24

b44

b13 b33
a53 b23 b43 b53

a23

a13

a43

a33

a′31 a′41
b′51 a′11 a′21

a′51 a55 a′54a
′
24 a′14

b′54 a′44 a′34

b′11

b′31

b′21

b′41

b′14

b′34

b′24

b′44

b′13 b′33
a′53 b′23 b′43 b′53

a′23

a′13

a′43

a′33

b12 b32
a52 b22 b42

b52 b55 b45 b25 b35 b15

a22

a12

a42

a32

a25

a15

a45

a35

b′12 b′32
a′52 b′22 b′42

b′52

a′22

a′12

a′42

a′32

a′25
b′55 a′15 a′45 a′35

b′15

b′35

b′25

b′45
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C The Graph B3

b′11 b′13
b15

b′12 b′14 b′15

b12

b11

b14

b13

b′41 b′43
b45

b′42 b′44
b′45 a55 b35b32 b31

b′35 b34 b33

b42

b41

b44

b43

b′31

b′33

b′32

b′34

a′55

a23 a24
a′25 a21 a22 a25

a′21

a′23

a′22

a′24

b′55b
′
54 b′52

b55
b′53 b′51

b52

b51

b54

b53

b23 b24
b′25 b21 b22 b25

b′21

b′23

b′22

b′24

a53 a54 a51 a52

a′51

a′53

a′52

a′54

a′11 a′13
a15

a′12 a′14 a′15 a′45 a′44 a′42
a45

a′43 a′41

a12

a11

a14

a13

a42

a41

a44

a43

a33 a34
a′35 a31 a32 a35

a′31

a′33

a′32

a′34
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