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Abstract. Let G be afinite p-group, where p is an odd prime number, H a subgroup
of Gand 6 e Irr(H) anirreducible character of H. Assume also that |G : H| = p>. Then
the character 6¢ of G induced by 6 is either a multiple of an irreducible character of
G, or has at least 1%1 distinct irreducible constituents.
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1. Introduction. Let G be a finite group. Denote by Irr(G) the set of irreducible
complex characters of G. Throughout this work, we use the notation of [2]. In addition,
we are going to denote by Lin(G) = {1 € Irr(G) | A(1) = 1} the set of linear characters.

Let I be a character of G. Then I" can be expressed as a nontrivial integral linear
combination of distinct irreducible characters of G. Denote by n(I") the number of
distinct irreducible constituents of T.

Let G be a finite p-group, where p is a prime number, H be a subgroup of G and
0 e Irr(H). Denote by ¢ the character of G induced by 6. If H is a normal subgroup,
then either n(#°) = 1, i.e. ¢ is a multiple of an irreducible, or n(8%) > p, i.e. 0 is
an integral linear combination of at least p distinct irreducible characters of G (see
Lemma 2.2). In Theorem 4.15, it is shown that given any prime p > 2 and any integer
[ > 2, there exist a p-group G, a subgroup H of Gwith |G : H| = p’ and 6 € Irr(H) such
that n(9%) = ’%l Therefore Lemma 2.2 does not remain true without the hypothesis
that H is normal in G. But given any prime p > 2 and any integer n > 0, do there exist
a p-group G, a subgroup H of G and 6 € Irr(H) with n(9%) = n? If we also required, in
addition, that |G: H| =p?>and | <n < ’%1, then the answer is no. More specifically:

THEOREM A. Let G be a finite p-group, where p is an odd prime number, H be a
subgroup of G and 6 € Irr(H). Assume also that |G : H| = p*. Then either n(6°) =1 or
(0% = L5+

For a fixed prime p > 3, Theorem A implies that there exists a “gap” among the
possible values that n(6¢) can take for any finite p-group G, any subgroup H of G
with |G : H| = p?, and any character @ € Irr(H). But, do there exist a p-group G, a
subgroup H of Gand 6 € Irr(H) with | < n(6%) < 24! and |G : H| > p*? The answer
is yes. In Theorem 4.23, given any prime p such that 3 divides p — 1, we provide a
p-group G, a subgroup H of G with |G : H| = p* and a character A € Lin(H) such that
n(r%) = ‘%2 Does it mean then that, for a fixed prime p > 5, there are no “gaps”
among the possible values that (8%) can take for any finite p-group G, any subgroup
H of G with |G : H| = p?, and any character 6 € Irr(H)? We do not know the answer
of that question.
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2. Preliminaries.

LEMMA 2.1. Let G be a finite group, N be a normal subgroup of G and 6 € Irr(N).
Let Gy be the stabilizer of 0 in G. Then n(09) = n(0%).

Proof. Observe that all the irreducible constituents of #% lie above 6. Thus by
Clifford theory it follows that 5(9°) = n(6%). a

LEMMA 2.2. Let G be a finite p-group, H be a normal subgroup of G and 6 € Irr(H).
Then either n(0°) = 1 or n(0%) > p.

Proof. In[1, Lemma 4.1], it is proved that, if in addition to the previous hypothesis,
6 is G-invariant, then n(6%) =1 or n(#“) > p. Thus by induction on |G : H| and
Lemma 2.1, the result follows. O

Let G be a group, H be a subgroup of G and 6 € Irr(H). Denote by Irr(G | 0) =
{x € Irr(G) | [xx, 0] # 0} the set of irreducible characters of G lying above 6.

LEMMA 2.3. Let G be a finite p-group, H be a subgroup of G and 6 € Irr(H). Let Z,
be a subgroup of the center Z(G) of G such that |HZ,| : H| = p. Then 0 extends to HZ
and

e =Y 70

velrr(HZ,10)

In particular, if v € Irr(HZ, | 0) we have that

n©°) = n(°) + (@ —1). (2.4)

Proof. Observe that 6 extends to HZ since Z; < Z(G) and |HZ, : H| = p. Thus
there are exactly p characters in Irr(HZ; | 0). Let o € Lin(H N Z}) be the unique
character such that 6ynz, = 6(1)a. Since (077%1) 7, = (Ounz,)*', we have that (977%1);, =
0(1) X, cLin(z, | V- Therefore

forany v, u € Irr(HZ, | 6), if v # p then vz, # pz,. (2.5

Observe that for any x € Irr(G) and any B € Lin(Z)), if [xz,, 8] # 0 then xz, =
x(1)B. By (2.5), it follows thatif x, € Irr(G), v, u € Irr(HZ, | 0),v # u,[xz,,v] #0
and[yz,, 1] # 0, then x # v. Thus theirreducible constituents of ¢ lying over distinct
extensions of 0 in HZ; are distinct characters. It follows that

O =Y n09.

velrr(HZ,10)

Since n(v%) > 1 for any v € Irr(HZ,), (2.4) follows. O

3. Proof of Theorem A. Let G and 6 € Irr(H) be a minimal counterexample of
the statement of Theorem A with respect to the order |G| of G. That is we are assuming
that

p+1

|G : H| =p* 1 <y < 3

3.1)
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and for any finite p-group Gy, any subgroup H, of G, and any 6, € Irr(H,), if
Gy : Hy| = p? and |Gy| < |G| then either n(6;%") = 1 or n(6,%) > &1 (3.2)

Set L = L/coreg(Ker(#)) for any subgroup L of G such that L > coreg(Ker(9)).
Observe that H > coreg(Ker(9)) and |G : H| = |G : H|. Observe also that we can
regard 6 as a character of H/coreg(Ker(6)) and n(6¢) = n(0°).

By working with the group G/coreg(Ker(6)) and (3.2), we may assume that

coreg(Ker(9)) = 1.

Thus L = L for all subgroups L of G.
Denote by Z the center Z(G) of G.

CLAM 3.3. Z < H. Let v € Lin(Z) be the unique character of Z lying below 6. Then
v € Lin(Z) is a faithful character of Z and Z is a cyclic group.

Proof. Suppose Z is not contained in H. Let Z; < Z be such that |HZ, : H| = p.
Lemma 2.3 implies that (%) > p, a contradiction with (3.1). Thus Z < H. Since
Z = H implies that A is normal, by Lemma 2.2 we must have that Z < H.

Since Ker(#) N Z is normal in G and coreg(Ker(6)) = 1, it follows that 6 is a
faithful character of Z. Therefore v € Lin(Z) is faithful and Z is cyclic. L]

CLAIM 3.4. coreg(H) = Z.

Proof. Assume that there exists a normal subgroup N of G such that N < H and
N/Z is a chief factor of G. Fix 8 € Irr(N) such that [0y, 8] # 0. Since v € Lin(Z) is a
faithful character, we can check that Cg(N) is a normal subgroup of G of index p. Also
the stabilizer Gg of B in G is Cg(N).

If HN Cg(N) < H, by Clifford theory we have that there exists some « € Irr(H N
Cg(N)) such that o = 6. Thus n(0°) = n(a®). Since |C(N)| < |G| and [C(N) : HN
CG(N)| = p?, by (3.2) we have that n(@®™) = 1 or n(@C™) > 231, By Lemma 2.1
we have then that n(a®) = 1 or (%) > 2! and therefore n(6%) = 1 or n(9%) > 21,
a contradiction with (3.1). We may assume then that H < Cg(N).

Since |Cg(N) : H| = p, H is normal in Cg(N) and thus by Lemma 2.2 we have
that either n(@¢s™) = 1 or n(@*Y)) = p. By Lemma 2.1 and the previous statement,
we have that 7(09) = 1 or n(69) > p, a contradiction with (3.1). Thus such N cannot
exist and so coreg(H) = Z. ]

Let Y/Z be a chief factor of G. By the previous claim, it follows that HY > H.
Since Y/Z has order p, we have that |[HY : H| = p. Since |G : H| = p?, it follows that
|G : HY| = p and thus HY is a normal subgroup of G.

Set C = Cq(Y).

CLAM 3.5. |G : C| = p. Also, given any p € Lin(Y) which is an extension of the
faithful character v € Lin(Z), we have that the stabilizer G, of p in G is C.

Proof- Since v € Lin(Z) is a faithful character of the center Z of G and Y/Z is a
chief factor of the p-group G, it follows that the index of the centralizer C of Y in G
is p. U

CrLAaM 3.6. HY/Z is an elementary abelian p-group. Also, we may assume that
Z(HY)> Yandthus C=HY.
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Proof. Since |HY : H| =p, we have that (HY) = ([h, k]| h,ke HY) < H.
Observe that (H Y) isnormalin G since H Y isnormal in G and (H Y)' is a characteristic
subgroup of H'Y. Since coreg(H) = Z, it follows then that (HY) < Z. Also, since Y/Z
isof order pand Z < H, (HY) = (k” | k € HY) is a characteristic subgroup of the
normal subgroup HY of G and it is contained in H. It follows then that (HY) < Z
and thus HY/Z is an elementary abelian p-group.

Observe that the center Z(HY) of HY contains Z. If Z(HY) = Z, then there
is a unique character in Irr(H) lying above v since HY/Z is an elementary abelian
p-group and v € Lin(Z) is a faithful character, and so n(8%) = 1 or (%) = p, that is
a contradiction with (3.1) and therefore it must follow that Z(H Y) > Z. By replacing
Y for a normal subgroup of G contained in Z(H Y) if necessary, we may assume then
that Y < Z(HY)and thus C4(Y) = HY. O

CLAIM 3.7. The character 6 € Irr(H) extends to HY = C. Thus 6€ is the sum of the
p distinct extensions of 6.

Proof. Since |[HY : H| = p, we have that either 87Y € Irr(H Y) or 7Y is the sum
of the p distinct extensions of 6.

Suppose that 8¢ e Irr(C). Let i € Lin(Y) be the unique character of Y such that
[(0%Y)y, u] # 0. Since G, = C, then 8¢ € Irr(G). Thus 67Y is the sum of the p distinct
extensions of . O

Let o1, ..., pp € Irr(H Y) be the p distinct extensions of 6. Since |G : HY| = p, by
Lemma 2.2 we must have that

,ol-G € Irr(G). (3.9)

Since Z(C) > Y, there is a unique character pu; € Lin(Y) lying below p;.
CLAIM 3.9. Z(C) =Y.

Proof. Clearly Y < Z(C). Assume that Y < Z(C). Let X < Z(C) such that X/ Y
is a chief factor of Gand Y < X < HY = C. Observe that such X exists since HY
is normal in G, and X is abelian since X < Z(C). We are going to conclude that
v € Lin(Z) is not a faithful character, which is a contradiction with Claim 3.3.

STEP 3.10. The subgroup [ X, G] generates Y = [X, G]Z modulo Z.

Proof. Since Y and X are normal subgroups of G with Y < X and | X/ Y| = p, the
chief factor X/ Y of the p-group G is centralized by G. So [X, G] < Y. Suppose that
[X,G]Z < Y. Since | Y/Z| = p, we must have [X, G] < Z = Z(G). So commutation in
G induces a bilinear map

d:(xZ,gCs(X)) — [x, g]

of X/Z x G/Cg(X) into the cyclic group Z. This map d is non-singular on the right
since [X, g] = lifand only if g € Cg(X). It is non-singular on the left since [x, G] = 1 if
and only if x € Z. Because | X : Z| = p?> and d is a non-singular bilinear form of X/Z x
G/Cs(X) into the cyclic group Z, we have |G : Cg(X)| = p>. Since A € Lin(X | v)
extends the faithful character v € Irr(Z), this implies that Cg(X) = G,. Thus |G :
G| = p*. Since X < Z(C), C fixes ». But then |G : C| = p, C < G, and |G : G;| = p*.
This contradiction proves the claim. ]
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Given any character p € Irr(C), since X < Z(C), we have that ﬁ px € Lin(X) is
the unique character lying below p.

STEP 3.11. There exist some A € Lin(X), someg € G\Candi e {2,...,p — 1} such
that [(0)x, 2] # 0, [(6)x, 18] # 0 and [(6)x, 2€] # 0.

Proof. Since 1 < 5(6%) < ‘%1 and p¢, ... , py are the irreducible constituents
of 99, there exist at least 3 distinct j, k,/ € {1,2,...,p} such that ,ojG =p¢ = pf.
Since X is normal in G, by Clifford Theory it follows that ﬁ(,oj)x, pk+1)(pk) x and
ﬁ(,o;) x are G-conjugates. Set A = pi/(pj) x. Then there exists some g € G\ C such that
A8 = ﬁ(,ok)x. Since X < Z(C) and |G : C| = p, there exists some i € {2,...,p — 1}
such that ()¢ = ﬁ(pl)x. O

Fixg € G\Casin 3.11.Since X/ Yiscyclicoforderp, HN X > Z,andHNY =Z
we may choose

x € Hsuchthat X = (x, Y). (3.12)

Since X < Z(C), we have [X, C] = 1. Suppose that [x,g'] € Z. Then x centralizes
both g~! and C modulo Z. Hence xZ € Z(G/Z), which is false by Step 3.10. Hence
[x,g7']€ Y\Z and so

Y = Z(y) is generated over Z by y =[x, g ']. (3.13)
Since [Y, G] < Z we have that z=[y,g"!]e Z. If z=1, then G = C (g) centralizes
Y = Z (y), since C centralizes Y < X because X < Z(C), and G centralizes Z. This is
impossible because Z = Z(G) < Y. Thus

z = [y, g"']is a non-trivial element of Z. (3.14)

By (3.13) we have y = [x,g"']=x"'x¢"'. By (3.14) we have z=[y,g"'] =y 1)¢.
Finally 2 =zsincez e Z. Since X = Z (x, y) is abelian since X < Z(C), it follows

that

2 =z ¢ =yd and x¢ = xp/z0), (3.15)
for any integerj =0, 1, ..., p — 1. Because g” € C centralizes X since X < Z(C), we
have

7 =1 andypz(lz)) =1.

Since p > 2 is odd by hypothesis, p divides (5) = 22" and z®) = 1. Therefore » =

2’ = 1. It follows that )/, z/ and 20 depend only on the residue of i modulo p, for any
integer i > 0. such that X = Y (x) and x € C. Thus by (3.14) we have that

z0) # | for any integer 0 < j < p. (3.16)

Let A € Lin(X)and i€ {2,...,p — 1} be as in Step 3.11. Set @ = ﬁGmeL We

can check that @ € Lin(X N H). Since (0€)y = (Onnx)¥, we have that A, A¢ and A¢' are
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extensions of @ . Since x € (H N X), by the previous statement we have that
A(x) = A2(x) = A% (). (3.17)
By (3.15) we have that
K0 = 1) = 1) = AOM).
Thus by (3.17), we get

ry)=1. (3.18)
Therefore

A8 (x) = A(x¢ )
= 2(x'z0)) by (3.15)
= 2RO (20)
= )L(x)k(z(é)),

where the last line follows from (3.18). By (3.17), we have that )\(z@) =1.But Ay =
v € Lin(Z) is a faithful character and () # 1 by (3.16). This is a contradiction and
the claim is proved. O

Since Z(HY) = Y, we have that Z(H) = Z. Thus HY is a class 2 group with
HY/Z elementary abelian. Therefore 6 € Irr(H) is the only character in H lying above
v € Lin(Z). Hence an irreducible character of G lies over 0 if and only if it lies over v.
Since Irr(G | v) haseither 1 element or at least p by Lemma 2.2, it follows that n(v?) = 1
or n(v9) > p, and therefore either n(8%) = 1 or n(#°) > p. But 1 < (%) < 241, and
that is our final contradiction and thus the statement of Theorem A holds.

4. Examples. In this section, we will prove that the group G, the subgroup H
and the character A € Lin(H) that satisfy Hypothesis 4.1 have the properties that
|G : H| =p? and n(L%) = ’%1 And then, given any integer n > 2, we construct a
group G wi%h a subgroup H and a character A € Lin(H) such that |G : H| = p" and
n(A%) = 5.

HYPOTHESIS 4.1. Fix an odd prime p. Let G be the semidirect product of a cyclic
group C of order p and an elementary abelian group A of order p3. Assume C = (c) and
A = (a) x ([a, c]) x ([a, ¢, ]), 4.2)

for some a in A. Observe that the subgroup {e} x {e} x ([a, c, c]) is the center of the group
G. Set Z = {e} x {e} x {[a, ¢, c]).

Fix w a primitive complex p-th root of unity. Let o € Lin({a)), B € Lin({[a, c]))
and y € Lin({[a, ¢, c])) be the unique linear characters such that a(a) = B([a, c]) =
y(a, ¢, c]) = o.

Set

H = (a) x {e} x ([a,c,c]) and ) =1,y x 1{) x y € Lin(H). 4.3)
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Observe that H is a subgroup of A of index p. Thus |G : H| = p*. Observe also that
A extends to A and there are exactly p distinct extensions of A to A, namely

Irr(A | M) ={lyy xB" xy|r=0,1,...,p—1}. (4.4)
Set A,~ = l(a) X /3" X Y.

LEMMA 4.5. Assume Hypothesis 4.1. Given any integer i with 0 < i, we have that

i(i—1)

(Ar)c" — T x ‘BrJri X .

Proof. Observe that (A,) =o' x f'/B x y =a” x B+ x y since a¢ = d[a, ] and
[a, c]° = [a, ][a, ¢, ¢]. Assume by induction that

(A = Q™ X B %y (4.6)
Then

(A" = (A"

_ (ar"+T x B % y)c by (4.6)
o

—1
Y gl

XY,

where the last line follows since a“ = d[a, ¢] and [a, c]° = [a, c][a, ¢, ¢]. We can check
that rn 4 "0 4 r 4 = r(n + 1) + @@ Thus

(Ar)c’”“ — D D 5y,

and the result follows by induction. ]

LEMMA 4.7. Assume Hypothesis 4.1. Let r be an integer such that 0 < r < p. Then
(A,)¢ is an extension of A if and only if either j = 0modp or j = (1 — 2r)modp. If
i=(1—2r)modp then (A,)" = Ai_,.

Proof. By Lemma 4.5, we have that (A,)¢ is an extension of A if and only
if o+ = lg. Since « is a faithful linear character of a cyclic group of order
D, ot = 1y if and only if (ir + @) = Omod p. Observe that (ir + @) =
Omod p if and only if either i = Omod p or (r + %) = O0mod p. Therefore (A,) is an
extension of X if and only if either i = Omod p or i = (1 — 2r) mod p.

If i = (1 — 2r)mod p, then (A,)¢ = A_, by Lemma 4.5. O

LEMMA 4.8. Assume Hypothesis 4.1. Then 1 < n(,%) < 1%1

Proof. By the previous lemma, it follows that the stabilizer of A, is a proper
subgroup of G. Since |G : A| = p and A, € Lin(A), we have that

(A,)° € Irr(G) for any integer r. 4.9)

Since p > 2, it follows that there exist two distinct integers k,/ such that
0 <k, <pandk # (1 — 2))mod p. Thus by Lemma 4.7 we have that Ay and A; arenot
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G-conjugates. It follows that (Az)? # (A;)¢. Since (Ax)¢ # (A)Y, (ALY, (A)° €
Irr(G) and both A, and A, lie above A, we have that n(1%) > 2.

Observe that r = (1 — r)mod p if and only if 2r = 1 mod p. Thus given any r such
that 0 < r < p and 2r # 1 mod p, by Lemma 4.7 we have that A,, A{_, € Irr(4) are two
distinct G-conjugate extensions of A. Thus n(1%) < 1%1. Il

PROPOSITION 4.10. Assume Hypothesis 4.1. Then |G : H| = p* and n(A%) = 231

Proof. By Lemma 4.8, we have that 1 < n(0%) < ’%1. Thus by Theorem A, it
follows that n(a%) = 231 O

Denote by 1y the principal character of H.

LEMMA 4.11. Let p be a prime number, G be a p-group and H be a subgroup of G
with |G : H| = p". Then n((15)°) > n(p — 1) + 1.

Proof. We are going to use a double induction, first on |G| and then on n, where
|G : H| = p". Using induction on the order of G, without lost of generality we may
assume that coreg(H) = 1.

Let Z; be a subgroup of the center Z(G) of G with |Z;| = p. Observethat H N Z| =
1 since coreg(H) = 1. Thus |HZ; : H| = p. By Lemma 2.3, we have that

(1)) = n((1a2)%) + (p — D). (4.12)
Since |G : HZ,| = p"~!, by induction on n we have that
n((1gz)%) = (n=Dp— D+ 1.

The result follows by (4.12) and the previous statement. O

LEMMA 4.13. Let G be a p-group and I" be a character of Go. Assume that [T, 16,] =
0. Let N = Gy x Gy x --- x Gy be the direct product of p-copies of Gy. Set

A=T x1g, x - x Ig,.
Let C = {(c) be a cyclic group of order p. Observe that C acts on N by
c:(ng,mi, ... np_1) = (Mp—1,h9,...,Mp_2) 4.14)

Sforany (ng,ny, ... ,n,_1) € N.

Let G be the direct product of N and C, i.e, G is the wreath product of Gy and C.
Then n(A%) = n(I").

Proof. Let § € Irr(N) be a constituent of A. Observe that § is of the form y x
lg, X -+ x 1g,, for some y € Irr(Gy) such that [y, I'] # 0. Observe that y # 1g, since
[T, 1,] = 0. By (4.14), we have that § is G-invariant if and only if y = 1g,. Thus

89 € Irr(G) for any constituent § € Irr(N) of A. Observe that the G-orbit of § € Irr(N)
is

{y x1g, x -~ x 1g,, lgy x ¥y x--- x1g,, -+, 1g, X ... x Ig, x y}.
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Thus if 8, € € Irr(N) are two distinct constituents of A, then 89 # €. It follows that
n(A%) = (). O

THEOREM 4.15. Let p be an odd prime number and n > 2 be an integer. There exist a
; , . _ Gy _ ptl!
p-group G, a subgroup H of G and » € Lin(H), such that |G : H| = p" and n(A%) = 55—

Proof. If n = 2, then the result follows by Lemma 4.10. By induction on n, we may
assume that the result holds for any integer n such thatn — 1 > 2.
Fix a p-group Gy, a subgroup Hy < Gy and Ay € Lin(H)) such that:

_p+1

|Gy : Hy| = p"~" and n(kg") 5

(4.16)

Let N and G be as in Lemma 4.13. Let
H:H()XG()X...XG().

Then H is a subgroup of N and |G : H| = |G : N||N : Hy| = p|Gy : Hy| = p".
SetA = Ap x 1g, X ... x 1g,. Observe that » € Lin(H) since 19 € Lin(Hp). We can
check that 7(A") = n(AS"). Thus by (4.16) we have that n(.") = ’%1

By Lemma 4.11, we have that Ay # 1g,. Thus [kg(’, 1g,] = 0. By Lemma 4.13 we
have then that n(A") = n(1%) and the result is proved. d

LEMMA 4.17. Let p be a prime number such that p — 1 is divisible by 3. Fix r €
{1,...,p—1}. Thenthe set {r(1 —*)modp |i=0,... ,p — l}hasl%2 elements. Also,
givenany e € {r(1 —¥)modp | i=1,...,p — 1}, there are exactly 3 distinct solutions

in{l,...,p— 1} of the equation e = r(1 — x*) mod p

Proof. Let u be a generator of the units of the field F of p elements. Then U = (u'%l)
is a subgroup of order 3 and any element in U is a solution of x* = 1 mod p. Thus
given any integer n # r, if the equation x*> = r — nmod p has a solution, then it has

exactly 3 distinct solutions in F. Therefore the set {r(1 —i*)modp |i=1,...,p— 1)}
has 25 distinct elements. Since 0° = 0, the set {(r(1 — #)modp | i =0, ... ,p — 1} has
1%1 +1= ’%2 elements. O

HyYPOTHESIS 4.18. Let p > 5 be a prime number such that p — 1 is divisible by 3. Let
F be a field of p elements and F[x] be the truncated polynomial algebra generated over
F by some x satisfying only x* = 0. So F[x] is a vector space of dimension 4 over F with
1, x, x*> and x> as a basis. Let m be an isomorphism of the additive group F[x]* of F[x]
onto a multiplicative group M. Then M is an elementary abelian multiplicative group of
order p* with m(1), m(x), m(x*), m(x*) as generators. Let U be the subgroup of the unit
group F[x]* generated by 1 + x and 1 + x*. The general element of U is

I+ x)A+x%Y =1+ix+ <(;> +j) X+ ((;) + ij) X (4.19)

for arbitrary integers i, j, since x* = 0. Because p > 3, it follows that U is elementary
abelian of order p*, and that (4.19) holds for any i, j € F. The group U acts naturally on
the group M, so that

m(y)" = m(yu) (4.20)
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forall y e Flx] and u € U. Let G be the semidirect product of M and U. Then G is a
multiplicative group with order p°.
Let H be the subgroup

H = (m(1), m(x), m(x*)) = {m(ay + a\x + a3x’) | ap, ay, a3 € F}. 4.21)

Fix a primitive p-th root of unity w. Fix an integer r > 0 such that 3r = —1 mod p.
Thusr = _T] mod p and r # 0mod p. Let A € Lin(H) be the character given by

Am(ay + a1x + azx?)) = @rotrata (4.22)

THEOREM 4.23. Assume Hypothesis 4.18. Then
p—1
3
2W=x0+3) (4.29)
i=1

where y; € Irr(G) and y; # x; if i #jfori,j=0,1,..., ’%1. Thus n(A) = ‘%2

Proof. The center Z(G) of G is the subgroup (m(x?)) of order p. Let y be the faithful
linear character of Z(G) sending m(x*) to . Then Lin(M | y) consists of the p? linear
characters iy, 1, 5, for fo, f1, /> € F given by

o i fo(mMag + arx + axx? + asx’)) = @owtiarthate (4.25)

for all ag, ay, ay, a3 € F. If e, i, j € F, then (4.19) and (4.20) imply that the conjugate

035
character u(el(;f g) 9740 11e.0.0 sends

m(l) = 0.0 (m (1 +ix + ((;) _|_j> 2+ ((;) n z’j) x3>> — ot
m(X) = fLe,0,0 (m (x +ix® + ((;) +j> x3)) = oM

m(x?) = fe0,0(m(x* + ix*)) = o,

m(x*) b fie00(m(x?)) = w.
It follows that

(1+x)’i(l+x2)’f _ )
He0,0 = Kot (O rij (54 (4.26)

for any e, i,j € F. If we fix e, then the above equation implies that distinct pairs
(i, j) € F x F yield distinct conjugates ,usaf g)ﬂ“”z)ﬂ e Lin(M | y). Hence the G-orbit
L, of j1.0,0 has exactly p?> members. Furthermore the above equation implies that the
only member of that orbit with the form pr00 is pte0,0. We conclude that the orbits
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L., for e € F, are p distinct G-orbits in Lin(M | y), each with size p®. Since the normal
subgroup M of index p? is exactly the stabilizer of . 0,0 € Lin(M) in G, the induced

characters
Xe = Mgo,o are precisely the distinct members of Irr(G | y). (4.27)
Then
WM =" pyrpand 2= "l . (4.28)
feF feF

Cram 4.29. Letie{l,... ,p—1},e=r(1 — ) andj=r— (é) Then
¥ —i xZ —j
ullod U = . (4.30)
Proof. For a fixed i, we have

()=o) -(0)

_ ii—DiE-2) _i(i—l)
_e+—6 +z<r 3 )

Y O T VT (D
~\6 2 2 2 3

3
—; .
ET+emodp, since r = 5! mod p

i3

= TI +r(1 —*)modp, since e = r(1 — )
1
=r— i3<r+ §) = rmodp,

where the last line follows since r = _Tl mod p. Thus (e + (g) + 1, (;) +Jj,i)=(r,r,i)in
F x F x F and so by (4.26) we get (4.30). ]

By the previous claim and (4.28), we have that

p—1
G G
A= Z“r(l—ﬁ),o,O'
i=0
By Lemma 4.17, we have then

20 = Mf,;o,o +3 Z l/«go,o~ (4.31)
ee{r(1-A)i=1,... p—1}

By (4.27) we have that ug, , € Irr(G) and puf o # 1y if e # f mod p. Thus by Lem-
ma 4.17 and (4.31), we conclude that n(1%) = ’# and the proof is complete. ]
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