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Abstract

We generate an algebra on blood phenotypes with multiplication based on the human
ABO-blood group inheritance pattern. We assume that gametes are not chosen randomly
during meiosis. We investigate some of the properties of this algebra, namely, the set of
idempotents, lattice of ideals and the associative enveloping algebra.
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1. Introduction

Before the discovery of blood groups more than a century ago by Landsteiner [9], all
human blood was assumed to be the same. A blood group system is a classification
of blood based on the presence or absence of antigenic substances on the surface of
red blood cells. Although there are numerous blood group systems, the ABO-blood
group system is one of the two most important systems in human blood transfusion.
Presence and absence of two different types of agglutinogens, type “A” and type “B”,
determines four major ABO-blood groups. Group A (respectively, group B) admits
only the A (respectively, B) antigen on red cells and group AB has both A and B
antigens. The last group that lacks both A and B antigens is called group O after the
German word “Ohne”, which means “without”.

Establishing the genetics of the ABO-blood group system was one of the first
breakthroughs in Mendelian genetics. There are three alleles or versions of the ABO-
blood group genes – A, B and O. The allele O is recessive to A and B, and alleles A and
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B are co-dominant. It is known that humans are diploid organisms, which means that
they carry a double set of chromosomes. Therefore, blood genotypes are determined
by two alleles with six possible combinations: AA, BB, OO, AB, OA and OB. Since A
and B dominate over O, the genotypes AO and AA express blood group A (phenotype
A) and BO together with BB corresponding to group B (phenotype B).

A number of papers are devoted to the study of distribution of blood group
frequencies in different countries and ethnicities [3, 4, 8]. Some methods for estimating
phenotype probabilities for ABO groups are developed and compared by Greenwood
and Seber [7]. Assuming the allele probabilities to be p, q and r for the genes A, B,
and O, respectively, they obtain some estimates on the probabilities that a person has
a corresponding phenotype.

The algebraic relation 1 +
√

O =
√

A +
√

B for the equilibrium blood group
frequencies was established by Bernstein [1]. The question of how the frequencies of
human blood genotypes evolve after several generations in a population, is considered
by Sadykov [12]. He establishes a complete list of all polynomial relations between
blood genotype frequencies depending on both ABO and RhD blood group systems.

The evolution (or dynamics) of a population comprises a determined change of state
in the next generations as a result of reproduction and selection. This evolution of a
population can be studied by a dynamical system (iterations) of a quadratic stochastic
(a so-called evolutionary) operator [2].

Yamaguchi et al. [13, 14] describe some instances when two alleles A and B are
inherited from one parent. Therefore, generally speaking, the pattern of heredity
of blood groups are unpredictable. Using specific models of heredity and specific
collected data which contains these mutations, a limiting distribution of blood groups
is studied by Ganikhodjaev et al. [5]. Throughout this article, we assume that a child
obtains exactly one allele from each parent.

Most of the papers [1–3, 7, 9, 12] on this topic are dedicated to cases in which,
during the fertilization, parents’ gametes are chosen randomly and in an independent
way. Mendel’s first law allows us to quantify the types of gametes an individual can
produce. For example, a person with genotype OA during meiosis produces gametes
O and A with equal probability 1/2, while an individual with blood group A during
meiosis produces gamete O with probability 1/4.

In this paper, we consider the case which deviates from Mendelian rules and allows
some competition for gametes during meioses. We assume that all parents of blood
group A and B contribute gamete O to the child with a constant probability α and that
the allele A is selected with probability β from parents of group AB during meiosis. In
the case of Mendelian genetics, β = 1/2 and α = 1/4. Further, considering the blood
groups as independent basis vectors, we generate a four-dimensional vector space over
R and introduce a commutative and nonassociative multiplication, assigning to basis
vectors a linear combination of the possible phenotypes of progeny with corresponding
probabilities.

After applying some linear basis-transformations, we obtain an algebra that admits
a simpler table of multiplication. We describe the lattice of ideals of this algebra
in Theorem 5.4 and observe that it changes depending on the values of the initial
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parameters. Finally, in Section 7, we establish that two such distinct algebras are not
isomorphic, unless the second parameters of these algebras add up to one and the first
parameters are equal.

2. Algebras of ABO-blood group

Consider the blood groups O, A, B and AB as basis elements of a four-dimensional
vector space and a bilinear operation ◦ as the result of meiosis.

In this paper, we assume that all parents of blood groups A and B have equal
probabilities to contribute the allele O to a child’s genotype and we denote this
probability by pO|A = pO|B = α. Furthermore, we assume that all parents with group
AB contribute the allele A during meiosis with equal probability, and we denote this
probability by pA|AB = β. Under these assumptions, we have the following:

(i) O ◦ O = O;
(ii) O ◦ A = pO|AO + (1 − pO|A)A = αO + (1 − α)A;

(iii) O ◦ B = pO|BO + (1 − pO|B)B = αO + (1 − α)B;
(iv) O ◦ AB = pA|ABA + pB|ABB = βA + (1 − β)B;
(v) A ◦ A = p2

O|AO + (1 − p2
O|A)A = α2O + (1 − α2)A;

(vi) A ◦ B = pO|A pO|BO + pA|A pO|BA + pO|A pB|BB + pA|A pB|BAB

= α2O + α(1 − α)A + α(1 − α)B + (1 − α)2AB;
(vii) A ◦ AB = pA|ABA + pO|A pB|ABB + pA|A pB|ABAB

= βA + α(1 − β)B + (1 − α)(1 − β)AB;
(viii) B ◦ B = p2

O|BO + (1 − p2
O|B)B = α2O + (1 − α2)B;

(ix) B ◦ AB = pO|B pA|ABA + pB|ABB + pB|B pA|ABAB
= αβA + (1 − β)B + (1 − α)βAB; and

(x) AB ◦ AB = p2
A|ABA + p2

B|ABB + 2pA|AB pB|ABAB

= β2A + (1 − β)2B + 2β(1 − β)AB.

Definition 2.1. A commutative four-dimensional R-algebra with basis {O, A, B, AB}
and with multiplication ◦ satisfying equalities (i)–(x), is called a generalized ABO-
blood group algebra (GBGA) and is denoted by B(α, β).

Remark 2.2. The algebra B(α, β) is not associative for any parameters 0 ≤ α, β ≤ 1.
Indeed, assuming associativity, one obtains α = 0 from the equation O ◦ AB = O ◦ (O ◦
AB). Moreover, (A ◦ B) ◦ B = A ◦ (B ◦ B) = AB and (B ◦ A) ◦ A = B ◦ (A ◦ A) = AB
imply that βA + (1 − β)AB = AB = (1 − β)B + βAB, which does not hold for any value
of β.

If, during meiosis, we assume that parents’ gametes are chosen randomly and
independently, then α = 1/4 and β = 1/2.

Definition 2.3. A GBGA B(1/4, 1/2) is called an ABO-blood group algebra (BGA).
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From now on, we assume that 0 < α, β < 1. Note that if we interchange A and B and
β to 1 − β = 1 − pA|AB = pB|AB, we obtain the same products as above, that is, we have
B(α, β) � B(α, 1 − β). Later, in Section 7, we establish that no other isomorphisms
between two GBGAs exist for different values of the parameters α and β.

We consider the algebraic relations defining a GBGA from a different perspective.
Let x1, x2, x3, x4 be the corresponding proportions of O, A, B, AB phenotypes,
respectively, in one population. Then, for the underlying allele frequencies,

pO = x1 + αx2 + αx3,

pA = (1 − α)x2 + βx4,

pB = (1 − α)x3 + (1 − β)x4.

Straightforward computation of the frequencies of O, A, B and AB phenotypes in
zygotes of the next generation (state) yields an extension of the Hardy–Weinberg Law:
that is, 

x′1 = p2
O,

x′2 = p2
A + 2pA pO,

x′3 = p2
B + 2pB pO,

x′4 = 2pA pB.

Consider S 3 = {x = (x1, x2, x3, x4) ∈ R4 | x1 + x2 + x3 + x4 = 1, xi ≥ 0, 1 ≤ i ≤ 4}, a
three-dimensional canonical simplex. Following Lyubich [11], we have a so-called
evolutionary (quadratic stochastic) operator, V : S 3 → S 3, describing an evolution of
the population mapping a state x = (x1, x2, x3, x4) to the next state V(x) = (x′1, x

′
2, x
′
3, x
′
4).

By linearity, V can be extended to R4, if necessary.
The relation that establishes a connection between the evolutionary operator V and

the multiplication operator ◦ of a GBGA is x ◦ x = V(x) and, consequently,

x ◦ y = 1
4 {V(x + y) − V(x − y)}.

In order to simplify our investigation of the structure of a GBGA, we make the
linear basis-transformation

o = O,

a =
1

(1 − α)2 (O − A),

b =
1

(1 − α)2 (O − B),

ab =
1

(1 − α)3 (αO − βA − (1 − β)B + (1 − α)AB),
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and obtain a simpler table of multiplication of a GBGA given by

B′(λ, β) :



o ◦ o = o,
o ◦ a = a ◦ o = λa,
o ◦ b = b ◦ o = λb,
a ◦ a = a,
b ◦ b = b,

a ◦ b = b ◦ a =
λ − β

λ
a +

λ − (1 − β)
λ

b + ab,

where λ = 1 − α, and the omitted products are assumed to be zero.
Due to the convenience of the above products, we now investigate the algebraic

properties of the algebra B′(λ, β). Note that O ∈ B(α, β) and o ∈ B′(λ, β) are nonzero
elements of the algebras.

3. Absolute nilpotent and idempotent elements
Taking an initial point x ∈ S 3, one can consider its trajectory {Vk(x) | k ≥ 1}. The

study of limit behaviour of trajectories of quadratic stochastic operators play an
important role in several questions of population genetics. Trajectories of genotype
frequencies are studied by Ganikhodjaev et al. [6] and Lyubich [10]. Note that if the
limit point of a trajectory exists, then it is a fixed point: that is, x = V(x) = x ◦ x.

Definition 3.1. An element x of an algebra (A,◦), with x ◦ x = µx, is called an absolute
nilpotent if µ = 0 and idempotent if µ = 1.

We see that the set of absolute nilpotent elements of a GBGA constitutes the kernel
of V , and idempotent elements are fixed points of V . From the table of multiplication
of GBGA, it follows that ab is annihilated in the algebra B′(λ, β) and is an absolute
nilpotent element, while o, a and b are idempotent elements.

Theorem 3.2. The set of absolute nilpotent elements of B′(λ, β) is 〈ab〉.

Proof. If ξo + n, where n belongs to the ideal 〈a, b, ab〉, is an absolute nilpotent
element, then (ξo + n)2 = ξ2o + 2ξo ◦ n + q ◦ n ≡ ξ2o mod 〈a, b, ab〉, which implies
that ξ = 0.

Let n = xa + yb + zab be an absolute nilpotent, where x, y, z ∈ R. Then

n ◦ n = x2a + y2b + 2xya ◦ b

=

{
x2 +

2xy
λ

(λ − β)
}
a +

{
y2 +

2xy
λ

(λ + β − 1)
}
b + 2xyab = 0.

Hence, we need to solve the system of equations
0 = x2 +

2xy
λ

(λ − β),

0 = y2 +
2xy
λ

(λ + β − 1),

0 = 2xy.
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Clearly, the only solutions are the triples (0, 0, z). This completes the proof of the
theorem. �

Definition 3.3. Denote by P = {(λ, β) | 0 < λ ≤ 1/3, β = (1 ±
√

(1 − λ)(1 − 3λ))/2}.

Next, we describe the idempotents of B′(λ, β).

Theorem 3.4. For the algebra B′(λ, β), the set I of idempotents depending on the
parameters λ, β is as follows:

• I = {o, a, b} if (λ, β) ∈ {(1/2, 1/4), (1/2, 3/4)};
• I = {o, a, b, j0} if λ = 1/2, β , 1/4, 3/4;
• I = {o,a,b,o + (1 − 2λ)a,o + (1 − 2λ)b} if (λ, β) ∈ P ∪ {(2β, β) | β , 1/4} ∪ {(2 −

2β, β) | β , 3/4}; and
• I = {o, a, b, o + (1 − 2λ)a, o + (1 − 2λ)b, j0, j1} otherwise;

where, for ξ = 0, 1,

jξ = ξo + ρξ(2β − λ)a + ρξ(2 − 2β − λ)b + 2ρ2
ξ(2β − λ)(2 − 2β − λ)ab

and

ρξ =
λ(1 − 2ξλ)

−3λ2 + 4β2 + 4λ − 4β
.

Proof. As in the proof of Theorem 3.2, we deduce that an idempotent admits the form
i = ξo + xa + yb + zab with ξ = ξ2. In particular, ξ = 0 or ξ = 1.

The equation i ◦ i = i yields the system of equations
x = x2 +

2xy
λ

(λ − β) + 2ξλx,

y = y2 +
2xy
λ

(λ + β − 1) + 2ξλy,

z = 2xy.

(3.1)

The first two equations of (3.1) transform into

0 = x
{
x + 2y

λ − β

λ
+ (2ξλ − 1)

}
,

0 = y
{
y + 2x

λ + β − 1
λ

+ (2ξλ − 1)
}
,

respectively. If x = 0, then z = 0, and we obtain y{y + (2ξλ − 1)} = 0. Further, either
y = 0 or y = 1 − 2ξλ. This yields two idempotents ξo and ξo + (1 − 2ξλ)b. Taking into
account the possible values for ξ, we conclude that o, b, o + (1 − 2λ)b are idempotents.

If y = 0, then z = 0, and we obtain x{x + 2y(λ − β)/λ + (2ξλ − 1)} = 0. Further,
either x = 0 or x = 1 − 2ξλ. This yields the idempotents ξo and ξo + (1 − 2ξλ)a. Since
ξ = 0, 1, we get that a and o + (1 − 2λ)a are idempotents.
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Now we consider the case when xy , 0. We obtain
x + 2

λ − β

λ
y = 1 − 2ξλ,

2
λ + β − 1

λ
x + y = 1 − 2ξλ.

(3.2)

In order to solve this system, we consider the following two cases.

Case 1. Let det
(

1 2(λ−β)/λ
2(λ+β−1)/λ 1

)
, 0.

That is, 1 − (4/λ2)(λ − β)(λ + β − 1) , 0. Then we have a unique solution of (3.2),
namely,

x = ρξ(2β − λ) and y = ρξ(2 − 2β − λ),

where
ρξ =

λ(1 − 2ξλ)
−3λ2 + 4β2 + 4λ − 4β

.

Hence, z = 2xy = 2ρ2
ξ(2β − λ)(2 − 2β − λ). Thus the desired idempotents are jξ =

ξo + xa + yb + zab, where ξ = 0, 1.
If λ = 2β, then jξ = ξo + (1 − 2ξλ)b, which, for possible values of ξ, yields the

already listed idempotents b and o + (1 − 2λ)b. Similarly, λ = 2 − 2β does not
permit jξ = ξo + (1 − 2ξλ)a to be distinct idempotents from the already listed a and
o + (1 − 2λ)a. If λ = 1/2, then j1 = o, while

j0 =
4β − 1

1 + 4(1 − 2β)2 a +
3 − 4β

1 + 4(1 − 2β)2 b + 2
4β − 1

1 + 4(1 − 2β)2 ·
3 − 4β

1 + 4(1 − 2β)2 ab.

Moreover, j0 = b if β = 1/4, and j0 = a if β = 3/4.

Case 2. Let det
(

1 2(λ−β)/λ
2(λ+β−1)/λ 1

)
= 0.

This condition is equivalent to (1 − 3λ)(1 − λ) = (2β − 1)2, for which it is necessary
and sufficient that 0 < λ ≤ 1/3 and β = {1 ±

√
(3λ − 1)(λ − 1)}/2. So the determinant

is zero if and only if (λ, β) ∈ P.
Note that one obtains the first equality by multiplying the second one with

2(λ − β)/λ. Thus we have 2(λ − β)(1 − 2ξλ)/λ = 1 − 2ξλ; consequently, either
2(λ − β)/λ = 1 or 1 − 2ξλ = 0. Simple observations lead to a contradiction with
(λ, β) ∈ P. This completes the proof of the theorem. �

4. Plenary powers
In this section, we investigate which states, x ∈ R4, admit zero as a limit point after

a finite number of iterations, that is, Vk(x) = 0 for some k ≥ 1. Recall from Section 3
that the kernel of V consists of the absolute nilpotent elements.

Definition 4.1. The plenary powers of an arbitrary element m in B′(λ, β) are defined,
recursively, as

m[1] = m, m[n+1] = m[n] ◦ m[n], n ≥ 1.

An element m in B′(λ, β) is called solvable if there exists n ∈ N such that m[n] = 0, and
the least such number n is called its solvability index.
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Note that absolute nilpotent elements are solvable with solvability index two.

Theorem 4.2. For an algebra of ABO-blood groupB′(λ, β) to admit a solvable element
of index n ≥ 3, it is necessary and sufficient that (λ, β) ∈ P, where P is the set introduced
in Definition 3.3. Moreover, solvable elements of degree n are

−2n−4
(
λ + β − 1

λ

)n−4

ta + tb + sab, where t, s ∈ R, t , 0.

Proof. Let m be a solvable element in B′(λ, β) with solvability index n. Similarly, as
in the proof of Theorem 3.2, we assume that a solvable element does not contain the
component o. We set m[k] = Xka + Ykb + Zkab for all 1 ≤ k ≤ n.

In order to obtain recursive relations between the pairs (Xk+1, Yk+1) and (Xk, Yk) for
1 ≤ k ≤ n − 1, we consider the following equivalences modulo the ideal 〈ab〉, given by

Xk+1a + Yk+1b ≡ m[k+1] = m[k] ◦ m[k]

≡ (Xka + Ykb) ◦ (Xka + Ykb)

≡ Xk

(
Xk + 2

λ − β

λ
Yk

)
a + Yk

(
2
λ + β − 1

λ
Xk + Yk

)
b mod 〈ab〉.

Therefore we obtain a system of equations, for 1 ≤ k ≤ n − 1,

S k :


Xk+1 = Xk

(
Xk + 2

λ − β

λ
Yk

)
,

Yk+1 = Yk

(
2
λ + β − 1

λ
Xk + Yk

)
.

Since we have described all absolute nilpotent elements, we assume that n ≥ 3. Due
to m[n−1] being an absolute nilpotent element, we know that m[n−1] ≡ 0 mod 〈ab〉, so
Xn−1 = Yn−1 = 0. Therefore, the system S n−2 has the form

0 = Xn−2

(
Xn−2 + 2

λ − β

λ
Yn−2

)
,

0 = Yn−2

(
2
λ + β − 1

λ
Xn−2 + Yn−2

)
.

Obviously, either Xn−2Yn−2 , 0 or Xn−2 = Yn−2 = 0. But, in the latter case, m[n−2] =

Zn−2ab and m[n−1] = 0, which is a contradiction. Therefore, Xn−2Yn−2 , 0 and we have
the linear system of equations

0 = Xn−2 + 2
λ − β

λ
Yn−2,

0 = 2
λ + β − 1

λ
Xn−2 + Yn−2.

If the determinant of this system is not zero, then we obtain a trivial solution which
contradicts our assumption. Therefore, the determinant is zero, that is, (λ, β) ∈ P, and
we get a solution (Xn−2,Yn−2) = (−2(λ − β)t/λ, t) for some t ∈ R∗.
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Let n = 3. Then an element m = X1a + Y1b + Z1ab is solvable if and only if the
following hold:

(1) (λ, β) ∈ P; and
(2) (X1,Y1,Z1) = (−2(λ − β)t/λ, t, s) for free parameters t and s, where t , 0.

Now let us assume that n ≥ 4. Using the singularity of the determinant, we
transform the last equation in the system S k to the form

Xk+1 = Xk

(
Xk + 2

λ − β

λ
Yk

)
,

Yk+1 = 2
λ + β − 1

λ
Yk

(
Xk + 2

λ − β

λ
Yk

)
,

for any 1 ≤ k ≤ n − 1. Recall that here we consider the case XkYk , 0 for 1 ≤ k ≤ n − 2
(otherwise, the solvability index is less than n). Since both sides of each of the equation
in the above system are assumed to be nonzero for 1 ≤ k ≤ n − 3, we obtain

Xk

Yk
= 2 ·

λ + β − 1
λ

·
Xk+1

Yk+1
for any 1 ≤ k ≤ n − 3.

Therefore,

X1

Y1
=

(
2
λ + β − 1

λ

)n−3 Xn−2

Yn−2
=

(
2
λ + β − 1

λ

)n−3(
−2

λ − β

λ

)
= −

(
2
λ + β − 1

λ

)n−4
.

Hence, for an element m = Xa + Yb + Zab to be solvable with solvability index
n ≥ 4, it is necessary and sufficient for the following to hold:

(1) (λ, β) ∈ P; and

(2) (X,Y,Z) =

(
− 2n−4

(
λ + β − 1

λ

)n−4
t, t, s

)
, where t, s ∈ R, t , 0.

In fact, if n = 3, then

−2n−4
(
λ + β − 1

λ

)n−4
=

(
−2 ·

λ + β − 1
λ

)−1
= −2 ·

λ − β

λ
.

This completes the proof of the theorem. �

5. Ideals of B′(λ, β)

In this section, we determine all ideals of B′(λ, β). The lattice of ideals depends on
values that the parameters λ and β take.

Proposition 5.1. The ideal 〈a, b, ab〉 is the only maximal ideal of B′(λ, β).

Proof. Let X = x1o + x2a + x3b + x4ab be an element of an ideal I of the algebra
B′(λ, β). Then X ◦ o ∈ I implies that x1o + λx2a + λx3b ∈ I.

Considering λX − X ◦ o ∈ I yields (λ − 1)x1o + x4ab ∈ I. Multiplying the last
element by o, we obtain (λ − 1)x1o ∈ I. Since λ , 1, we get x1o ∈ I and, therefore,
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x1a = x1o ◦ (a/λ) ∈ I and x1b = x1o ◦ (b/λ) ∈ I. If x1 , 0, then o, a, b ∈ I and ab ∈ I,
which yields I = B′(λ, β). Therefore X = x2a + x3b + x4ab and I ⊆ 〈a, b, ab〉, which is
a maximal ideal. �

Next, let us focus our attention on the two-dimensional ideals.

Proposition 5.2. The algebra B′(λ, β), where β , λ, β , 1 − λ, does not admit two-
dimensional ideals. For the remaining possible values of the parameters, two-
dimensional ideals exist, all of which are presented as follows:

• 〈a, ab〉 E B′(λ, 1 − λ), where λ , 1/2;
• 〈b, ab〉 E B′(λ, λ), where λ , 1/2; and
• 〈a, ab〉, 〈b, ab〉 E B′(1/2, 1/2).

Proof. Let I be a two-dimensional ideal of the algebra. Proposition 5.1 shows that
any element X ∈ I is of the form X = x2a + x3b + x4ab. Since X − (X/λ) ◦ o ∈ I,
x2a + x3b, x4ab ∈ I.

The following equalities and memberships hold

x2
2a − x2

3b = (x2a + x3b) ◦ (x2a − x3b) ∈ I,
(x2 + x3)a ◦ b = (x2a + x3b) ◦ (a + b) − (x2a + x3b) ∈ I,

(x2 + x3)
λ − β

λ
a = (x2 + x3)(a ◦ b) ◦ a − (x2 + x3)

λ − β + 1
λ

a ◦ b ∈ I,

(x2 + x3)
λ − β + 1

λ
b = (x2 + x3)(a ◦ b) ◦ b − (x2 + x3)

λ − β

λ
a ◦ b ∈ I,

(x2 + x3)ab = (x2 + x3)a ◦ b − (x2 + x3)
λ − β

λ
a − (x2 + x3)

λ − β + 1
λ

b ∈ I.

In order to complete the description of two-dimensional ideals we consider
distinctive cases.

Case 1. Let λ , β and λ , 1 − β.
The above inclusions imply that (x2 + x3)a, (x2 + x3)b, (x2 + x3)ab ∈ I.

Consequently, x2 + x3 = 0 and X = x2(a − b) + x4ab. Consider (λ − 1)b = λ(a − b)
◦ b − λab − (λ − β)(a − b) ∈ I. Thus, b ∈ I which gives a ∈ I and we derive a
contradiction. Therefore, in this case, there are no two-dimensional ideals.

Case 2. Let λ = β.
Then a ◦ b = (2λ − 1)b/λ + ab. Hence, (2λ − 1)(x2 + x3)b = (x2 + x3)(a ◦ b) ◦ o ∈ I

and we continue by considering the following subcases.

Case 2.1. Let λ , 1/2. Then (x2 + x3)b ∈ I and x2(a − b) = x2a + x3b − (x2 + x3)b ∈ I.
Together with x4ab ∈ I, we need to have (x2 + x3)x2x4 = 0. Assuming that x4 = 0, any
element in the ideal is in the form X = x2a + x3b. But ab = a ◦ b − (2λ − 1)b/λ ∈ I,
which is a contradiction.

Next, let us suppose that x2 + x3 = 0. Then a − b, ab ∈ I. However, (λ − 1)b/λ =

(a − b) ◦ b − ab ∈ I and we obtain a, b ∈ I, which is a contradiction.
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Thus, finally suppose that x2 = 0. In this case, every element in the ideal is in the
form X = x3b + x4ab and I = 〈b, ab〉 is an ideal.

Case 2.2. Let λ = 1/2. Then β = 1 − β = 1/2 and a ◦ b = ab. Suppose that x2 + x3 = 0.
Then a − b, ab ∈ I, while a = (a − b) ◦ a + ab ∈ I and, therefore, b ∈ I, which is a
contradiction. Hence, we assume that x2 + x3 , 0. Then ab ∈ I. Note that x2(x2 +

x3)a = x2
2a − x2

3b + x3(x2a + x3b) ∈ I and, similarly, that x3(x2 + x3)b ∈ I. Therefore,
x2a, x3b ∈ I. Since I is two-dimensional, then x2x3 = 0. If x3 = 0, then I = 〈a, ab〉 is
an ideal. Otherwise, 〈b, ab〉 forms an ideal.

Case 3. Let λ = 1 − β.
The study of this case is carried out analogously to the second case and gives the

same results up to substitution of a for b and vice versa. This completes the proof of
the proposition. �

Next, we analyse the one-dimensional ideals.

Proposition 5.3. The ideal 〈ab〉 is the only one-dimensional ideal of B′(λ, β).

Proof. Let I = 〈x〉 be an ideal of B′(λ, β). If x ◦ x = 0, then x is an absolute nilpotent
element and we know that, in this case, I = 〈ab〉 (see Theorem 3.2).

If x ◦ x = δx for a nonzero δ, then denoting y = x/δ yields y ◦ y = y, that is, I is
generated by an idempotent. The proof of the proposition is completed by checking
which idempotents from Theorem 3.4 generate a one-dimensional ideal. �

Summarizing the above results, we state the following theorem.

Theorem 5.4. The lattices of ideals of corresponding algebras are

B′(λ, λ), λ , 1
2 : 〈a, b, ab〉 B′(λ, 1 − λ), λ , 1

2 : 〈a, b, ab〉

〈b, ab〉 〈a, ab〉

〈ab〉 〈ab〉

B′(λ, β), β , λ, β , 1 − λ : 〈a, b, ab〉 B′( 1
2 ,

1
2 ) : 〈a, b, ab〉

〈ab〉 〈a, ab〉 〈b, ab〉

〈ab〉
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6. Associative enveloping algebra of B′(λ, β)

For an arbitrary algebra A, we can consider its embedding in the associative algebra
End(A), via left and right actions of A on A.

Consider the operators of left multiplication by basis elements of the algebra
B′(λ, β). Their matrix forms are

lo =


1 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 0

 = E11 + λE22 + λE33,

la =


0 0 0 0
λ 1 (λ − β)/λ 0
0 0 (λ + β − 1)/λ 0
0 0 1 0

 = λE21 + E22 +
λ − β

λ
E23 +

λ + β − 1
λ

E33 + E43,

lb =


0 0 0 0
0 (λ − β)/λ 0 0
λ (λ + β − 1)/λ 1 0
0 1 0 0

 =
λ − β

λ
E22 + λE31 +

λ + β − 1
λ

E32 + E33 + E42,

lab = O4,

where Ei j is the matrix with entry 1 at the crossing of ith row and jth column and zero
otherwise.

LetA be the associative subalgebra of the algebra End(B′(λ, β)) with the generating
set {lo, la, lb}. We denote some subalgebras of the matrix algebra M4(R) as

M0 =

〈
∗ 0 0 0
∗ ∗ 0 0
∗ 0 ∗ 0
∗ ∗ ∗ 0


〉
, M1 =

〈
∗ 0 0 0
∗ ∗ ∗ 0
∗ 0 ∗ 0
∗ ∗ ∗ 0


〉
,

M2 =

〈
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0


〉
, M3 =

〈
∗ 0 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0


〉
,

where ∗ is an arbitrary real number.
Note that the generators of A are contained in M3. Below, we establish a result on

the associative enveloping algebra ofA depending on the values of λ and β.

Theorem 6.1. Let A be the associative subalgebra of End(B′(λ, β)) with generators
{lo, la, lb}. Then the following statements hold:
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(1) if λ = β = 1/2, thenA = M0;
(2) if λ , β, λ = 1 − β, thenA = M1;
(3) if λ = β, λ , 1 − β, thenA = M2; and
(4) if λ , β, λ , 1 − β, thenA = M3.

Proof. Since λ(1 − λ)(E22 + E33) = lo − l2o ∈ A, E11 = lo − λ(E22 + E33) ∈ A and
λE21 = la − la · (E22 + E33) ∈ A. These yield E22 + E33, E11, E21 ∈ A.

Consider

x1 =
λ − β

λ
E23 +

β − 1
λ

E33 + E43 = la · (E22 + E33) − (E22 + E33) ∈ A.

Then

x2 =
λ − β

λ
E23 +

β − 1
λ

E33 = (E22 + E33) ·
(
λ − β

λ
E23 +

β − 1
λ

E33 + E43

)
∈ A,

and we obtain E43 = x1 − x2 ∈ A. Next, consider

x3 =

{
lb −

λ − β

λ
(E22 + E33)

}
· (E22 + E33) ∈ A

and

λE31 = lb −
λ − β

λ
(E22 + E33) − x3 ∈ A.

So we obtain E31 ∈ A and E41 = E43 · E31 ∈ A. Moreover, E42 = x3 − (E22 +

E33)x3 ∈ A. So E33 = {λ/(λ − 1)}(x3 − E42) · x2 ∈ A and E22 = (E22 + E33) − E33 ∈ A.
Summarizing, we get M0 ⊆ A.

Furthermore, from x2 and x3 − E42, we obtain ((λ − β)/λ)E23 ∈ A and ((λ + β −
1)/λ)E32 ∈ A. Thus the following cases occur.

Case 1. Let λ , β and λ , 1 − β. Then E23, E32 ∈ A andA = M3.

Case 2. Let λ = β and λ , 1 − β. Then we obtain E32 ∈ A and M2 ⊆ A. However,
lo, la, lb ∈ M2 and, therefore,A = M2.

Case 3. Let λ , β and λ = 1 − β. Then E23 ∈ A and M1 ⊆ A. Moreover, lo, la, lb ∈ M1

andA = M1.

Case 4. Let λ = β = 1 − β = 1/2. Then we get lo, la, lb ∈ M0 andA = M0.
This completes the proof of the theorem. �

7. Isomorphisms of ABO-group blood algebras

In this section, we analyse the conditions under which the two algebras B′(λ′, β′)
and B′(λ, β) with corresponding basis {o′, a′, b′, ab′} and {o, a, b, ab} are isomorphic.

Theorem 7.1. Two distinct ABO-BGAs B′(λ, β) and B′(λ′, β′) are isomorphic if and
only if λ′ = λ and β′ = 1 − β.
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Proof. Let the isomorphism ϕ : B′(λ′, β′)→B′(λ, β) be given by

ϕ(o′) = d11o + d12a + d13b + d14ab,
ϕ(a′) = d21o + d22a + d23b + d24ab,
ϕ(b′) = d31o + d32a + d33b + d34ab,
ϕ(ab′) = d41o + d42a + d43b + d44ab.

Since ab′ annihilates B′(λ′, β′), it is clear that ϕ(ab′) also annihilates B′(λ, β).
Therefore,

0 = ϕ(ab′) ◦ o = (d41o + d42a + d43b + d44ab) ◦ o = d41o + λd42a + λd43b,

and, since λ , 0, we obtain d41 = d42 = d43 = 0.
Considering the equations

ϕ(o′) ◦ ϕ(o′) = ϕ(o′ ◦ o′), ϕ(a′) ◦ ϕ(a′) = ϕ(a′ ◦ a′), ϕ(b′) ◦ ϕ(b′) = ϕ(b′ ◦ b′),
ϕ(o′) ◦ ϕ(a′) = ϕ(o′ ◦ a′), ϕ(o′) ◦ ϕ(b′) = ϕ(o′ ◦ b′), ϕ(a′) ◦ ϕ(b′) = ϕ(a′ ◦ b′),

and comparing the coefficients at the corresponding basis elements {o, a, b, ab}, we
derive the systems of equations

(I) :



d11 = d2
11,

d12 = d2
12 + 2d11d12λ + 2d12d13

λ − β

λ
,

d13 = d2
13 + 2d11d13λ + 2d12d13

λ + β − 1
λ

,

d14 = 2d12d13

(II) :



d21 = d2
21

d22 = d2
22 + 2d21d22λ + 2d22d23

λ − β

λ
,

d23 = d2
23 + 2d21d23λ + 2d22d23

λ + β − 1
λ

,

d24 = 2d22d23,

(III) :



d31 = d2
31,

d32 = d2
32 + 2d31d32λ + 2d32d33

λ − β

λ

d33 = d2
33 + 2d31d33λ + 2d32d33

λ + β − 1
λ

,

d34 = 2d32d33,

(IV) :



λ′d21 = d11d21,

λ′d22 = d12d22 + (d11d22 + d12d21)λ + (d12d23 + d13d22)
λ − β

λ
,

λ′d23 = d13d23 + (d11d23 + d13d21)λ + (d12d23 + d13d22)
λ + β − 1

λ
,

λ′d24 = d12d23 + d13d22,
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(V) :



λ′d31 = d11d31,

λ′d32 = d12d32 + (d11d32 + d12d31)λ + (d12d33 + d13d32)
λ − β

λ
,

λ′d33 = d13d33 + (d11d33 + d13d31)λ + (d12d33 + d13d32)
λ + β − 1

λ
,

λ′d34 = d12d33 + d13d32,

(VI) :



λ′ − β′

λ′
d21 +

λ′ + β′ − 1
λ′

d31 = d21d31,

λ′ − β′

λ′
d22 +

λ′ + β′ − 1
λ′

d32 = d22d32 + (d21d32 + d22d31)λ

+(d22d33 + d23d32)
λ − β

λ
,

λ′ − β′

λ′
d23 +

λ′ + β′ − 1
λ′

d33 = d23d33 + (d21d33 + d23d31)λ,

+ (d22d33 + d23d32)
λ + β − 1

λ
,

λ′ − β′

λ′
d24 +

λ′ + β′ − 1
λ′

d34 + d44 = d22d33 + d23d32.

We denote by (I.i) the ith equation of the system (I) and similarly for the other systems
of equations. From the first equation of system (I), we obtain d11 = 0 or d11 = 1. If
d11 = 0, then the first equations of (IV) and (V) yield d21 = d31 = 0, which, together
with d41 = 0, gives a contradiction for ϕ being an isomorphism. Therefore, d11 = 1
and, from the same equations, we obtain d21 = d31 = 0.

Let us denote ∆ = d22d33 − d23d32. Note that, due to the results above, det[ϕ] = d44 ·

∆ , 0. Multiplying equations (IV.2), (V.2) by d33, d23, respectively, and subtracting,
yields λ′∆ = d12∆ + λ∆ + d13((λ − β)/λ)∆. Since ∆ , 0, we obtain

λ′ − λ = d12 + d13
λ − β

λ
.

Analogously, multiplying equations (IV.3), (V.3) by d32, d22, respectively, and
subtracting the first one from the second one , we get

λ′ − λ = d13 + d12
λ + β − 1

λ
.

Hence, d13 = ((1 − β)/β)d12.

Case 1. Let d12 , 0.
Then d13 , 0. Note that equations (I.2) and (I.3) give rise to the system of

corresponding equations (3.2) for the value ξ = 1: that is,
d12 + 2

λ − β

λ
d13 = 1 − 2λ,

2
λ + β − 1

λ
d12 + d13 = 1 − 2λ.
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It is known that this system does not have a solution, if the determinant of the system
is equal to zero. Therefore, assuming that (λ, β) < P (that is, the determinant is not
zero), we obtain the solution

d12 =
λ(1 − 2λ)

−3λ2 + 4β2 + 4λ − 4β
(2β − λ),

d13 =
λ(1 − 2λ)

−3λ2 + 4β2 + 4λ − 4β
(2 − 2β − λ).

Taking into account d13 = ((1 − β)/β)d12, we obtain β = 1/2. Hence, d12 = d13 =

λ(1 − 2λ)/(1 − 3λ). By subtracting equation (IV.3) from (IV.2) and taking into account
that d12 = d13, β = 1/2, we obtain

λ′(d22 − d23) = d12(d22 − d23) + λ(d22 − d23).

Similarly, by subtracting equation (V.3) from (V.2), we obtain

λ′(d32 − d33) = d12(d32 − d33) + λ(d32 − d33).

Observe that both values d22 − d23 and d32 − d33 cannot be zero simultaneously,
since it contradicts that ∆ = 0. Therefore, at least one of these values is nonzero. Then
we obtain λ′ − λ = d12 and λ′ − λ = d12{1 + (λ − β)/λ}; hence λ = β = 1/2. However,
it implies d12 = 0, which is a contradiction.

Case 2. Let d12 = 0.
Then d13 = 0 and λ′ = λ. From (I.4), we obtain d14 = 0. Furthermore, (IV.4) and

(V.4) yield d24 = d34 = 0. Equations (II.4) and (III.4) lead to d22d23 = d32d33 = 0.
Together with condition ∆ , 0, we have the following possible cases.

Case 2.1. Let d23 = d32 = 0 and d22 · d33 , 0. Then systems (II) and (III) yield
d22 = d33 = 1. Substituting these values into (VI.2), we obtain (λ′ − β′)/λ′ = (λ − β)/λ,
which implies that β′ = β.

Case 2.2. Let d22 = d33 = 0 and d23 · d32 , 0. Then, from (II.3) and (III.2), we get
d23 = d32 = 1. Substituting the obtained values into system (VI), we derive β′ = 1 − β.

Hence, B′(λ, β) � B′(λ, 1 − β) via the change of basis (o, a, b, ab) 7→ (o, b, a, ab).
This completes the proof of the theorem. �

8. Conclusion

The results of this paper are obtained by assuming two deviations from Mendelian
genetics: all parents of blood group A and B contribute gamete O to the child with a
constant probability α and the allele A is selected with probability β from parents of
blood group AB. We generate an algebra with the multiplication based on this modified
inheritance pattern, and investigate some of the properties of this algebra related to the
equilibrium (idempotents) and annihilation (solvable elements) of a population, the
dominating subpopulations (lattice of ideals) and the behaviour due to changes of the
parameters. We establish that two isolated populations with different values of initial
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chosen parameters (unless the probabilities that blood groups A and B contribute with
allele O during meiosis are equal in both populations and the probabilities of blood
group AB contributing with allele A during meiosis in both populations add up to one)
have different nonisomorphic corresponding algebras that describe heredity (evolution
of population).

Another problem in mathematical biology, for a given evolution operator V , is the
study of the asymptotic behaviour of the trajectories {x[n]}∞n=1 for any initial state x of
a population. It could be interesting to investigate the trajectories in our case. One
of the possible generalizations in the future is to distinguish the probability of the
contribution of allele O of a parent with blood group B. This leads to a construction of
an algebra with three real parameters.
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