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Abstract. Let G be a finite p-group, where p is an odd prime number, H a subgroup
of G and θ ∈ Irr(H) an irreducible character of H. Assume also that |G : H| = p2. Then
the character θG of G induced by θ is either a multiple of an irreducible character of
G, or has at least p + 1

2 distinct irreducible constituents.
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1. Introduction. Let G be a finite group. Denote by Irr(G) the set of irreducible
complex characters of G. Throughout this work, we use the notation of [2]. In addition,
we are going to denote by Lin(G) = {λ ∈ Irr(G) | λ(1) = 1} the set of linear characters.

Let � be a character of G. Then � can be expressed as a nontrivial integral linear
combination of distinct irreducible characters of G. Denote by η(�) the number of
distinct irreducible constituents of �.

Let G be a finite p-group, where p is a prime number, H be a subgroup of G and
θ ∈ Irr(H). Denote by θG the character of G induced by θ . If H is a normal subgroup,
then either η(θG) = 1, i.e. θG is a multiple of an irreducible, or η(θG) ≥ p, i.e. θG is
an integral linear combination of at least p distinct irreducible characters of G (see
Lemma 2.2). In Theorem 4.15, it is shown that given any prime p > 2 and any integer
l ≥ 2, there exist a p-group G, a subgroup H of G with |G : H| = pl and θ ∈ Irr(H) such
that η(θG) = p + 1

2 . Therefore Lemma 2.2 does not remain true without the hypothesis
that H is normal in G. But given any prime p > 2 and any integer n > 0, do there exist
a p-group G, a subgroup H of G and θ ∈ Irr(H) with η(θG) = n? If we also required, in
addition, that |G : H| = p2 and 1 < n <

p + 1
2 , then the answer is no. More specifically:

THEOREM A. Let G be a finite p-group, where p is an odd prime number, H be a
subgroup of G and θ ∈ Irr(H). Assume also that |G : H| = p2. Then either η(θG) = 1 or
η(θG) ≥ p + 1

2 .

For a fixed prime p > 3, Theorem A implies that there exists a “gap” among the
possible values that η(θG) can take for any finite p-group G, any subgroup H of G
with |G : H| = p2, and any character θ ∈ Irr(H). But, do there exist a p-group G, a
subgroup H of G and θ ∈ Irr(H) with 1 < η(θG) <

p + 1
2 and |G : H| > p2? The answer

is yes. In Theorem 4.23, given any prime p such that 3 divides p − 1, we provide a
p-group G, a subgroup H of G with |G : H| = p3 and a character λ ∈ Lin(H) such that
η(λG) = p + 2

3 . Does it mean then that, for a fixed prime p > 5, there are no “gaps”
among the possible values that η(θG) can take for any finite p-group G, any subgroup
H of G with |G : H| = p3, and any character θ ∈ Irr(H)? We do not know the answer
of that question.
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2. Preliminaries.

LEMMA 2.1. Let G be a finite group, N be a normal subgroup of G and θ ∈ Irr(N).
Let Gθ be the stabilizer of θ in G. Then η(θG) = η(θGθ ).

Proof. Observe that all the irreducible constituents of θGθ lie above θ . Thus by
Clifford theory it follows that η(θG) = η(θGθ ). �

LEMMA 2.2. Let G be a finite p-group, H be a normal subgroup of G and θ ∈ Irr(H).
Then either η(θG) = 1 or η(θG) ≥ p.

Proof. In [1, Lemma 4.1], it is proved that, if in addition to the previous hypothesis,
θ is G-invariant, then η(θG) = 1 or η(θG) ≥ p. Thus by induction on |G : H| and
Lemma 2.1, the result follows. �

Let G be a group, H be a subgroup of G and θ ∈ Irr(H). Denote by Irr(G | θ ) =
{χ ∈ Irr(G) | [χH, θ ] �= 0} the set of irreducible characters of G lying above θ .

LEMMA 2.3. Let G be a finite p-group, H be a subgroup of G and θ ∈ Irr(H). Let Z1

be a subgroup of the center Z(G) of G such that |HZ1 : H| = p. Then θ extends to HZ1

and

η(θG) =
∑

ν∈Irr(HZ1|θ)

η(νG).

In particular, if ν ∈ Irr(HZ1 | θ ) we have that

η(θG) ≥ η(νG) + (p − 1). (2.4)

Proof. Observe that θ extends to HZ1 since Z1 ≤ Z(G) and |HZ1 : H| = p. Thus
there are exactly p characters in Irr(HZ1 | θ ). Let α ∈ Lin(H ∩ Z1) be the unique
character such that θH∩Z1 = θ (1)α. Since (θHZ1 )Z1 = (θH∩Z1 )Z1 , we have that (θHZ1 )Z1 =
θ (1)

∑
ν∈Lin(Z1|α) ν. Therefore

for any ν, µ ∈ Irr(HZ1 | θ ), if ν �= µ then νZ1 �= µZ1 . (2.5)

Observe that for any χ ∈ Irr(G) and any β ∈ Lin(Z1), if [χZ1 , β] �= 0 then χZ1 =
χ (1)β. By (2.5), it follows that if χ,ψ ∈ Irr(G), ν, µ ∈ Irr(HZ1 | θ ), ν �= µ, [χZ1 , ν] �= 0
and [ψZ1 , µ] �= 0, then χ �= ψ . Thus the irreducible constituents of θG lying over distinct
extensions of θ in HZ1 are distinct characters. It follows that

η(θG) =
∑

ν∈Irr(HZ1|θ)

η(νG).

Since η(νG) ≥ 1 for any ν ∈ Irr(HZ1), (2.4) follows. �

3. Proof of Theorem A. Let G and θ ∈ Irr(H) be a minimal counterexample of
the statement of Theorem A with respect to the order |G| of G. That is we are assuming
that

|G : H| = p2, 1 < η(θG) <
p + 1

2
(3.1)
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and for any finite p-group G1, any subgroup H1 of G1, and any θ1 ∈ Irr(H1), if

|G1 : H1| = p2 and |G1| < |G| then either η(θ1
G1 ) = 1 or η(θ1

G1 ) ≥ p + 1
2 . (3.2)

Set L = L/coreG(Ker(θ )) for any subgroup L of G such that L ≥ coreG(Ker(θ )).
Observe that H ≥ coreG(Ker(θ )) and |G : H| = |G : H|. Observe also that we can
regard θ as a character of H/coreG(Ker(θ )) and η(θG) = η(θG).

By working with the group G/coreG(Ker(θ )) and (3.2), we may assume that

coreG(Ker(θ )) = 1.

Thus L = L for all subgroups L of G.
Denote by Z the center Z(G) of G.

CLAIM 3.3. Z < H. Let ν ∈ Lin(Z) be the unique character of Z lying below θ . Then
ν ∈ Lin(Z) is a faithful character of Z and Z is a cyclic group.

Proof. Suppose Z is not contained in H. Let Z1 ≤ Z be such that |HZ1 : H| = p.
Lemma 2.3 implies that η(θG) ≥ p, a contradiction with (3.1). Thus Z ≤ H. Since
Z = H implies that H is normal, by Lemma 2.2 we must have that Z < H.

Since Ker(θ ) ∩ Z is normal in G and coreG(Ker(θ )) = 1, it follows that θZ is a
faithful character of Z. Therefore ν ∈ Lin(Z) is faithful and Z is cyclic. �

CLAIM 3.4. coreG(H) = Z.

Proof. Assume that there exists a normal subgroup N of G such that N ≤ H and
N/Z is a chief factor of G. Fix β ∈ Irr(N) such that [θN, β] �= 0. Since ν ∈ Lin(Z) is a
faithful character, we can check that CG(N) is a normal subgroup of G of index p. Also
the stabilizer Gβ of β in G is CG(N).

If H ∩ CG(N) < H, by Clifford theory we have that there exists some α ∈ Irr(H ∩
CG(N)) such that αH = θ . Thus η(θG) = η(αG). Since |CG(N)| < |G| and |CG(N) : H ∩
CG(N)| = p2, by (3.2) we have that η(αCG(N)) = 1 or η(αCG(N)) ≥ p + 1

2 . By Lemma 2.1
we have then that η(αG) = 1 or η(αG) ≥ p + 1

2 and therefore η(θG) = 1 or η(θG) ≥ p + 1
2 ,

a contradiction with (3.1). We may assume then that H < CG(N).
Since |CG(N) : H| = p, H is normal in CG(N) and thus by Lemma 2.2 we have

that either η(θCG(N)) = 1 or η(θCG(N)) = p. By Lemma 2.1 and the previous statement,
we have that η(θG) = 1 or η(θG) ≥ p, a contradiction with (3.1). Thus such N cannot
exist and so coreG(H) = Z. �

Let Y/Z be a chief factor of G. By the previous claim, it follows that HY > H.
Since Y/Z has order p, we have that |HY : H| = p. Since |G : H| = p2, it follows that
|G : HY | = p and thus HY is a normal subgroup of G.

Set C = CG(Y ).

CLAIM 3.5. |G : C| = p. Also, given any µ ∈ Lin(Y ) which is an extension of the
faithful character ν ∈ Lin(Z), we have that the stabilizer Gµ of µ in G is C.

Proof. Since ν ∈ Lin(Z) is a faithful character of the center Z of G and Y/Z is a
chief factor of the p-group G, it follows that the index of the centralizer C of Y in G
is p. �

CLAIM 3.6. HY/Z is an elementary abelian p-group. Also, we may assume that
Z(HY ) ≥ Y and thus C = HY.
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Proof. Since |HY : H| = p, we have that (HY )′ = 〈[h, k] | h, k ∈ HY〉 ≤ H.
Observe that (HY )′ is normal in G since HY is normal in G and (HY )′ is a characteristic
subgroup of HY . Since coreG(H) = Z, it follows then that (HY )′ ≤ Z. Also, since Y/Z
is of order p and Z < H, (HY )p = 〈kp | k ∈ HY〉 is a characteristic subgroup of the
normal subgroup HY of G and it is contained in H. It follows then that (HY )p ≤ Z
and thus HY/Z is an elementary abelian p-group.

Observe that the center Z(HY ) of HY contains Z. If Z(HY ) = Z, then there
is a unique character in Irr(H) lying above ν since HY/Z is an elementary abelian
p-group and ν ∈ Lin(Z) is a faithful character, and so η(θG) = 1 or η(θG) = p, that is
a contradiction with (3.1) and therefore it must follow that Z(HY ) > Z. By replacing
Y for a normal subgroup of G contained in Z(HY ) if necessary, we may assume then
that Y ≤ Z(HY ) and thus CG(Y ) = HY . �

CLAIM 3.7. The character θ ∈ Irr(H) extends to HY = C. Thus θC is the sum of the
p distinct extensions of θ .

Proof. Since |HY : H| = p, we have that either θHY ∈ Irr(HY ) or θHY is the sum
of the p distinct extensions of θ .

Suppose that θC ∈ Irr(C). Let µ ∈ Lin(Y ) be the unique character of Y such that
[(θHY )Y , µ] �= 0. Since Gµ = C, then θG ∈ Irr(G). Thus θHY is the sum of the p distinct
extensions of θ . �

Let ρ1, . . . , ρp ∈ Irr(HY ) be the p distinct extensions of θ . Since |G : HY | = p, by
Lemma 2.2 we must have that

ρG
i ∈ Irr(G). (3.8)

Since Z(C) ≥ Y , there is a unique character µi ∈ Lin(Y ) lying below ρi.

CLAIM 3.9. Z(C) = Y.

Proof. Clearly Y ≤ Z(C). Assume that Y < Z(C). Let X ≤ Z(C) such that X/Y
is a chief factor of G and Y < X ≤ HY = C. Observe that such X exists since HY
is normal in G, and X is abelian since X ≤ Z(C). We are going to conclude that
ν ∈ Lin(Z) is not a faithful character, which is a contradiction with Claim 3.3.

STEP 3.10. The subgroup [X, G] generates Y = [X, G]Z modulo Z.

Proof. Since Y and X are normal subgroups of G with Y � X and |X/Y | = p, the
chief factor X/Y of the p-group G is centralized by G. So [X, G] ≤ Y . Suppose that
[X, G]Z < Y . Since |Y/Z| = p, we must have [X, G] ≤ Z = Z(G). So commutation in
G induces a bilinear map

d : (xZ, gCG(X)) 
→ [x, g]

of X/Z × G/CG(X) into the cyclic group Z. This map d is non-singular on the right
since [X, g] = 1 if and only if g ∈ CG(X). It is non-singular on the left since [x, G] = 1 if
and only if x ∈ Z. Because |X : Z| = p2 and d is a non-singular bilinear form of X/Z ×
G/CG(X) into the cyclic group Z, we have |G : CG(X)| = p2. Since λ ∈ Lin(X | ν)
extends the faithful character ν ∈ Irr(Z), this implies that CG(X) = Gλ. Thus |G :
Gλ| = p2. Since X ≤ Z(C), C fixes λ. But then |G : C| = p, C ≤ Gλ and |G : Gλ| = p2.
This contradiction proves the claim. �
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Given any character ρ ∈ Irr(C), since X ≤ Z(C), we have that 1
ρ(1)ρX ∈ Lin(X) is

the unique character lying below ρ.

STEP 3.11. There exist some λ ∈ Lin(X), some g ∈ G\C and i ∈ {2, . . . , p − 1} such
that [(θC)X , λ] �= 0, [(θC)X , λg] �= 0 and [(θC)X , λgi

] �= 0.

Proof. Since 1 < η(θG) <
p + 1

2 and ρG
1 , . . . , ρG

p are the irreducible constituents
of θG, there exist at least 3 distinct j, k, l ∈ {1, 2, . . . , p} such that ρG

j = ρG
k = ρG

l .
Since X is normal in G, by Clifford Theory it follows that 1

ρj(1) (ρj)X , 1
ρk(1) (ρk)X and

1
ρl (1) (ρl)X are G-conjugates. Set λ = 1

ρj
(ρj)X . Then there exists some g ∈ G\C such that

λg = 1
ρk(1) (ρk)X . Since X ≤ Z(C) and |G : C| = p, there exists some i ∈ {2, . . . , p − 1}

such that (λ)gi = 1
ρl (1) (ρl)X . �

Fix g ∈ G\C as in 3.11. Since X/Y is cyclic of order p, H ∩ X > Z, and H ∩ Y = Z
we may choose

x ∈ H such that X = 〈x, Y〉 . (3.12)

Since X ≤ Z(C), we have [X, C] = 1. Suppose that [x, g−1] ∈ Z. Then x centralizes
both g−1 and C modulo Z. Hence xZ ∈ Z(G/Z), which is false by Step 3.10. Hence
[x, g−1] ∈ Y\Z and so

Y = Z 〈y〉 is generated over Z by y = [x, g−1]. (3.13)

Since [Y, G] ≤ Z we have that z = [y, g−1] ∈ Z. If z = 1, then G = C 〈g〉 centralizes
Y = Z 〈y〉, since C centralizes Y < X because X ≤ Z(C), and G centralizes Z. This is
impossible because Z = Z(G) < Y . Thus

z = [y, g−1] is a non-trivial element of Z. (3.14)

By (3.13) we have y = [x, g−1] = x−1xg−1
. By (3.14) we have z = [y, g−1] = y−1yg−1

.
Finally zg−1 = z since z ∈ Z. Since X = Z 〈x, y〉 is abelian since X ≤ Z(C), it follows
that

zg−j = z, yg−j = yzj and xg−j = xy jz( j
2), (3.15)

for any integer j = 0, 1, . . . , p − 1. Because g−p ∈ C centralizes X since X ≤ Z(C), we
have

zp = 1 and ypz(p
2) = 1.

Since p > 2 is odd by hypothesis, p divides
(p

2

) = p(p−1)
2 and z(p

2) = 1. Therefore yp =
zp = 1. It follows that yi, zi and z( i

2) depend only on the residue of i modulo p, for any
integer i ≥ 0. such that X = Y 〈x〉 and x ∈ C. Thus by (3.14) we have that

z( j
2) �= 1 for any integer 0 < j < p. (3.16)

Let λ ∈ Lin(X) and i ∈ {2, . . . , p − 1} be as in Step 3.11. Set � = 1
θ(1)θX∩H . We

can check that � ∈ Lin(X ∩ H). Since (θC)X = (θH∩X )X , we have that λ, λg and λgi
are
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extensions of � . Since x ∈ (H ∩ X), by the previous statement we have that

λ(x) = λg(x) = λgi
(x). (3.17)

By (3.15) we have that

λg(x) = λ(xg−1
) = λ(xy) = λ(x)λ(y).

Thus by (3.17), we get

λ(y) = 1. (3.18)

Therefore

λgi
(x) = λ(xg−i

)

= λ
(
xyiz( i

2)
)

by (3.15)

= λ(x)λ(yi)λ
(
z( i

2)
)

= λ(x)λ
(
z( i

2)
)
,

where the last line follows from (3.18). By (3.17), we have that λ(z( i
2)) = 1. But λZ =

ν ∈ Lin(Z) is a faithful character and z( i
2) �= 1 by (3.16). This is a contradiction and

the claim is proved. �
Since Z(HY ) = Y , we have that Z(H) = Z. Thus HY is a class 2 group with

HY/Z elementary abelian. Therefore θ ∈ Irr(H) is the only character in H lying above
ν ∈ Lin(Z). Hence an irreducible character of G lies over θ if and only if it lies over ν.
Since Irr(G | ν) has either 1 element or at least p by Lemma 2.2, it follows that η(νG) = 1
or η(νG) ≥ p, and therefore either η(θG) = 1 or η(θG) ≥ p. But 1 < η(θG) <

p + 1
2 , and

that is our final contradiction and thus the statement of Theorem A holds.

4. Examples. In this section, we will prove that the group G, the subgroup H
and the character λ ∈ Lin(H) that satisfy Hypothesis 4.1 have the properties that
|G : H| = p2 and η(λG) = p + 1

2 . And then, given any integer n ≥ 2, we construct a
group G with a subgroup H and a character λ ∈ Lin(H) such that |G : H| = pn and
η(λG) = p + 1

2 .

HYPOTHESIS 4.1. Fix an odd prime p. Let G be the semidirect product of a cyclic
group C of order p and an elementary abelian group A of order p3. Assume C = 〈c〉 and

A = 〈a〉 × 〈[a, c]〉 × 〈[a, c, c]〉, (4.2)

for some a in A. Observe that the subgroup {e} × {e} × 〈[a, c, c]〉 is the center of the group
G. Set Z = {e} × {e} × 〈[a, c, c]〉.

Fix ω a primitive complex p-th root of unity. Let α ∈ Lin(〈a〉), β ∈ Lin(〈[a, c]〉)
and γ ∈ Lin(〈[a, c, c]〉) be the unique linear characters such that α(a) = β([a, c]) =
γ ([a, c, c]) = ω.

Set

H = 〈a〉 × {e} × 〈[a, c, c]〉 and λ = 1〈a〉 × 1{e} × γ ∈ Lin(H). (4.3)
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Observe that H is a subgroup of A of index p. Thus |G : H| = p2. Observe also that
λ extends to A and there are exactly p distinct extensions of λ to A, namely

Irr(A | λ) = {1〈a〉 × βr × γ | r = 0, 1, . . . , p − 1}. (4.4)

Set �r = 1〈a〉 × βr × γ .

LEMMA 4.5. Assume Hypothesis 4.1. Given any integer i with 0 < i, we have that

(�r)ci = αri+ i(i−1)
2 × βr+i × γ.

Proof. Observe that (�r)c = αr × βrβ × γ = αr × βr+1 × γ since ac = a[a, c] and
[a, c]c = [a, c][a, c, c]. Assume by induction that

(�r)cn = αrn+ n(n−1)
2 × βr+n × γ. (4.6)

Then

(�r)cn+1 = (
(�r)cn)c

=
(
αrn+ n(n−1)

2 × βr+n × γ
)c

by (4.6)

= αrn+ n(n−1)
2 +r+n × βr+n+1 × γ,

where the last line follows since ac = a[a, c] and [a, c]c = [a, c][a, c, c]. We can check
that rn + n(n−1)

2 + r + n = r(n + 1) + (n+1)(n)
2 . Thus

(�r)cn+1 = αr(n+1)+ (n+1)n
2 × βr+(n+1) × γ,

and the result follows by induction. �
LEMMA 4.7. Assume Hypothesis 4.1. Let r be an integer such that 0 < r < p. Then

(�r)cj
is an extension of λ if and only if either j ≡ 0 mod p or j ≡ (1 − 2r) mod p. If

i ≡ (1 − 2r) mod p then (�r)ci = �1−r.

Proof. By Lemma 4.5, we have that (�r)ci
is an extension of λ if and only

if αir+ i(i−1)
2 = 1〈a〉. Since α is a faithful linear character of a cyclic group of order

p, αir+ i(i−1)
2 = 1〈a〉 if and only if (ir + i(i − 1)

2 ) ≡ 0 mod p. Observe that (ir + i(i − 1)
2 ) ≡

0 mod p if and only if either i ≡ 0 mod p or (r + i − 1
2 ) ≡ 0 mod p. Therefore (�r)ci

is an
extension of λ if and only if either i ≡ 0 mod p or i ≡ (1 − 2r) mod p.

If i ≡ (1 − 2r) mod p, then (�r)ci = �1−r by Lemma 4.5. �
LEMMA 4.8. Assume Hypothesis 4.1. Then 1 < η(λG) ≤ p + 1

2 .

Proof. By the previous lemma, it follows that the stabilizer of �r is a proper
subgroup of G. Since |G : A| = p and �r ∈ Lin(A), we have that

(�r)G ∈ Irr(G) for any integer r. (4.9)

Since p > 2, it follows that there exist two distinct integers k, l such that
0 < k, l < p and k �= (1 − 2l) mod p. Thus by Lemma 4.7 we have that �k and �l are not
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G-conjugates. It follows that (�k)G �= (�l)G. Since (�k)G �= (�l)G, (�k)G, (�l)G ∈
Irr(G) and both �k and �l lie above λ, we have that η(λG) ≥ 2.

Observe that r ≡ (1 − r) mod p if and only if 2r ≡ 1 mod p. Thus given any r such
that 0 < r < p and 2r �= 1 mod p, by Lemma 4.7 we have that �r,�1−r ∈ Irr(A) are two
distinct G-conjugate extensions of λ. Thus η(λG) ≤ p + 1

2 . �

PROPOSITION 4.10. Assume Hypothesis 4.1. Then |G : H| = p2 and η(λG) = p + 1
2 .

Proof. By Lemma 4.8, we have that 1 < η(λG) ≤ p + 1
2 . Thus by Theorem A, it

follows that η(λG) = p + 1
2 . �

Denote by 1H the principal character of H.

LEMMA 4.11. Let p be a prime number, G be a p-group and H be a subgroup of G
with |G : H| = pn. Then η((1H)G) ≥ n(p − 1) + 1.

Proof. We are going to use a double induction, first on |G| and then on n, where
|G : H| = pn. Using induction on the order of G, without lost of generality we may
assume that coreG(H) = 1.

Let Z1 be a subgroup of the center Z(G) of G with |Z1| = p. Observe that H ∩ Z1 =
1 since coreG(H) = 1. Thus |HZ1 : H| = p. By Lemma 2.3, we have that

η((1H)G) ≥ η((1HZ1 )G) + (p − 1). (4.12)

Since |G : HZ1| = pn−1, by induction on n we have that

η((1HZ1 )G) ≥ (n − 1)(p − 1) + 1.

The result follows by (4.12) and the previous statement. �

LEMMA 4.13. Let G0 be a p-group and � be a character of G0. Assume that [�, 1G0 ] =
0. Let N = G0 × G0 × · · · × G0 be the direct product of p-copies of G0. Set

� = � × 1G0 × · · · × 1G0 .

Let C = 〈c〉 be a cyclic group of order p. Observe that C acts on N by

c : (n0, n1, . . . , np−1) 
→ (np−1, n0, . . . , np−2) (4.14)

for any (n0, n1, . . . , np−1) ∈ N.
Let G be the direct product of N and C, i.e, G is the wreath product of G0 and C.

Then η(�G) = η(�).

Proof. Let δ ∈ Irr(N) be a constituent of �. Observe that δ is of the form γ ×
1G0 × · · · × 1G0 , for some γ ∈ Irr(G0) such that [γ, �] �= 0. Observe that γ �= 1G0 since
[�, 1G0 ] = 0. By (4.14), we have that δ is G-invariant if and only if γ = 1G0 . Thus
δG ∈ Irr(G) for any constituent δ ∈ Irr(N) of �. Observe that the G-orbit of δ ∈ Irr(N)
is

{γ × 1G0 × · · · × 1G0 , 1G0 × γ × · · · × 1G0 , · · · , 1G0 × . . . × 1G0 × γ }.
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Thus if δ, ε ∈ Irr(N) are two distinct constituents of �, then δG �= εG. It follows that
η(�G) = η(�). �

THEOREM 4.15. Let p be an odd prime number and n ≥ 2 be an integer. There exist a
p-group G, a subgroup H of G and λ ∈ Lin(H), such that |G : H| = pn and η(λG) = p + 1

2 .

Proof. If n = 2, then the result follows by Lemma 4.10. By induction on n, we may
assume that the result holds for any integer n such that n − 1 ≥ 2.

Fix a p-group G0, a subgroup H0 ≤ G0 and λ0 ∈ Lin(H0) such that:

|G0 : H0| = pn−1 and η
(
λ

G0
0

) = p + 1
2

. (4.16)

Let N and G be as in Lemma 4.13. Let

H = H0 × G0 × . . . × G0.

Then H is a subgroup of N and |G : H| = |G : N||N : H0| = p|G0 : H0| = pn.
Set λ = λ0 × 1G0 × . . . × 1G0 . Observe that λ ∈ Lin(H) since λ0 ∈ Lin(H0). We can

check that η(λN) = η(λG0
0 ). Thus by (4.16) we have that η(λN) = p + 1

2 .
By Lemma 4.11, we have that λ0 �= 1H0 . Thus [λG0

0 , 1G0 ] = 0. By Lemma 4.13 we
have then that η(λN) = η(λG) and the result is proved. �

LEMMA 4.17. Let p be a prime number such that p − 1 is divisible by 3. Fix r ∈
{1, . . . , p − 1}. Then the set {r(1 − i3) mod p | i = 0, . . . , p − 1} has p + 2

3 elements. Also,
given any e ∈ {r(1 − i3) mod p | i = 1, . . . , p − 1}, there are exactly 3 distinct solutions
in {1, . . . , p − 1} of the equation e ≡ r(1 − x3) mod p

Proof. Let u be a generator of the units of the field F of p elements. Then U = 〈u p−1
3 〉

is a subgroup of order 3 and any element in U is a solution of x3 ≡ 1 mod p. Thus
given any integer n �= r, if the equation x3 ≡ r − n mod p has a solution, then it has
exactly 3 distinct solutions in F . Therefore the set {r(1 − i3) mod p | i = 1, . . . , p − 1}
has p − 1

3 distinct elements. Since 03 = 0, the set {(r(1 − i3) mod p | i = 0, . . . , p − 1} has
p − 1

3 + 1 = p + 2
3 elements. �

HYPOTHESIS 4.18. Let p > 5 be a prime number such that p − 1 is divisible by 3. Let
F be a field of p elements and F [x] be the truncated polynomial algebra generated over
F by some x satisfying only x4 = 0. So F [x] is a vector space of dimension 4 over F with
1, x, x2 and x3 as a basis. Let m be an isomorphism of the additive group F [x]+ of F [x]
onto a multiplicative group M. Then M is an elementary abelian multiplicative group of
order p4 with m(1), m(x), m(x2), m(x3) as generators. Let U be the subgroup of the unit
group F [x]× generated by 1 + x and 1 + x2. The general element of U is

(1 + x)i(1 + x2)j = 1 + ix +
((

i
2

)
+ j

)
x2 +

((
i
3

)
+ ij

)
x3 (4.19)

for arbitrary integers i, j, since x4 = 0. Because p > 3, it follows that U is elementary
abelian of order p2, and that (4.19) holds for any i, j ∈ F. The group U acts naturally on
the group M, so that

m(y)u = m(yu) (4.20)
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for all y ∈ F [x] and u ∈ U. Let G be the semidirect product of M and U. Then G is a
multiplicative group with order p6.

Let H be the subgroup

H = 〈
m(1), m(x), m(x3)

〉 = {m(a0 + a1x + a3x3) | a0, a1, a3 ∈ F}. (4.21)

Fix a primitive p-th root of unity ω. Fix an integer r > 0 such that 3r ≡ −1 mod p.
Thus r ≡ −1

3 mod p and r �≡ 0 mod p. Let λ ∈ Lin(H) be the character given by

λ(m(a0 + a1x + a3x3)) = ωra0+ra1+a3 . (4.22)

THEOREM 4.23. Assume Hypothesis 4.18. Then

λG = χ0 + 3

p−1
3∑

i=1

χi (4.24)

where χi ∈ Irr(G) and χi �= χj if i �= j for i, j = 0, 1, . . . ,
p − 1

3 . Thus η(λ) = p + 2
3 .

Proof. The center Z(G) of G is the subgroup
〈
m(x3)

〉
of order p. Let γ be the faithful

linear character of Z(G) sending m(x3) to ω. Then Lin(M | γ ) consists of the p3 linear
characters µf0,f1,f2 , for f0, f1, f2 ∈ F given by

µf0,f1,f2 (m(a0 + a1x + a2x2 + a3x3)) = ωf0a0+f1a1+f2a2+a3 (4.25)

for all a0, a1, a2, a3 ∈ F . If e, i, j ∈ F , then (4.19) and (4.20) imply that the conjugate
character µ

(1+x)−i(1+x2)−j

e,0,0 to µe,0,0 sends

m(1) 
→ µe,0,0

(
m

(
1 + ix +

((
i
2

)
+ j

)
x2 +

((
i
3

)
+ ij

)
x3

))
= ωe+( i

3)+ij ,

m(x) 
→ µe,0,0

(
m

(
x + ix2 +

((
i
2

)
+ j

)
x3

))
= ω( i

2)+j,

m(x2) 
→ µe,0,0(m(x2 + ix3)) = ωi,

m(x3) 
→ µe,0,0(m(x3)) = ω.

It follows that

µ
(1+x)−i(1+x2)−j

e,0,0 = µe+( i
3)+ij ,( i

2)+j,i (4.26)

for any e, i, j ∈ F . If we fix e, then the above equation implies that distinct pairs
(i, j) ∈ F × F yield distinct conjugates µ

(1+x)−i(1+x2)−j

e,0,0 ∈ Lin(M | γ ). Hence the G-orbit
Le of µe,0,0 has exactly p2 members. Furthermore the above equation implies that the
only member of that orbit with the form µf,0,0 is µe,0,0. We conclude that the orbits
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Le, for e ∈ F , are p distinct G-orbits in Lin(M | γ ), each with size p2. Since the normal
subgroup M of index p2 is exactly the stabilizer of µe,0,0 ∈ Lin(M) in G, the induced
characters

χe = µG
e,0,0 are precisely the distinct members of Irr(G | γ ). (4.27)

Then

λM =
∑
f ∈F

µr,r,f and λG =
∑
f ∈F

µG
r,r,f . (4.28)

CLAIM 4.29. Let i ∈ {1, . . . , p − 1}, e = r(1 − i3) and j = r − ( i
2

)
. Then

µ
(1+x)−i(1+x2)−j

e,0,0 = µr,r,i. (4.30)

Proof. For a fixed i, we have

e +
(

i
3

)
+ ij = e +

(
i
3

)
+ i

(
r −

(
i
2

))

= e + i(i − 1)(i − 2)
6

+ i
(

r − i(i − 1)
2

)

= i3
(

1
6

− 1
2

)
+ i2

(
1
2

− 1
2

)
+ i

(
r + 1

3

)
+ e

≡ −i3

3
+ e mod p, since r ≡ −1

3 mod p

≡ −i3

3
+ r(1 − i3) mod p, since e = r(1 − i3)

≡ r − i3
(

r + 1
3

)
≡ r mod p,

where the last line follows since r ≡ −1
3 mod p. Thus (e + ( i

3

) + ij ,
( i

2

) + j, i) = (r, r, i) in
F × F × F and so by (4.26) we get (4.30). �

By the previous claim and (4.28), we have that

λG =
p−1∑
i=0

µG
r(1−i3),0,0.

By Lemma 4.17, we have then

λG = µG
r,0,0 + 3

∑
e∈{r(1−i3)|i=1,... ,p−1}

µG
e,0,0. (4.31)

By (4.27) we have that µG
e,0,0 ∈ Irr(G) and µG

e,0,0 �= µG
f,0,0 if e �≡ f mod p. Thus by Lem-

ma 4.17 and (4.31), we conclude that η(λG) = p + 2
3 and the proof is complete. �
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