
1 Kinematics, Balance Equations, and
Principles of Stokes Flow

The focus of this book is the dynamics of fluids at small scales and of small objects
(e.g., particles, cells, macromolecules) suspended in fluids. As we will see, such
suspensions or solutions can have nontrivial dynamical and rheological behavior: i.e., in
this regard they are complex fluids. Small is relative, of course, and we exclusively
consider systems that are not so small that atomistic details of the fluid or objects are im-
portant; in particular, we treat the fluid as a continuum to which we can assign properties
at every spatial position x. For liquids, the continuum approximation is broadly valid
for scales of about 1 nanometer (nm) and larger (a water molecule has a size of about
0.2 nm). One way that we know this is through molecular simulations (Schmidt & Skin-
ner 2003, 2004), which show agreement with, for example, the continuum prediction for
the drag force on a moving sphere even when the sphere is only several solvent atoms
across. In the first several chapters of this book, we will only concern ourselves with
the behavior of fluids, and particles within fluids, in the absence of thermal fluctuations.
This behavior is governed by the classical equations of continuum mechanics, which
are the starting point of the chapter. After reviewing these here, the governing equations
for Newtonian fluids are introduced. Our ultimate focus is the Stokes equation, which
governs fluid motions when the inertia of the fluid is negligible compared to viscous
stresses.

1.1 Kinematics of Continua

1.1.1 Velocity Fields and the Velocity Gradient

Under the continuum approximation, a material can take on a velocity � (which may
vary with time t) at every position x: i.e., we have a velocity field �(x, t). We further

Figure 1.1 Motions of material points X (t) and
X ′(t), with the material line ΔX (t) = X ′(t) − X (t)
(dashed) shown at several time instants.
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2 Kinematics, Balance Equations, and Principles of Stokes Flow

assume that this field is differentiable except possibly at interfaces between different
materials or phases. Now, consider two neighboring material points X and X ′, which
by definition move with the instantaneous velocity of the material at their respective
positions, as illustrated in Figure 1.1. Thus

dX
dt
= �(X, t),

dX ′

dt
= �(X ′, t).

To understand how the material deforms as it flows with velocity �(x, t), we consider
the time evolution of a “material line” ΔX = X ′ − X connecting points X and X ′. We
can then write

dΔX
dt
= �(X ′, t) − �(X, t).

Now we take the distance between X and X ′ to be small, so that

�(X ′, t) = �(X, t) + ΔX · ∇�(X, t) +O( |ΔX |2),

where ∇�(X, t) is the velocity gradient evaluated at the material point X . Combining
these two equations yields that

dΔX
dt
= ΔX · ∇�, (1.1)

or equivalently
dΔX

dt
= L · ΔX, (1.2)

where L = ∇�T. Therefore, all information about the deformation of an infinitesimal
line connecting two neighboring points in the fluid, is contained in the velocity gradient
tensor.1 Note that we use the convention2 that in Cartesian coordinates

(∇�)i j =
∂

∂xi
vj .

Flows in which the velocity gradient is independent of position are called linear flows,
because the velocity is a linear function of position:

�(x) − �0 = L · (x − x0) , (1.3)

where �0 is a constant uniform velocity and x0 is a constant position. By appropriate
choice of reference frame, we can always take �0 and x0 to be zero. If in addition ∇�
is independent of position and time, then (1.1) is a simple linear constant coefficient
equation and the evolution of ΔX is completely determined by the eigenvalues and
eigenvectors of ∇�. We will exclusively consider incompressible flows, which satisfy

1 See Section A.1 for a brief summary of vector and tensor notation as used in this book.
2 This convention is common in the fluid mechanics literature but is not universal. In much of the

continuum mechanics literature, e.g. Malvern (1969), Gonzalez & Stuart (2008), (∇�)i j is defined as
∂�i
∂x j

. This is the transpose of what we use.
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1.1 Kinematics of Continua 3

∇ · � = 0 due to mass conservation (see Section 1.2.1), so the eigenvalues λi of ∇� must
sum to zero. Equivalently,

tr ∇� = ∇ · � =
3∑
i=1

λi = 0.

We will often make use of the decomposition of the velocity gradient tensor into
the symmetric strain rate or deformation rate tensor E and antisymmetric vorticity
tensor3 W:

∇� = E +W,

where

E = 1
2
(
∇� + ∇�T

)
and

W = 1
2
(
∇� − ∇�T

)
.

The vorticity vector w is given by

w = ∇ × � (1.4)

and is related to the local angular velocity of the fluid, ω, by the simple expression

ω =
1
2
w. (1.5)

These quantities are related to the vorticity tensor as follows:

W = ε · ω = 1
2
ε · w, (1.6)

where ε is the Levi–Civita symbol, whose properties are summarized in Appendix A.1.2.
If E = 0 at some point in the fluid, then an infinitesimal volume of material at that

point, a fluid element, is undergoing rigid rotation: there is no stretching of material lines
within that volume. On the other hand, if W = 0, then the fluid element is undergoing
stretching without any rotation. Now∇� is symmetric, so its eigenvectors are orthogonal,
forming a coordinate system in which ∇� can be written

∇� =
⎡⎢⎢⎢⎢⎢⎢⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤⎥⎥⎥⎥⎥⎥⎦ .
Defining the extension rate as ε̇ (> 0), important special cases include the following:

• Uniaxial extension: λ1 = ε̇, λ2 = λ3 = −ε̇/2,
• Biaxial extension: λ1 = λ2 = ε̇, λ3 = −2ε̇ ,
• Planar extension: λ1 = −λ2 = ε̇, λ3 = 0.
3 Again, the convention in the fluid mechanics literature is different than in the continuum mechanics

literature, where W = (L − LT)/2 and is often called the spin tensor (Malvern, 1969).
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(a)

x2

x3

x1

(b) (c)

Figure 1.2 Deformation of a fluid element in (a) uniaxial extension, (b) biaxial extension, and (c)
planar extension.

(a) (b)

= +

Figure 1.3 (a) Deformation of a volume of fluid in simple shear. (b) Decomposition of the
velocity field of simple shear into equal parts of planar extension and rigid rotation.

In these cases, material lines will either shrink or grow exponentially in time, depending
on their initial orientation relative to the eigenvectors of ∇�. Figure 1.2 illustrates how
fluid elements evolve in these flows.

Simple shear flow, where � = γ̇ yex , is another important special case that deserves
particular attention. In this case, illustrated in Figure 1.3(a), elements simply move in
the x-direction in a straight line, the eigenvalues of ∇� are all zero, and an arbitrarily
oriented material line stretches linearly with time. In Cartesian coordinates,

∇� =
⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
γ̇ 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
and thus

E = 1
2

⎡⎢⎢⎢⎢⎢⎢⎣
0 γ̇ 0
γ̇ 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
and

W = 1
2

⎡⎢⎢⎢⎢⎢⎢⎣
0 −γ̇ 0
γ̇ 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
From (1.4) and (1.5),

ω =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
− 1

2 γ̇

⎤⎥⎥⎥⎥⎥⎥⎦ .
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1.1 Kinematics of Continua 5

(a) (b)

Figure 1.4 Paths of fluid elements
for perturbations of simple shear
with (a) α > 0 and (b) α < 0. The
case α = 0 is simple shear as
shown in Figure 1.3.

Letting | | · | | denote the Frobenius norm when applied to a second-order tensor,4 observe
that in this case | |E| | = | |W| |. If the velocity gradient were composed entirely of E, then
fluid elements would undergo planar extension, compressing along the line x = −y , the
“compressional axis” and stretching along the line x = y , the “extensional axis.” On the
other hand, if the velocity gradient were composed entirely of W, then fluid elements
would just rotate clockwise. The overall deformation that occurs during simple shear is
an equal superposition of these deformations, as illustrated in Figure 1.3(b), in which the
stretching due to E is just balanced by the rotation due to W, and fluid elements stretch
linearly in time, tilting toward the flow direction but without “tumbling.” This result is
a simple consequence of the fact that the particle paths are all straight lines.

Consider now a small change in the velocity gradient from the simple shear case
(Fuller & Leal 1981):

∇� = γ̇
⎡⎢⎢⎢⎢⎢⎢⎣
0 α 0
1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (1.7)

Now

E = 1
2
γ̇

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 + α 0

1 + α 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
and

W = 1
2
γ̇

⎡⎢⎢⎢⎢⎢⎢⎣
0 α − 1 0

1 − α 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
Holding γ̇ constant and restricting α to the range −1 ≤ α ≤ 1, there are three cases

as shown in Figure 1.4. If α = 0, then the flow is simple shear. If α > 0, then strain
dominates over vorticity, | |E| | > | |W| |, the eigenvalues of ∇� are real, particle paths are
hyperbolas, and a material line stretches exponentially fast – in the limiting case α = 1,
the vorticity vanishes, and flow is pure planar extension, with compressional axis along
the line x = −y and extensional axis along x = y . On the other hand, if α < 0, vorticity
dominates, | |E| | < | |W| |, and particle paths are ellipses – an individual fluid element
will oscillate in length. Accordingly, ∇� has a pair of purely imaginary eigenvalues.
(There is always one zero eigenvalue, independent of α, because there is no motion in
the z direction.) When α = −1, the strain rate vanishes and the flow is rigid rotation –
particle paths are circles and material lines rotate without any change in length. Thus

4 See Appendix A.1.
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Figure 1.5 Basis vectors gi (t)
attached to a material point X (t)
and evolving as material lines. At
t = 0 (left) these vectors define
the edges of a cube, only two
dimensions of which are shown,
that is deformed at time t to a
parallelepiped. The reciprocal
basis vectors hi (t) define the
faces of the parallelepiped.

we see that simple shear is a delicate special case, a point that should be remembered
because it is so often used as a model flow.

1.1.2 Deformation Tensors

For time-independent linear flows, the eigenvalues and eigenvectors of∇� contain all the
information needed to determine how material lines stretch and thus how the material
deforms. For more complex flow fields, however, we require a more general formalism
to characterize deformations (Malvern 1969, Bird, Armstrong, & Hassager 1987, Segel
1987, Gonzalez & Stuart 2008, Morozov & Spagnolie 2015). Consider a set of basis
vectors gi that are attached to a material element X (t). At t = 0, the basis vectors
correspond to the Cartesian basis vectors: gi (X (0), 0) = ei , where ei is the ith Cartesian
unit basis vector. Thus the gi are the edges of the parallelepiped that begins as cubic
material volume attached to X (t). These basis vectors will be taken to evolve as material
lines, as shown in Figure 1.5: i.e.,

dgi (X (t), t)
dt

= L(X (t), t) · gi (X (t), t). (1.8)

Note that L is time dependent in general. These vectors form a basis that is codeforming
with the material. Recall that at t = 0, the gi are tangent to the Cartesian coordinate lines.
If we take these coordinate lines to be embedded in the material, moving and deforming
with it, then because the gi evolve as material lines, they will each be tangent to the
corresponding coordinate line at time t; basis vectors that are parallel to coordinate lines
are said to be contravariant (Aris 1989).

The solution to (1.8) can be written as

gi (X (t), t) = F(X (t), t) · gi (X (0), 0), (1.9)

where F(X (t), t) is simply the time-dependent mapping between gi (0) and gi (t) for
material point X . It is called the deformation gradient tensor. (For brevity of notation,
we occasionally drop the dependence of the gi on X .) Since gi (0) = ei , we have that

gi (t) = F(X (t), t) · ei (1.10)
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1.1 Kinematics of Continua 7

or equivalently, the ith column of F(X (t), t) is the basis vector gi (t): Fji (X (t), t) =
gji (X (t), t). Inserting (1.10) into (1.8) and factoring out ei yields that

dF
dt
= L · F (1.11)

with initial condition F(X (0), 0) = δ. In the special case of a steady linear flow, where
L is constant, F = eLt and the gi are independent of position.

Because the gi evolve as material lines, Equation (1.9) also holds with gi replaced
with ΔX :

ΔX (t) = F(X (t), t) · ΔX (0). (1.12)

Thus the deformation gradient tensor F contains all information needed to determine
the evolution of a material line during a deformation.5 Recalling that the ith column
of F(X (t), t) is the basis vector gi (t), we can rewrite (1.12) in the coordinate system
defined by these vectors:

ΔX (t) = ΔX1(0)g1(t) + ΔX2(0)g2(t) + ΔX3(0)g3(t). (1.13)

For t > 0 the basis vectors gi (t) are not generally orthogonal. However, it is always
possible to find a reciprocal basis comprised of vectors h j (t) that satisfy the so-called
biorthogonality condition gi (t) · h j (t) = δi j . For the parallelepiped whose edges are
defined by the gi , the normal vectors to the faces of the parallelepiped are defined by
the hi , as shown in Figure 1.5. Now thinking of coordinate planes that are embedded
in the material and evolve with it, the hi are basis vectors that are orthogonal to these
planes and are said to be covariant. Since the basis vectors gi (t) are contained in the
columns of the deformation gradient tensor F(t), the columns of (F(t)T)−1 will contain
the reciprocal basis vectors h j (t). These vectors satisfy

dh j

dt
= −LT · h j . (1.14)

Problem 1.4 illustrates one context in which this reciprocal basis arises.
Just as the vectors gi comprise a codeforming basis set for representing vectors

associated with a deforming material, the dyads gig j form a basis for representing
second-order tensors. In index notation, where gk j = ek · g j , these dyads evolve as
follows: (

dgig j

dt

)
lk

=
dgligk j

dt
=

dgli
dt

gk j + gli
dgk j
dt

= Llmgmigk j + gliLkmgmj

= Llmgmigk j + gligmjL
T
mk,

which we can rewrite
dgig j

dt
= gig j · ∇� + ∇�T · gig j . (1.15)

5 In mathematical terms, F is the fundamental solution matrix for (1.2).
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8 Kinematics, Balance Equations, and Principles of Stokes Flow

More generally, we can define the Green tensor6

B(X (t), t) =
3∑
i=1

3∑
i=1

gig j . (1.16)

By construction, at t = 0, B = δ, where δ is the identity tensor. Using (1.15), we can
write that

dB(X (t), t)
dt

−
(
B(X (t), t) · ∇�(X (t), t) + ∇�T(X (t), t) · B(X (t), t)

)
= 0. (1.17)

If we think about B as a tensor field, i.e., as a function of position x in the flow field rather
than as a tensor attached to a particular material point X (t), then the time derivative is
replaced by a substantial derivative7

D
Dt
=
∂

∂t
+ � · ∇,

in which case

DB(x, t)
Dt

−
(
B(x, t) · ∇�(x, t) + ∇�T(x, t) · B(x, t)

)
= 0. (1.18)

The quantity on the left-hand side of this expression is called the contravariant

convected derivative or upper convected derivative of B and is denoted B(1) or
∇
B.

This derivative is the rate of change of a tensor relative to a coordinate system that is
deforming with the material. The Green tensor is fundamentally important to the theory
of elasticity and viscoelasticity, in part because the stress tensor for a simple model of a
material called the neo-Hookean solid is proportional to it. We will see this object again
in Section 8.6, where it arises naturally in a model of the dynamics of dilute polymer
solutions. The Green tensor is related to F by

B(X (t), t) = F(X (t), t) · FT(X (t), t). (1.19)

(See Problem 1.2.)

6 We use the nomenclature recommended by the International Union of Pure and Applied Chemistry
(IUPAC) (Kaye et al. 1998). This tensor is also called the left Cauchy–Green tensor or sometimes the
Finger tensor, although according to the IUPAC standard the latter term refers to the quantity

(
FT · F

)−1
.

The right Cauchy–Green tensor C, also called the Cauchy tensor , is given by C = FT · F.
7 Consider a scalar field f (x (t), t). The rate of change of this field as measured by an observer moving with

velocity dx/dt = � (i.e., moving as a material point X (t)) is given by the substantial derivative Df /Dt.
In Cartesian coordinates, we can use the chain rule to write this as

Df (x, t)
Dt

=
∂ f

∂t
+

3∑
i=1

dxi

dt

∂ f

∂xi

=
∂ f

∂t
+

3∑
i=1

vi
∂ f

∂xi

=
∂ f

∂t
+ � · ∇ f .
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S

V

Sm(t2)Sm(t1)

n

n

Vm(t1)
Vm(t2)

Figure 1.6 Arbitrary stationary (top) and
material (bottom) volumes within a
material for derivation of conservation
laws.

A number of other deformation tensors and convected derivatives also arise in studies
of complex fluids and elastic solids. Section 9.4 illustrates the importance of these
derivatives in the general context of constitutive models for stress in a material.

1.2 Conservation Equations

1.2.1 Conservation of Mass

Consider an arbitrarily chosen stationary volume V with boundary S within a material
of mass density ρ as shown in Figure 1.6. The outward unit normal vector for the volume
is denoted n. Given that the mass flux at any position x in the volume is ρ �, the mass
balance for this domain can be written as

d
dt

∫
V

ρ dV = −
∫
S

n · (ρ �) dS. (1.20)

This equation simply states that the rate of accumulation of mass in the domain is equal
to the integral over the boundary of the mass flux into the volume −n · (ρ �) – mass
is neither created nor destroyed within the volume V . Applying the divergence theorem
(Equation (A.10) in Appendix A.2) to the right-hand side and rearranging yields that

d
dt

∫
V

ρ dV +
∫
V

∇ · (ρ �) dV = 0. (1.21)

Since the volume V is stationary, this can be rewritten∫
V

∂ρ

∂t
dV +

∫
V

∇ · (ρ �) dV = 0
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10 Kinematics, Balance Equations, and Principles of Stokes Flow

or ∫
V

(
∂ρ

∂t
+ ∇ · (ρ �)

)
dV = 0.

The domain of integration is arbitrary, so the only way the integral can vanish is for the
integrand to vanish pointwise:

∂ρ

∂t
+ ∇ · (ρ �) = 0 (1.22)

at every point in the domain. This is the statement of conservation of mass at a point
in a continuous medium and is known as the continuity equation. We will exclusively
consider incompressible flows during which density changes are negligible and the
continuity equation reduces to

∇ · � = 0. (1.23)

1.2.2 Conservation of Momentum

To address conservation of momentum, we take a slightly different approach than we did
for mass conservation. Consider an arbitrary material volume VM(t), by which we mean
a volume whose elements move with the material velocity �(x, t) (Figure 1.6). Therefore
points on the boundary of this volume SM(t) are also moving with this velocity. The
total momentum of this volume is ∫

VM (t)
ρ � dV

and Newton’s second law applied to it becomes

d
dt

∫
VM (t)

ρ � dV = FV + FS . (1.24)

Here the left-hand side is the rate of change of momentum of the volume,FV incorporates
forces exerted on the material in the volume by external fields that act at each point in
the material and FS incorporates forces exerted across the boundary of the volume by
the neighboring material – stresses.

Many body forces – gravitational, electrical, magnetic – can act at each point in a
material in an external field. For the moment, we do not specify the nature of these forces
but simply write that

FV =

∫
VM (t)

f (x) dV, (1.25)

where f (x) is an arbitrary position-dependent force density.
The net surface force is the integral of the stresses exerted across the boundary of V .

Denoting the stress vector (sometimes called the traction vector) exerted at a point on
the boundary by the neighboring material outside the boundary as t (x), this force can
be written

FS =

∫
SM (t)

t (x) dS.
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1.2 Conservation Equations 11

Under very general circumstances, the traction vector has the form

t = n · σ,

where σ is a second-order tensor called the stress tensor (Batchelor 1967, Aris 1989,
Pozrikidis 1997). In Cartesian coordinates, the quantityσxy , for example, is the force per
unit area in the y direction exerted on a surface of constant x by the material at greater
x. Conservation of angular momentum yields, again under very general circumstances,
that the stress tensor is symmetric: σi j = σ ji (see Problem 1.6). The stress tensor will
be the subject of further discussion later in this chapter and elsewhere in the book.

Using the expressions for FV and FS , we can rewrite (1.24) as
d
dt

∫
VM (t)

ρ � dV =
∫
VM (t)

f dV +
∫
SM (t)

n · σ dS.

Now Leibniz’s rule, (A.15), can be applied to the left-hand side:∫
VM (t)

∂ρ �

∂t
dV +

∫
SM (t)

ρ �(n · �) dS =
∫
VM (t)

f dV +
∫
SM (t)

n · σ dS.

Combining the surface integrals yields that∫
VM (t)

∂ρ �

∂t
dV =

∫
SM (t)

n · (−ρ �� + σ) dS +
∫
VM (t)

f dV,

where we have used the definition of a dyad: (n · �)� = n · (��). From this form of the
equation, we can recognize that the quantity ρ �� − σ is the total momentum flux at a
point in the material. The first term represents momentum carried by the bulk motion of
the material and is called the convective or advective momentum flux, while the second
represents momentum transported via microscopic mechanisms.

Applying the divergence theorem to the surface integral on the right-hand side converts
it to a volume integral. Again, since the volume under consideration is arbitrary, we
conclude that at every point in the domain the following equation holds:

∂ρ �

∂t
= −∇ · (ρ ��) + ∇ · σ + f .

With some rearrangement and the use of the continuity equation, this can be written in
more conventional form:

ρ

(
∂�

∂t
+ � · ∇�

)
= ∇ · σ + f , (1.26)

which is called the Cauchy momentum balance equation. This equation is very broadly
valid, independent of the material. Now we split the stress into an isotropic component
that at equilibrium is just the thermodynamic pressure, and an additional component τ,
sometimes called the extra stress tensor, that vanishes at equilibrium:

σ = −pδ + τ.

With this definition, we have another common form of the Cauchy equation

ρ

(
∂�

∂t
+ � · ∇�

)
= −∇p + ∇ · τ + f . (1.27)
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For an incompressible fluid, the pressure cannot be viewed as a thermodynamic quantity.
It is best viewed as a Lagrange multiplier that enables the pointwise incompressibility
constraint ∇ · � = 0 to be satisfied. Section 1.3.4 illustrates this point explicitly for a
specific case.

Microscopically, the stress tensor σ can have many different origins. For example,
it may be due to the fluctuating momentum fluxes associated with thermal motion of
the molecules forming the material, or to forces exerted across the boundary due to
chemical bonds that span it (Bird et al. 1987, Chaikin & Lubensky 1995, McQuarrie
2000, Bird, Stewart & Lightfoot 2002). Later sections of this book will shed light on
the microscopic origins of the stresses associated with particles or macromolecules in
solution, and we will eventually see that a complex fluid can be viscoelastic, having both
a viscous contribution to the stress that is proportional to the rate of deformation and an
elastic contribution that is proportional to the amplitude of deformation.

For this and the next several chapters, however, our focus will be on a specific class
of materials, incompressible Newtonian fluids, in which density is constant and the
contribution to the stress at a point in the fluid due to its deformation is a linear and
isotropic function of the strain rate E at that point. The stress cannot depend on W,
because there is no material deformation associated with rotation (see Section 9.4 for
further discussion). For such a fluid, the quantity τ is called the viscous stress and has
the form

τ = 2ηE = η
(
∇� + ∇�T

)
, (1.28)

where η is the dynamic viscosity (usually just called the viscosity) of the fluid – it is the
proportionality constant between stress and strain rate. The related quantity ν = η/ρ,
known as the kinematic viscosity, plays the role of a diffusivity for momentum transport.
Now the Cauchy momentum equation reduces to the incompressible Navier–Stokes
equation

ρ

(
∂�

∂t
+ � · ∇�

)
= −∇p + η∇2� + f . (1.29)

Supplemented by (1.23) for mass conservation and appropriate boundary conditions,
this equation provides a complete description of flows of incompressible Newtonian
fluids. Because we only consider incompressible flow, when we write “Navier–Stokes
equation” (or “Stokes equation,” discussed later), we will generally mean “Navier–Stokes
and continuity equations for incompressible flow.”

In many situations (e.g., single-phase flow with no free interfaces, multiphase flow of
density-matched fluids), the only body force is gravity and its only effect is to induce
a hydrostatic pressure gradient in the fluid that has no influence on the fluid motion.
Therefore, it is often useful to write the body force as the gradient of the gravitational
potential per unit volume:

f = ρg = −∇Φg, Φg = ρg(h − h0), (1.30)

where g is the gravity vector, h is vertical height, and h0 an arbitrary reference height.
Now the pressure and gravitational terms can be combined by defining the dynamic
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1.2 Conservation Equations 13

pressure P = p +Φg. For a fluid at rest, P is constant. Now the momentum equation can
be written

ρ

(
∂�

∂t
+ � · ∇�

)
= −∇P + η∇2�. (1.31)

Where there is no danger of confusion, P is often replaced by p.
Now consider a situation in which the length scale over which we expect velocities to

vary is L and the characteristic variation in velocities is U . These quantities will vary
from system to system; for a particle of size a in a shear flow with shear rate γ̇, we
could take L = a and U = aγ̇. Additionally, there may be a time scale T for imposed
variations in velocity. Using these scales, along with the viscous stress scale ηU/L as a
characteristic pressure scale, we can rewrite the momentum equation in nondimensional
form:

Re
(
Sr−1 ∂�

∂t
+ � · ∇�

)
= −∇p + ∇2� + f , (1.32)

where all variables are now nondimensionalized with their corresponding scales, and
two dimensionless groups appear:

Re =
UL
ν

(1.33)

and

Sr =
TU
L
. (1.34)

The Reynolds number Re estimates the ratio between the time scale for diffusion of
momentum (L2/ν) over the length scale L and the time scale for flow (L/U) over that
scale. The Strouhal number Sr estimates the ratio between the imposed time scale T and
the flow time scale L/U . If there is no imposed time scale (e.g., if the flow is generated
by a steady boundary motion or pressure gradient), then T = L/U and Sr = 1.

For water at room temperature, ν ≈ 10−6m2/s. If L ≈ 1μm, then Re � 1 as long
as U � 1m/s, a condition that is satisfied for a wide variety of microscale processes.
Thus, for these processes and under the condition Sr = O(1), the acceleration and
convective terms in the Navier–Stokes equation can be neglected and the momentum
balance reduces to the Stokes equation, which in dimensional form is given by

− ∇p + η∇2� + f = 0. (1.35)

Flow governed by the Stokes equation, or Stokes flow, is inertialess – the mass of
the fluid plays no role in its dynamics. Taking the divergence of (1.35) and applying
incompressibility shows that the pressure field in Stokes flow satisfies a Poisson equation:

∇2p = ∇ · f . (1.36)

Similarly, taking the Laplacian of the Stokes equation and applying (1.36) yields that

η∇2∇2� = ∇∇ · f − ∇2 f . (1.37)

If f = 0, this reduces to a biharmonic equation for �.
Another important case arises when Re � 1, but when forcing or motion at very short
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14 Kinematics, Balance Equations, and Principles of Stokes Flow

time scales is present so that ReSr−1 = O(1). In this case, the convective term in the
Navier–Stokes equation is negligible but the acceleration term is not, and we arrive at
the transient Stokes equation:

ρ
∂�

∂t
= −∇p + η∇2� + f . (1.38)

This equation is also sometimes called the linearized Navier–Stokes equation. The Stokes
and transient Stokes equations are the central equations of microscale fluid dynamics.
The remainder of this chapter, as well as Chapters 2 through 4, elaborate on properties
and solutions of the Stokes equations, while Chapter 5 addresses some key effects of
inertia.

1.2.3 Boundary Conditions

Because interfacial flows are not a central topic of this book, we provide only a cursory
treatment of boundary conditions at interfaces. Consider an interfacial surface SI that
forms the boundary between two materials or phases; the unit normal vector pointing
from material 1 to material 2 will be denoted nI , and � |1 and � |2 will be the velocities
of the two phases at the interface. For simplicity, we will only consider interfaces at
which no phase change is occurring and take the interface to be a material surface. Mass
conservation requires that

nI · � |1 = nI · � |2 (1.39)

at each point on the surface. This is called the no-penetration condition. This condition
provides no information about the tangential velocities at the interface, but experimental
observations indicate that for gases and small-molecule liquids under a wide range of
conditions, the tangential velocities of the two phases are the same. This is called the
no-slip boundary condition and can be written

(δ − nI nI ) · � |1 = (δ − nI nI ) · � |2, (1.40)

where (δ − nI nI ) is the orthogonal projection operator onto the plane locally parallel
to the interface. The combination of (1.39) and (1.40) implies that

� |1 = � |2. (1.41)

For a flat interface, or if interfacial tension effects are negligible, continuity of stress
across the interface is required by the momentum balance:

nI · σ |1 = nI · σ |2. (1.42)

If, for example, material 2 is a gas with very small viscosity compared to that of material
1, the viscous stress in the gas phase is often taken to be negligible, in which case the
normal and tangential components of (1.42) simplify to

p|1 = p|2, (1.43)
(δ − nI nI ) · (nI · τ) = 0. (1.44)
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1.3 General Properties of Stokes Flow 15

The latter equation expresses that there is no shear stress across the interface. For
example, in Cartesian coordinates, if the interface is the surface y = 0, then this
condition, after application of the no-penetration condition vy = 0, becomes

∂vx
∂ y
=
∂vz
∂ y
= 0.

For gas–liquid problems, this condition, rather than no-slip, is often applied on the liquid
phase, with the motion in the gas phase simply neglected.

Finally, for an interface between two fluids with interfacial tension γ, the interfacial
stress balance becomes

nI · (σ |2 − σ |1) + ∇Sγ + 2HγnI = 0. (1.45)

Here ∇S = (δ − nI nI ) · ∇ is the surface gradient operator and

H = −1
2
∇S · nI (1.46)

is the mean curvature of the interface. If fluid 1 is a bubble or drop of radius R at
equilibrium in a second fluid, (1.45) reduces at equilibrium to the elementary result

p|2 − p|1 = −
2γ
R
. (1.47)

The pressure in the bubble or drop is higher than in the surrounding fluid. Leal (2007)
provides a detailed discussion of transport at interfaces.

1.3 General Properties of Stokes Flow

The Stokes equation (1.35) displays a number of important general properties that follow
from the absence of inertial effects in the low Reynolds number or Stokes flow regime.
These properties arise repeatly as we analyze and predict the dynamics of small-scale
flow so we introduce them here.

1.3.1 Linearity and Reversibility

Consider flow in some domain VD with boundary conditions applied on SD. Leaving
aside for the moment the issue of boundary conditions, we observe that this system of
equations is linear, so it is straightforward to verify by substitution into the equations the
following properties:

1. Let f = 0. If (�1, p1) and (�2, p2) are both solutions, then so is (α�1+ β�2, αp1+ βp2),
where α and β are arbitrary constant scalars.

2. Now consider the case f � 0. If (�1, p1) is a solution for f = f 1 and (�2, p2) is a
solution for f = f 2, then (α�1 + β�2, αp1 + βp2) is a solution for f = α f 1 + β f 2,
again where α and β are arbitrary constant scalars.
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Figure 1.7 (a) Drag on an object with triangular cross-section. (b) Sedimenting pair of identical
rigid spheres.

Now turning to the issue of boundary conditions, for definiteness let us consider a no-slip
condition

� = �D for x ∈ SD

where �D is the specified velocity of points on the boundary – e.g., �D = 0 on a stationary
wall. Again, linearity allows us to state the following result:

3. Let f = 0. If (�1, p1) is a solution for �D = �D1 and (�2, p2) is a solution for �D = �D2,
then (α�1 + β�2, αp1 + βp2) is a solution for �D = α�D1 + β�D2.

These properties are all specific cases of the superposition principle for linear equations.
They will be very important as we construct solutions to the Stokes equation, as well as
in deriving the reversibility property that we describe now.

From linearity it is simple to see the following:

1. In a given domain, if �1 is a flow driven by forcing f 1, then the forcing − f 1 drives
the velocity −�1. I.e., the flow reverses.

2. Similarly, for f = 0, if �1 is a flow driven by boundary motion �D1, then the boundary
motion −�D1 drives the velocity −�1.

These simple statements summarize the reversibility principle for Stokes flow. Especially
in conjunction with symmetries of the flow and geometry, this principle can be used to
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1.3 General Properties of Stokes Flow 17

reverse
flow

Figure 1.8 Rigid sphere in shear flow near a plane rigid surface. By reversibility, the particle
velocity in the right figure must be the negative of that in the left.

draw important qualitative conclusions about forces and motions involving Stokes flow.
Here are some examples.

Drag on an Object.
Consider flow around a rigid object whose cross-section is a left-right symmetric isosce-
les triangle as shown in Figure 1.7(a). How does the drag change if we turn the object
upside down? Consider first the leftmost drawing. The object is held stationary against a
drag force Fdrag in a flow that has the uniform velocity �∞ = U∞ez far from the object.
By reversibility, if we change the sign of �∞, as shown in the center figure, the entire
velocity field will change sign, as will the pressure field, and accordingly the drag force
Fdrag will change sign. Now note that the right figure is equivalent to the center figure
viewed upside down and thus equivalent to the left figure except with the object turned
upside down. Therefore, we can can conclude that in Stokes flow, the drag force on this
object is the same when the object is upside down as when it is upright.

Sedimentation of a Pair of Rigid Spheres.
The left panel of Figure 1.7(b) shows a pair of identical rigid spheres sedimenting due
to gravity with velocities U1 and U2 in an unbounded flow. Will these particles move
relative to one another as they fall? If the sign of gravity is reversed (g → −g), then Stokes
flow reversibility implies that U1 → −U1 and U2 → −U2 as shown in the center panel.
Now, rotating the entire system around the midpoint between the two particles yields the
right panel. This configuration is identical to the left panel but with U1 replaced by U2
and vice versa. Therefore, U1 and U2 must be identical: the particles exhibit no relative
motion as they sediment. However, if an initially collinear arrangement of three or more
particles is considered, there is insufficient symmetry in the problem to conclude that
the particles all fall at the same velocity and in fact they will not (Problem 2.5).

Motion of a Rigid Sphere near a Wall.
We commonly encounter situations in which a particle is in a flow near a rigid wall, as
shown in Figure 1.8. Will a rigid sphere migrate in Stokes flow? Assume that in the flow
shown on the left, the particle migrates at wall-normal speed vW

y . In Stokes flow, when
we reverse the imposed velocity field as shown on the right, the wall-normal velocity
must become vW

y
′
= −vW

y (so if the particle in the left figure is moving away from the
wall, the particle in the right figure is moving toward it). But by symmetry, the left and
right figures are equivalent (they are two views of the same process), so vW

y
′
= vW

y . The
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(a) (b)

Figure 1.9 (a) Cyclic motion of two rods connected by a motorized hinge. (b) Cyclic motion of
three rods connected at two hinges.

only way for vW
y to satisfy both reversibility and symmetry is for it to be zero. By a

very similar argument, a sphere sedimenting near to a vertical rigid wall in Stokes flow
moves parallel to the wall. This argument relies both on reversibility and symmetry, the
latter of which is lost if the particle is not spherical. Furthermore, due to deformability
or inertial effects, particles that are spherical at rest can migrate toward or away from
walls during flow, as we will describe in Sections 4.4 and 5.4.

Locomotion of Linked Rigid Bodies.
Consider the two rods connected by a hinge shown. The hinge is “motorized” so that it
moves the rods relative to one another in a cyclic manner as shown in Figure 1.9(a). Can
this motion generate locomotion in Stokes flow? Consider the cycle starting from the
top figure in which the rods are aligned. Moving clockwise, the rods first fold upward
toward each other, then back down, passing through the initial conformation as they fold
downward. Then they fold back up to the straight initial conformation, completing one
cycle of motion. In Stokes flow, any net motion of the object as the rods move upward
away from the initial straight conformation will be exactly undone when the rods move
back down into the initial configuration and likewise when the rods move down. Since in
Stokes flow the fluid velocity is linearly proportional to the boundary velocity, this result
holds even if the rods are moved quickly upward and slowly downward as long as both
motions are slow enough that the inertia of the fluid remains negligible. More generally,
reciprocal motions of boundaries, that is, cyclic motions that appear the same running
forward or backward in time, lead to no net motion in Stokes flow (Purcell 1977, Lauga
& Powers 2009). On the other hand, for the three-rod object undergoing the sequence of
motions shown in Figure 1.9(b), no part of this cycle reverses the motion of the object
induced by an earlier part. With this nonreciprocal motion, Stokes flow reversibility does
not preclude net motion after one cycle. Indeed, this object will display a net translation
through the fluid, a crude form of locomotion.

1.3.2 Stress Equilibrium

We noted earlier that at low Reynolds number, the transport of momentum by viscous
diffusion is very rapid compared to transport by convection. An important consequence
of this fact is known as stress equilibrium. To elucidate this mathematically, we observe
that in the absence of body forces, the Stokes equation (1.35) is equivalent to the
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statement

∇ · σ = 0. (1.48)

(The Stokes equation in its usual form is recovered by inserting the Newtonian constitu-
tive equation σ = −pδ + 2ηE.) Integrating this equation over an arbitrary volume V in
the fluid and then applying the divergence theorem yields that∫

S

n · σ dS =
∫
S

t dS = FS = 0. (1.49)

That is, the sum of forces on the boundary of any domain in the fluid is always zero –
the stresses are in equilibrium. If body forces are present, then

∇ · σ + f = 0, (1.50)

and repeating the preceding steps yields that∫
S

t dS +
∫
V

f dV = 0. (1.51)

The sum of the stresses and the body forces is zero: any body forces exerted within the
fluid are instantaneously transmitted to the boundary or, if the domain is unbounded, to
infinity. This point will be revisited in Section 5.1.

1.3.3 Lorentz Reciprocal Relations

The divergence theorem provides an important link between behavior in the interior of a
domain and at its boundaries. Generalizations of this theorem provide such relationships
for multiple functions. For example, given two scalar fields φ′ and φ′′, Green’s second
identity, (A.17), states that∫

V

(
φ′∇2φ′′ − φ′′∇2φ′

)
dV =

∫
S

(
φ′n · ∇φ′′ − φ′′n · ∇φ′) dS.

Letting u = −∇φ, this becomes∫
V

(
φ′∇ · u′′ − φ′′∇ · u′) dV =

∫
S

(
φ′n · u′′ − φ′′n · u′) dS. (1.52)

If both φ′ and φ′′ are solutions to Laplace’s equation, ∇2φ = 0, then this identity gives
us a relationship between φ′ and φ′′:∫

S

(
φ′n · u′′ − φ′′n · u′) dS = 0. (1.53)

An analogous set of results applies to the Stokes equation. Consider velocity fields �′
and �′′ and their corresponding stress tensors σ′ and σ′′. Beginning with an expression
analogous to the left-hand side of (1.52), we can use the product rule and divergence
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theorem to show that8∫
V

(
�′ · (∇ · σ′′) − �′′ · (∇ · σ′)) dV =

∫
S

(
�′ · (n · σ′′) − �′′ · (n · σ′)) dS

−
∫
V

(∇�′ : σ′′ − ∇�′′ : σ′
)

dS. (1.54)

Inserting the Newtonian form of the stress tensor, (1.28), the last term on the right-hand
side can be written∫

V

(∇�′ : σ′′ − ∇�′′ : σ′
)

dV

=

∫
V

(
∇�′ : (−p′′δ + η(∇�′′ + ∇�′′T)) − ∇�′′ : (−p′δ + η(∇�′ + ∇�′T)

)
dV .

The terms containing pressure vanish, because ∇� : δ = ∇ · � = 0, and the other terms
cancel because ∇�′ : ∇�′′T = ∇�′T : ∇�′′. Therefore, this entire integral vanishes,
reducing (1.54) to∫

V

(
�′ · (∇ · σ′′) − �′′ · (∇ · σ′)) dV =

∫
S

(
�′ · (n · σ′′) − �′′ · (n · σ′)) dS.

(1.55)
This is the most fundamental and general of the Lorentz reciprocal relations; it is valid
for any incompressible Newtonian flow. The other Lorentz reciprocal relations, which
we present now, are special cases of (1.55) for solutions of the Stokes equation with no
imposed body force: ∇ · σ′ = ∇ · σ′′ = 0. Now the left-hand side of (1.55) vanishes, so∫

S

(
�′ · (n · σ′′) − �′′ · (n · σ′)) dS = 0. (1.56)

The quantity n · σ is the traction vector t , so (1.56) can be rewritten∫
S

(
�′ · t ′′ − �′′ · t ′) dS = 0. (1.57)

Applying the divergence theorem to (1.56) leads to the volumetric form∫
S

(∇ · (σ′′ · �′) − ∇ · (σ′ · �′′)) dV = 0. (1.58)

Equations (1.55)–(1.58) are widely used in situations where the primed problem has a
known solution and we seek information about a related problem, which is taken to be
the double-primed problem. Examples of such applications are found in Sections 3.5,
4.1, 4.6, and 6.4.

1.3.4 Mechanical Energy Balance and the Minimum Dissipation Principle

Many examples can be found in which physical laws can be stated as variational prin-
ciples. For example, thermodynamic equilibrium is the state that maximizes entropy
subject to various constraints (Robertson 1993), and Newton’s equations of motion can
be derived from Hamilton’s principle of least action (Goldstein 1980). In the context of
8 Equation (A.4) defines the double dot product as used in this book.
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fluid dynamics, a natural question to ask is, “what is the flow that minimizes the energy
dissipation rate subject to the constraint of incompressibility?"

To address this question, we first consider the mechanical energy balance for an
incompressible continuum, obtained by taking the dot product of the Cauchy momentum
equation with the velocity � and rearranging:

D
Dt

(
1
2
ρv2
)
= � · ∇ · σ + � · f . (1.59)

Here v2 = � · �. The left-hand side of this expression is simply the rate of change of
kinetic energy of a material element. Integrating over the entire domain VD of flow and
applying the divergence theorem, we find that∫

VD

D
Dt

(
1
2
ρv2
)

dV =
∫
SD

n · σ · � dS +
∫
VD

� · f dV − Φv, (1.60)

where

Φv =

∫
VD

σ : ∇� dV . (1.61)

The left-hand side of (1.60) is the total rate of change of kinetic energy of the material.
The first two terms on the right-hand side are the rates of work on the material exerted
across the domain boundary and via the body forces within the material. The last term
is the one of primary interest here: it is the rate of interconversion between kinetic and
internal energy (Bird et al. 2002). For an incompressible Newtonian fluid, the expression
for Φv reduces to

Φv =

∫
V

τ : ∇� dV =
∫
V

2ηE : ∇� dV =
∫
V

η
(
∇� + ∇�T

)
: ∇� dV, (1.62)

and it is straightforward to show that this is always nonnegative. (For a material with
some elasticity,Φv can be negative, in which case stored elastic energy is being converted
to mechanical energy.)

To address the previously posed question, we wish to minimize Φv subject to the
incompressibility constraint, and we will consider the case of a given velocity on the
boundary. Since incompressibility must apply at every point in the fluid, the Lagrange
multiplier associated with that constraint must be a function of position. Denoting this
as λ(x), we write the objective functional to be extremized as

I =
∫
V

(
η
(
∇� + ∇�T

)
: ∇� − λ(x)∇ · �

)
dV, (1.63)

subject to incompressibility and the boundary condition

� = �D (1.64)

on the boundary SD. This is a standard application of the calculus of variations (Green-
berg 1978).

It will be convenient to work in index notation. We define a comparison function

Vi = �i + εwi,
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where wi = 0 on the boundary but is otherwise arbitrary, and �i is the velocity field that
yields the extremum. Since wi = 0 on the boundary, Vi = �i = vDi there. We seek the
equation that must be satisfied by �i such that

I (ε ) =
∫
V

(
η

(
∂Vi

∂x j
+
∂Vj

∂xi

)
∂Vi

∂x j
− λ(x)

∂Vi

∂xi

)
dV

is an extremum. This occurs when
dI
dε

�����ε=0
= 0.

Substituting in the definition of Vi , this equation becomes∫
V

[
2η
(
∂�i
∂x j
+
∂�j

∂xi

)
∂wi

∂x j
− λ ∂wi

∂xi

]
dV = 0.

The first term can be written using the product rule:∫
V

[
∂

∂x j

((
∂�j

∂xi
+
∂�i
∂x j

)
wi

)
− wi

(
∂

∂x j

(
∂�j

∂xi
+
∂�i
∂x j

))]
dV,

and applying the divergence theorem yields:∫
S

n j

(
∂�j

∂xi
+
∂�i
∂x j

)
wi dS −

∫
V

w j

(
∂

∂x j

(
∂�j

∂xi
+
∂�i
∂x j

))
dV .

Similarly, the second term becomes

−
∫
S

n jw jλ dS +
∫
V

w j
∂λ

∂x j
dV .

The boundary terms vanish because wi = 0 there, so substituting these expressions into
the extremality condition and applying incompressibility yields that∫

V

⎡⎢⎢⎢⎢⎣−2η
∂2�i

∂x2
j

+
∂λ

∂xi

⎤⎥⎥⎥⎥⎦ wi dV = 0.

Since wi is arbitrary, the term in the square brackets must be zero everywhere in the
domain. Letting λ = 2p, we therefore have that

= η
∂2�i

∂x2
j

− ∂p
∂xi
= 0.

This is the Stokes equation, with pressure appearing as the Lagrange multiplier needed to
satisfy incompressibility. Finally, to show that the solution to the Stokes equation yields
the minimum dissipation, it suffices to show that any other velocity field that satisfies
the boundary conditions has greater dissipation (Problem 1.8). Thus the minimum dissi-
pation principle states that the incompressible Newtonian flow satisfying the boundary
condition (1.64) that has the least dissipation is the solution to the Stokes flow problem
in that geometry.

It is important to note that this minimum dissipation result does not imply, for example,
that a flowing particle suspension minimizes dissipation, because in that problem the
boundaries are moving with time and the preceding statement applies only to an instant
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of time – the aforementioned minimization statement does not incorporate the time-
dependent motion of the particles, so it says nothing about the suspension dynamics as
a whole.

Problems

1.1 Find the eigenvalues and eigenvectors of (1.7) for arbitrary α ∈ [−1, 1] and use the
results to show that Figure 1.4 is correct.
1.2 Let A(X (t), t) = F(X (t), t) · F(X (t), t)T. Show that

dA(X (t), t)
dt

=
(
A(X (t), t) · ∇�(X (t), t) + ∇�T(X (t), t) · A(X (t), t)

)
.

Since A(X (0), 0) = F(X (0), 0) · F(X (0), 0)T = δ = B(X (0), 0), this is equivalent to
deriving (1.19).
1.3 The inverse B−1 of the Green tensor is called the Piola tensor. Show that the
evolution equation for B−1, which defines the lower or covariant convected derivative,
is given by

DB−1(x, t)
Dt

+
(
B−1(x, t) · ∇�T(x, t) + ∇�(x, t) · B−1(x, t)

)
=
(
B−1
) (1)
=
Δ

B−1 = 0.
(1.65)

Hint: D(B · B−1)/Dt = 0.
1.4 In the absence of molecular diffusion, the evolution of the concentration c(x, t) of
a solute in an incompressible fluid is given by

∂c
∂t
+ � · ∇c = 0.

Consider a linear flow field � = L · x and an initial concentration field that varies
sinusoidally with position, so it can be written as c(x, 0) = c0eik ·x + c.c. Seeking a
solution c(x, t) = c0eik (t) ·x + c.c., find the evolution equation for the time-dependent
wavevector k (t). How is this vector related to gi (t) and/or h j (t)?
1.5 (a) For the general shear flow case (no eigenvalues of L with positive real parts),

we can write

L =
⎡⎢⎢⎢⎢⎢⎢⎣
0 a 0
0 0 b
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
If a and b are constant, how fast can a material line stretch in this flow?

(b) Now, allowing a general time-dependent velocity gradient, use (1.11) to find an
expression for the time averaged stretch rate

σ = lim
t→∞

1
t

ln
(
| |ΔX (t) | |
| |ΔX (0) | |

)
in terms of F(t) and ΔX (0). If σ > 0 for some initial material line orientation
ΔX (0), then the material line stretches (and nearby fluid elements diverge) expo-
nentially fast, on average. For each trajectory in a flow, there are three independent
values of σ; they are called Lyapunov exponents.
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(c) Find the Lyapunov exponents for uniaxial extensional flow with extension rate ε̇ ,
for which there is an orthogonal coordinate system in which

L = ε̇
⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 − 1

2 0
0 0 − 1

2

⎤⎥⎥⎥⎥⎥⎥⎦ .
(d) The end-to-end vector Q for a simple model of polymer molecule in flow (Sec-

tion 8.6) satisfies
dQ
dt
= L · Q − 2

λ
Q(t) + ξ (t),

where λ is a relaxation time for the polymer and ξ (t) is a rapidly fluctuating term
that comes from Brownian motion (Chapter 6). Neglecting this term (which does
not affect the final result), find a criterion relating σ and λ that determines whether
or not a polymer molecule will stretch indefinitely along a trajectory. Hint: Use an
integrating factor.

1.6 The angular momentum of a material volume VM with respect to some fixed
origin is ∫

VM

x × (ρ �) dV .

If we allow external torques to be imposed at points within a material (this could occur,
for example, by application of an external electric field to a fluid of polar molecules),
then the conservation of angular momentum in this volume can be written in index
notation as

d
dt

∫
VM

ε i jk x j (ρ�k ) dV =
∫
VM

ε i jk x j (ρgk ) dV +
∫
SM

ε i jk x j (nlσlk ) dS +
∫
VM

ci dV,

(1.66)
where c(x) is the torque density field (also called a couple density field or a body torque
field).
(a) Use the divergence theorem to show that∫

SM

ε i jk x j (nlσlk ) dS =
∫
VM

(
ε ilkσlk + ε i jk x j

(
∂σlk

∂xl

))
dV .

(b) Use this result along with (1.66) to show that

ε ilkσlk + ci = 0. (1.67)

If there are no couples, ci = 0 and the only general way to satisfy this equation is
to take σlk = σkl . Therefore, in the absence of external torques, the stress tensor
must be symmetric. Furthermore, multiplying by ε imn and using (A.8) yields that

σmn − σnm + ε imnci = 0, (1.68)

so even in the presence of external torques, the stress tensor can only be asymmetric
if it depends on c in the specific manner shown here.
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Figure 1.10 A microswimmer. Each limb can pivot
around its junction with the body in the plane of the
page.

1.7 A friend of yours who is a whiz at nanofabrication has constructed a small “swim-
ming” device made of rods connected by hinges such that the “limbs” of the device can
be moved by tiny motors – see Figure 1.10. Each limb can only move in the plane of
the paper. But alas, your friend doesn’t know any fluid mechanics – the protocol that
was designed to sequentially move the limbs doesn’t work, and the “swimmer” flops
pathetically back and forth in the fluid. Design a limb motion protocol (i.e., a repeating
sequence of limb motions) that will move the swimmer in one direction on average at
zero Reynolds number. Also, give an example of a protocol that will not lead to any net
motion.
1.8 (a) Show that for viscous incompressible flow the rate of conversion of mechan-

ical to internal energy

Φv =

∫
VD

σ : ∇� dV

is nonnegative.
(b) Show that for an incompressible flow∫

VD

E : ∇� dV =
∫
VD

E : E dV,

where E is the deformation rate. It will be easier to work with the second expression
in the next part of the problem.

(c) Now consider incompressible velocity fields � and �′, where � solves the Stokes
equation and �′ does not (but both � and �′ satisfy the same boundary conditions).
Show that the dissipation rate for �′ is always greater than or equal to that for �.
Start with the identity that∫
VD

E′ : E′ dV−
∫
VD

E : E dV =
∫
VD

(E′−E) : (E′−E) dV+2
∫
VD

(E′−E) : E dV

and show that the right-hand side is nonnegative. This completes the proof that the
Stokes equation yields the flow that minimizes dissipation.
Hint: Notice that

∂(�i − �′i )
∂x j

Ei j =
∂

∂x j

(
(�i − �′i )Ei j

)
− (�i − �′i )

∂Ei j

∂x j
.

The first of these terms is a divergence and the second contains ∂Ei j

∂x j
= 1

2∇
2�i .
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