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Abstract

We introduce a model for the execution of large market orders in limit order books,
and use a linear combination of self-exciting Hawkes processes to model asset-price
dynamics, with the addition of a price-impact function that is concave in the order size.
A criterion for a general price-impact function is introduced, which is used to show how
specification of a concave impact function affects order execution. Using our model,
we examine the immediate and permanent impacts of large orders, analyse the potential
for price manipulation, and show the effectiveness of the time-weighted average price
strategy. Our model shows that price depends on the balance between the intensities of
the Hawkes process, which can be interpreted as a dependence on order-flow imbalance.

2010 Mathematics subject classification: primary 91B26; secondary 60G55, 91B70.

Keywords and phrases: price-impact function, limit order books, execution of large
orders, Hawkes processes.

1. Introduction

The phrase “price impact” refers to the changes in an order book which are caused by
an incoming order to buy or sell. When a market buy order is sent to an exchange, a
matching engine finds limit sell orders at the best prices available and assigns them to
fill the order. After the order has been executed, those limit sell orders are removed
from the order book, and depending on the size of the market order, there may be a
slight overall rise in the best bid and the best ask prices. The same sequence of events
happens for market sell orders. Most trading activities have no price impact, but large
market orders will have an impact, with the general principle being that buy orders
push the price up and sell orders push the price down.

Impactful market orders may arise when a broker has a client request to buy or sell
a very large amount of stock. In this case, a trader must decide how to best divide this
request into market buy/sell orders for execution. These market buy/sell orders will
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also be large relative to other market orders and the amount of liquidity available at
the best bid and best ask prices. The trader understands beforehand that the first orders
to be executed will push the order book prices in the wrong direction for his/her later
orders, and with this in mind he/she will look for an optimal strategy for how and when
to execute such orders.

To gain an understanding of what we mean by “large orders”, consider a situation
where a client needs 1 million shares to be executed by the end of the day. Below are
some options for the trader:

• send one market order of 1 million shares;
• send one market order of 500 000 shares, wait for 3 minute, then send the

remaining shares;
• send 1000 market orders of 1000 shares waiting 1 minute between the orders.

The first two options do not seem to be the best strategy, because the order book
probably does not have the depth (that is, at a given time there are not enough posted
limit orders to handle trade sizes of magnitude 1 million or 500 000 shares). The depth
of the order book will take some time to replenish after a large order is executed, which
means that the third option is probably the only viable choice. However, this option
will require approximately 2 days to be fully completed, which increases the market
risk of the operation. Moreover, the client gives a restriction that the order must be
executed by the end of the day. Therefore, the best strategy will be for the trader to
estimate the impact on the order book for orders of various sizes as well as the order
book’s replenishment rate, and then execute an optimal multi-trade strategy.

Optimal execution with price impact has been considered in many papers to date [1,
2, 16, 19]. In this paper, we denote by ψ the impact of a large market order, and we
consider the immediate impact of a trade on the mid-price as

S (t) = S (t−) + ψ(t−, q),

where t is time, S (t−) = lim∆t↘0 S (t − ∆t) is the pre-impacted mid price, S (t) is
the impacted mid-price, q ∈ R is the number of shares being bought or sold, and
ψ(t−, ·) = lim∆t↘0 ψ(t − ∆t, ·) is the impact function immediately prior to a trade at
time t. One of the first impact functions to be proposed was the linear function [2, 24]

ψ(q) ∝ q.

However, empirical evidence [12, 33, 35] suggests a volume dependence that is sub-
linear, and described by a power law

ψ(q) ∝ sgn(q) × |q|1/b, b > 1,

with an intraday temporal component that reduces impact with the passing of the
minutes in the trading day. Also, Bouchaud [12] argued that the exponent of price
impact is a function of the chosen partition time, typically ranging from 0.1 to 1.0.
Using a data set from the Citigroup US equity trading desks, Almgren et al. [3]
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estimated the impact to have b = 5/3. There are many other studies which provide
evidence to support the idea that immediate price impact is a concave function; see
[16, 18, 29, 33, 35] and the dimensional analysis approach of Pohl et al. [30].

Some important features to consider are the empirically observed dependence on
order-flow imbalance (OFI; see [11, 15, 16]), and also the possibility that a proposed
model might be flawed if it allows for so-called quasi-arbitrage, that is, the model
is constructed in such a way that a trader can execute a sequence of orders that
will terminate with a zero net inventory, and are expected to return a positive profit
(see [19, 22]). Both of these ideas are taken into consideration as we develop the
model in this paper.

1.1. Literature review Hawkes processes are shown by Bacry et al. [7] to
reproduce volatility clustering effects and the so-called Epps effect in the correlation
structure between two or more assets. Moreover, the differences of Hawkes processes
have a natural appeal, since they represent price movements as jumps on a discrete
grid and with random arrival times. Elsewhere in the literature, Hawkes processes
with impact from market orders are considered by Alfonsi and Blanc [1] and
Cartea et al. [14], and more general Hawkes applications to finance are included
in the papers [6, 8–10]. In [26] a trader holds off execution until enough liquidity
accumulates at the best bid/ask, which is different from this paper but related because
it shows that traders can benefit by waiting. With regard to the permanence of price
impact, Donier et al. [18] considered a model where impact is not expected to have
complete decay, which is similar to the result we have in this paper. We also discuss
the addition of a mean reversion term to eliminate permanent impact similar to the
model of Alfonsi and Blanc [1]. There is also the issue of tick size in the order book,
which is addressed by Smith et al. [33] where it is explained how the gaps in an order
book change the shape of the impact function. To complete the review of the literature,
we cite high-frequency market-making papers, such as [5, 13] where the market maker
must estimate the impact of trades as part of his/her calculations in finding the optimal
placement for his/her own limit of orders.

1.2. Results and structure of this paper In this paper we consider a standard
Hawkes-process model and propose a criterion for adding price-impact functions.
We investigate large-order impact, when market prices are modelled as a linear
combination of self-exciting Hawkes processes. In particular, we model the mid-
point price (that is, the half-way mark between the best bid and best ask prices) as
the difference of two mutually exciting scalar-valued Hawkes processes, upon which
we calculate the immediate and permanent impacts of an exogenously inserted market
order.

We give some general properties that an impact function should have. More
specifically, we propose a logarithmic impact function taking as input an order’s
volume and the Hawkes intensity processes; we also consider the far more tractable
linear impact function. Based on the Hawkes model and our impact functions,
we study the behaviour of prices after a large order has been executed. We give
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expressions for temporary impact, permanent impact, and we give a measure of how
much time is required for the effects of an order to decay. To argue for the soundness
of our model, we examine the possibility of quasi-arbitrage and show that for two
consecutive orders it is not possible for traders to obtain extreme profits from impacts
caused by these orders. Finally, we present analysis to show improvement in the
average price when a large order is executed in blocks using a time-weighted average
price strategy.

The rest of this paper proceeds as follows. Section 2 introduces Hawkes processes
and the model that we use throughout the paper. Section 3 introduces our proposed
price-impact functions and examines the temporary and permanent impact of executed
orders; Section 3.4.1 shows how to eliminate permanent impact including a rate of
mean reversion in the mid-price process. Section 4 provides a discussion on the
possibilities of quasi-arbitrage and the potential for price manipulation. Section 5
explores price impact for time-weighted average price strategies. Section 6 concludes.

2. Hawkes processes

A Hawkes process takes jumps with an intensity that is a function of time and
history of past jumps [20]. Recently, Hawkes processes have been used in financial
models for high-frequency trading (see, for example, [1, 7, 17, 25, 34]). We develop
our model using the probability space (Ω, (Ft)t≥0, P) [31], upon which we define a
Hawkes process.

Definition 2.1 (Hawkes process). A Hawkes process is a pair (N(t), λ(t)) with t ≥ 0
being time, that is a self-exciting jump process where N(t) is a counting process and
λ(t) is the intensity of arrivals, and which has the dynamics

λ(t) = µ +

∫ t

−∞

φ(t − s) dN(s),

where µ > 0 is the minimum intensity level, function φ(t) ≥ 0 is a kernel to control the
rate of memory decay, and N(t) has increments that are conditionally distributed as

dN(t) ∼ Poisson(λ(t) dt), with N(0) = 0.

In this paper we use the kernel function

φ(t − s) = αe−β(t−s),

where parameter β > 0 is the rate at which λ(t) reverts towards µ, and parameter α > 0
amplifies the effect on λ(t) caused by a jump in N(t). The Hawkes process is then
written in terms of an initial condition

λ(t) = e−βtλ(0) + (1 − e−βt)µ + α

∫ t

0
e−β(t−s) dN(s).

It should be pointed out that choosing an exponential for φ is convenient because
it makes (N, λ) an Ft-adapted Markov process. Other kernels (for example, φ with
polynomial decay) are more consistent with statistical analysis of market data, but
may be non-Markov [6].
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2.1. Stability of a Hawkes process The parameters α and β need to have some
restriction in order for the Hawkes process to be used in modelling long-term
behaviour. A necessary and sufficient condition for stability of a one-factor Hawkes
process with exponential kernel function is

α/β < 1 (2.1)

(see [7]). To understand the reason for the condition α/β < 1, consider the following:
for general φ, take the limit of the expected value of λ(t) for a one-factor Hawkes
process

E[λ(t)] = µ + E
[ ∫ t

−∞

φ(t − s) dN(s)
]

= µ +

∫ t

−∞

φ(t − s)E[λ(s)] ds

= µ + E[λ(t)]
∫ t

−∞

φ(t − s)
E[λ(s)]
E[λ(t)]

ds

→
µ

1 −
∫ ∞

0 φ(v) dv
,

as t→∞, so that the expectation of the point process converges to

E[N(t)] =
µt

1 −
∫ ∞

0 φ(v) dv
.

In the case of φ(t − s) = αe−β(t−s), we have E[N(t)] = µt/(1 − α/β), indicating long-term
stability if α/β < 1.

2.2. Asset-price model and two-factor Hawkes process Our model for an asset
price is a two-factor Hawkes process. Specifically, we look at the difference between
two Hawkes processes that are mutually exciting.

Definition 2.2 (Asset-price model from a two-factor Hawkes process). A two-factor
mutually exciting Hawkes process with exponential kernel function is (N1(t), λ1(t)) and
(N2(t), λ2(t)), for t ≥ 0, where N1(t) and N2(t) are counting processes whose respective
intensities are

λ1(t) = µ + α

∫ t

−∞

e−β(t−s) dN2(s),

λ2(t) = µ + α

∫ t

−∞

e−β(t−s) dN1(s),

where N1(t) and N2(t) have increments conditionally distributed as

dN1(t) ∼ Poisson(λ1(t) dt),
dN2(t) ∼ Poisson(λ2(t) dt)

with N1(0) = N2(0) = 0. This process is mutually exciting, because the counting
processes will excite the intensities of one another.
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We denote by S (t) the price of an asset, and, given the two-factor Hawkes process
from Definition 2.2, we write S (t) as a function of N1(t) and N2(t),

S (t) = S (0−) + δ ×
(
N2(t) − N1(t)

)
, (2.2)

where δ > 0 is the tick size (for example, δ = 1/100 or 1 cent). When a jump in
the process N1(t) occurs, the value of S (t) decreases and the intensity λ2(t) increases.
Similarly, when a jump in N2(t) occurs, the value of S (t) increases and the intensity
λ1(t) increases. It is important to point out that the mutually exciting component in
the model S (t) creates some mean reversion in the short term, that is, an up tick in
price causes an increase in the probability of a down tick. Mean reversion is a widely
observed characteristic of high-frequency asset dynamics referred to as retracement;
which is defined as the temporary reversal of an asset’s expected trend. Retracement
applies to market impact, because the newly impacted price is not expected to continue
as if it were not impacted, but instead, it will regress back towards its pre-impacted
price.

An important result for mutually exciting Hawkes processes and the price model
proposed in equation (2.2) is that its limit in distribution is Brownian motion [23]. A
proof of this limit is given by Bacry et al. [8], where the distribution of (S (tT ))t≤1 with
S (0−) = 0 tends towards Brownian motion for δ = 1/

√
T and T →∞. The limit to

Brownian motion is a nice characteristic, because it captures the following well-known
phenomenon of financial data: asset prices exhibit mean reversion when observed at
high frequency (that is, a frequency where prices look like Hawkes processes), but
show less mean reversion when observed with coarser time frames (that is, a frequency
where prices look like Brownian motion).

3. Price-impact functions

We now add the feature of price impact to our model. For a trader who is looking
to place an order at time t, Ft− contains all information available at the instance their
order is placed. They cannot anticipate future movements of the market, and so they
do not know Ft until time t has arrived.

Let q ∈ R denote the size of a market order with

q > 0 a buy order,
q < 0 a sell order.

A given order will have an immediate impact on the price, which we denote by ψ(t, q).
We consider a large order to be an exogenous impact on the Hawkes processes, and
so the impact of a trade will augment the σ-algebra: a time-t market order of size q
will have an impact of ψ(t−, q), which is an exogenous event that changes the Hawkes
processes, and so the distribution of future price movements is conditioned on the joint
σ-algebra

Ft− ∨ {ψ(t−, q)}.
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Formally, the price-impact function ψ(t−, q) is measurable with respect to Ft− such that

ψ(t−, q) = impact on mid-price from a market order of size q placed at time t−.

The function ψ(t−, ·) can be stochastic; in Section 3.3.1 we will introduce an impact
function that depends on λ2(t−) − λ1(t−). Since the trader does not have information
to make anticipative trades, it follows that he/she cannot time a trade to coincide with
an endogenous jump (that is, a jump in either N1 or N2 is endogenous). Hence, the
probability that a market order is placed at the same time as an endogenous jump is
zero, and we have

Ft = Ft− ∨ {ψ(t−, q)} almost surely. (3.1)

Remark 3.1. We have defined the σ-algebra Ft to be right continuous with a left-
hand limit. The trading analysed in this paper will always manage the price history
in this way. However, we should make the reader aware that the so-called reactionary
strategies are permissible, that is, a trader can wait for the jump arrival in N1 or N2, and
then immediately make a trade. If the exogenous impacts are of a reactionary form,
then the σ-algebra is not right continuous, because

Ft+ = Ft ∨ {ψ(t, q)}.

A reactionary strategy for price manipulation was discussed by Alfonsi and Blanc [1].

Definition 3.2 (Impacted mid-price). The instantaneous impact ψ(t−, q) (possibly
stochastic) caused by a nonanticipative trade of size q executed in the market at time
t−, makes the immediate price impact

S (t) = S (t−) + ψ(t−, q), (3.2)

where S (t−) = lim∆t↘0 S (t − ∆t) and ψ(t−, ·) = lim∆t↘0 ψ(t − ∆t, ·).

Remark 3.3 (Role of nonanticipative trades in Definition 3.2). Note that the
assumption of trades being nonanticipative means that there is zero probability of the
Hawkes process jumping at the trade time (as summarized by equation (3.1)), and so
equation (3.2) holds almost surely.

Suppose at time t− there is a market buy order with impact ψ(t−, q). Then

S (t) = S (0−) + δ(N2(t) − N1(t)) = S (0−) + δ(N2(t−) − N1(t−)) + ψ(t−, q).

Assuming that buy orders have ψ(t−, q) > 0, it follows that

N2(t) = N2(t−) + ψ(t−, q)/δ,

and hence for T > t,

λ1(T ) = µ + (λ1(t−) − µ)e−β(T−t) + α

∫ T

t
e−β(T−s) dN2(s) +

α

δ
ψ(t−, q)e−β(T−t).
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This equation holds almost surely because of equation (3.1) and the nonanticipativeness
of trades. Letting T tend down towards t, we see that this type of exogenous impact
causes a jump in the intensity,

λ1(t) = λ1(t−) +
α

δ
ψ(t−, q), (3.3)

at execution time t for order size q > 0; a similar effect occurs for q < 0 and λ2(t),

λ2(t) = λ2(t−) −
α

δ
ψ(t−, q), (3.4)

at execution time t.

Remark 3.4. It should be pointed out that the exogenous impact relations of equation
(3.3) and (3.4) cause N1 and N2 no longer to be counting processes. Instead, these
impact relations mean that we are using a type of hybrid Hawkes-based model. The
long-term stability condition in (2.1) does not ensure that the hybrid process has
stability. Indeed, a series of destabilizing exogenous impacts could be designed.
However, any sequence of finitely many impacts of finite size cannot destabilize the
process; this is the only type of price-impact series that will be considered in this paper.

Given the state of the order book, the impact will depend on other factors such as
order-book depth and OFI. However, it is generally accepted that ψ is concave for
q > 0 and convex for q < 0. Figure 1 provides a visual explanation of the effects on
the order book when a buy market order is sent at market price, and also the reason it
becomes increasingly difficult to impact the price.

3.1. Order-flow imbalance The order-flow imbalance is a measure of supply and
demand imbalance [16]. OFI can be seen in Figure 1, where in the moments after
the market order has been placed there are fewer limit sell orders in the queue for the
best ask price. According to our model, if there is a jump in λ1(t) the intensity of the
process N2(t) increases, making it more likely that the asset price goes up rather than
down. Similarly, there is also an imbalance in the order flow as the process λ2(t) jumps
but in the opposite direction. Therefore, we interpret the difference λ2(t) − λ1(t) , 0 as
an imbalance in the order flow.

Definition 3.5 (Order-flow imbalance). OFI is defined as a measure of the excess in
buy or sell orders for a trading security during a period of time.

To test the connection between OFI and the Hawkes intensities, one could run a
regression to find the factors

OFIt = β0 + β1(λ2(t) − λ1(t)) + “noise”.

In practice, the OFI is something that can be computed from the data but the λs
would need to be filtered (see [34] for filtering of Hawkes processes), and then a
regression run on the filtered λs. Further discussion on the effects of filtering appears
in Section 5.6.

https://doi.org/10.1017/S1446181119000038 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181119000038


[9] Price impact of large orders 169

Figure 1. The order-book dynamic before and after the impact from a buy market order of 15 000 shares.
If the order size had been slightly larger, there would have been nonzero price impact. However, notice
how the order-book depth is such that limit sell-order queues are bigger for prices, away from the best
ask price. This increase in depth is what creates the price impact’s concavity.

3.2. Net effect of signed orders The order book is composed of limit buy and limit
sell orders at different prices. Previously, in Figure 1 we illustrated the order-book
dynamic when a market order is executed. It is natural to infer that two market buy
orders or two market sell orders of quantity q1 and q2 sent in sequence with arbitrarily
small waiting time ∆t will have the same order-book impact of a single order with
quantity q1 + q2 when both orders impact the same side of the order book; this concept
is illustrated in Figure 2. On the other hand, when successive orders have different
signs their net impact will not have the same impact as a single net order; for instance,
the impact of sending one buy (sell) order of size q followed ∆t time units later by a
sell (buy) order of size q is not necessarily zero. Figure 2 illustrates an example of two
market orders, one buy of size 12 000 and one sell of size 12 000, that are sent in short
succession. Notice that the outstanding shares available at the best bid are less than
the sell order size and at the best ask greater than the buy order size, so that the first
order has no price impact, while the second order causes the mid-price to decrease. If
the trader had recognized initially the net quantity of orders, then he/she could have
placed an order of size zero, which obviously would have had zero impact.
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Figure 2. The impact of two market orders, one buy and one sell, both of size 12 000, sent at the same
time. The net impact is not zero.

From this concept of net effect on the order book, we develop an important
characteristic that should be included when constructing a price-impact function.
Namely, for two orders with the same sign and sizes q1 and q2, their impact is
the same as one order of size q1 + q2, when the time interval between orders is
∆t→ 0. In general, for q1, q2, q3, . . . , qn being market orders with the same sign, and
t = t1 < t2 < t3 < · · · < tn being the placement time for respective orders, the effect of
the trades should be

lim
∆t→0

n∑
i=1

ψ(ti, qi) = ψ
(
t,

n∑
i=1

qi

)
,

where ∆t = maxi(ti − ti−1).

3.3. Immediate impact of one large order arrival This subsection explores the
immediate impact of a large order. The impact ψ is exogenously inserted into the
asset-price model of equation (2.2), and then the impact on price evaluated. Based on
our discussion thus far on q dependence, the relevance of OFI from Section 3.1 and
the behaviour of net effects from Section 3.2, we list some desired characteristics for
a price-impact function.

Condition 3.6 (Criterion for price-impact function). An impact function ψ satisfies the
following criteria.
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(1) ψ(t, 0) = 0, ψ(t, q) > 0 for q > 0, and ψ(t, q) < 0 for q < 0.
(2) |ψ| is strictly concave increasing in q for q > 0 and strictly concave decreasing in

q for q < 0.
(3) |ψ| is an increasing function of λ2(t) − λ1(t) when q is positive and a decreasing

function of λ2(t) − λ1(t) when q is negative. The difference of the intensities
measures how likely it is that the price will go up or down.

(4) For q1 and q2 of the same sign,

lim
∆t→0
{ψ(t−, q1) + ψ(t + ∆t, q2)} = ψ(t−, q1 + q2),

where ∆t is the time interval between the order of size q1 and q2; for example,
the expected impact of two consecutive market buy/sell orders must converge
to the expected impact of a single buy/sell order that is in the quantity of the
summed order sizes.

Bouchaud [12] suggested that dependence of ψ on volume is sub-linear, and it is
described by a power law with parameter that is a function of the chosen partition
interval ∆t. However, Bouchaud argued that the power observed was typically close
to 1/2. Other studies have found a similar value of the parameter (see [35]); Almgren
et al. [3] argued that impact should be around a 3/5 power-law function.

3.3.1 Impact-function examples. We now present some examples that fit the
criteria of Condition 3.6. In particular, we present a logarithmic function.

Example 3.7 (Linear impact function). The linear impact function ψ of a large order
of size q is described as

ψ(t, q) = c(t)q, (3.5)

where c(t) > 0 is a continuous function of time that measures order-book liquidity at
time t. This linear impact is similar to the model proposed by Kyle [24], except for
the fact that c(t) is a function of time; intraday dynamics of c(t) are discussed by
Cont et al. [16]. The linear impact function does not satisfy criteria (2) and (3) of
Condition 3.6.

Example 3.8 (Logarithm-based impact function). A logarithmic impact function ψ for
an order of size q is

ψ(t, q) = sgn(q)b ln
(
1 + c(t)|q| exp

(
sgn(q)

λ2(t) − λ1(t)
bα/δ

))
, (3.6)

where c(t) is a continuous function, b > 0 is a shape parameter to provide the concavity,
and sgn(·) is the sign of the input quantity. This logarithmic impact function satisfies
all points in Condition 3.6. Using the exogenous impact properties in equations (3.3)
and (3.4), criterion (4) in Condition 3.6 for the logarithmic impact function is shown
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to be

lim
∆t→0
{ψ(t−, q1) + ψ(t + ∆t, q2)}

= sgn(q1)b ln(1 + c(t)|q1| exp(sgn(q1){λ2(t−) − λ1(t−)}/(bα/δ)))

+ sgn(q2)b ln
(
1 + c(t)|q2| exp

(
sgn(q2)

−(α/δ)ψ(t−, q1) + {λ2(t−) − λ1(t−)}
bα/δ

))
= sgn(q1)b ln

(
1 + c(t)|q1| exp

(
sgn(q1)

λ2(t−) − λ1(t−)
bα/δ

))
+ sgn(q2)b ln

(
1 +

c(t)|q2| exp(sgn(q2){λ2(t−) − λ1(t−)}/(bα/δ))
(1 + c(t)|q1| exp(sgn(q1){λ2(t−) − λ1(t−)}/(bα/δ)))sgn(q1q2)

)
= sgn(q1)b ln(1 + c(t)|q1| exp(sgn(q1){λ2(t−) − λ1(t−)}/(bα/δ))

+ c(t)|q2| exp(sgn(q2){λ2(t−) − λ1(t−)}/(bα/δ)))
= ψ(t−, q1 + q2).

Note that this calculation requires orders q1 and q2 to have sgn(q1) = sgn(q2).

Remark 3.9. At this point, two comments should be addressed. First, the impact
functions presented above do not take value in the same tick grid as the asset price does
in equation (2.2). Second, all orders have an impact on the mid-price but it has been
shown that most orders, particularly orders of small quantity, do not have immediate
impact on the mid-price (see [33]). Both issues could be addressed by truncating the
impact functions so that the impacted price takes the nearest value on the tick grid.
Specifically, any order for which the impact is less than one tick will result in zero
immediate price impact in the mid-price. However, this change could lead us to less
tractable mathematical solutions, and so this issue is forgone for the rest of this paper.

3.3.2 Intraday dynamics of c(t). In Examples 3.7 and 3.8, the function c(t) scales
the order size q and reflects order-book liquidity at time t. It is widely known that
liquidity changes during the trading day. Order-book liquidity is usually greater at
the end of the day than in the middle of the day. It is then natural to say that the
expected impact of an order at the end of the day is lower than in the middle of the
day. This is a reason to have a coefficient c that depends on time. Almgren et al. [3]
considered liquidity changes during a single day. In particular, they modelled liquidity
using the volatility and an average daily-volume parameter. Another interesting study
was by Cont et al. [16] where they discussed how the opening minutes of the market
have depth that is two times lower than the average, and hence the impact of orders
decreases throughout the day.

In addition to the function c(t) being time dependent, one could let the Hawkes
process parameters µ, α and β have some intraday dynamics, as well as the δ and b in
the impact function.

3.4. Permanent impact of one large order Suppose that a large market order of
size q > 0 is placed in the order book at time t. The function ψ(t, q) is the amount by
which this order will immediately impact the price. Much of this immediate impact is
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only temporary, and for the model given by equation (2.2) along with the effects of ψ
as shown in equations (3.3) and (3.4), there is expected to be some permanent impact.
In this section, we focus on buy orders (q > 0), but the same permanent-impact rules
also apply to sell orders.

Given a trade at time t with impact ψ(t−, q), the permanent impact is defined as
follows.

Definition 3.10 (Permanent impact function). The expected permanent impact
function of an order with impact ψ(t−, q) at time t− is

P(q) = lim
T→∞

(E[S (T )|Ft− ∨ {ψ(t−, q)}] − E[S (T )|Ft−]).

Indeed, for the model in this paper and the type of price impact under consideration,
there is a nonzero permanent impact.

Proposition 3.11 (Permanent impact of an order ψ(t−, q) at time t−). The expected
permanent impact of an order ψ(t−, q) at time t− is

P(q) = ψ(t−, q)
β

α + β
. (3.7)

Proof. See Appendix A.1. �

Recall the process stability condition, β/α > 1. Therefore, the permanent impact is
bounded by |ψ|/2, that is,

|P(q)| >
|ψ(t−, q)|

2
.

Figure 3 displays the Monte Carlo average for the impact of a large order, from which
the level of permanent impact can be seen.

3.4.1 Zero permanent impact via reversion to a fundamental price. The permanent
impact of equation (3.7) may or may not be an appropriate feature to be allowed in a
trading model. If the model is used for intraday trading with a finite time, then the
presence of permanent impact is less of an issue. However, if long time-scales are
considered then it will not be reasonable to allow permanent impact. For instance,
if limit orders are likely to replenish the order book in a relatively short amount of
time, then permanent impact could lead to profit-making strategies, which would be
arbitrage in the sense that will be defined shortly in Section 4.2.

The models of Alfonsi and Blanc [1] and Obizhaeva and Wang [28] have the added
feature of mean reversion to a fundamental price, which in turn reduces permanent
impact to zero. For example, letting F(t) denote the fundamental price, the mid-price
will have the differential

dS (t) = ρ(F(t) − S (t)) dt + δ(dN2(t) − dN1(t)),

where ρ > 0 is the rate of mean reversion to F, and it assumes that trades affect the
Poisson intensities in the same manner given by equations (3.3) and (3.4). This model
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Figure 3. The expected value of S (t) after being impacted at time t = 0 by a large order with ψ(0, q) = 10,
α = 0.2, β = 1.0, S (0) = 50, δ = 0.01.

has no permanent impact because impacts and initial conditions are forgotten at an
exponential rate,

E[S (t)] = S (0)e−ρt + ρ

∫ t

0
e−ρ(t−u)EF(u) du +

δ(λ2(0) − λ1(0))e−ρt(1 − e−(α+β−ρ)t)
α + β − ρ

,

where there is a need for a model for F(t). For example, F(t) could be a process driven
by a Brownian motion. In [1] they show the potential for price manipulation in this
model; we address price manipulation in Section 4.

4. Expected profit and price manipulation

4.1. Average execution price As done by Rogers and Singh [32], there is a
representation of a trade size with the integral of an order-book density. To get to an
integral representation, we start by considering the number m(q) equal to the number
of queues that a large order q consumes in the limit order book. The order q is written
as a sum

q =

m(q)∑
j=0

q̃ j(t−),

where q̃ j(t) is the number of limit orders consumed at time t from the queue at j ticks
from the best bid/ask. The order is executed as follows: from the total size q, the first
q̃0 shares will be executed in the first level of the book, q̃1 in the second level and so on,
until the order is completely executed. The values of q̃0, q̃1, q̃2, . . . , q̃m are estimated
by inverting the impact function ψ, as shown in Figure 4.
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Figure 4. The cost of a buy order of size q =
∑m(q)

i=1 q̃i. The horizontal axis marks the order queues for
each tick size, but the height of each queue is the cumulative number of limit orders available at that price
or lower. The convex line is the inverse of the impact function ψ−1(t−, ·), and the shaded area is the total
price paid, equal to

∫ q
0 ψ(t−, v) dv. The average price is the shaded area divided by q.

Let parameter θ > 0 denote the spread between the best bid and best ask prices.
Given the q̃ j, the average execution price is

Average executed price(t−, q) =
1
q

m(q)∑
j=0

q̃ j(t−)
{
S (t−) + sgn(q)

(
jδ +

θ

2

)}
.

The first term in this expression is the mid-price, the second term is the impact cost
of execution, and the third term is half the bid–ask spread to make the execution price
begin at the best bid/ask. Based on the inverse relation with the impact function (as
seen in Figure 4), a natural way to rewrite the above equation is by taking a continuum
limit and using the function ψ as follows:

Average executed price(t−, q) = S (t−) +
1
q

∫ q

0
ψ(t−, v) dv + sgn(q)

θ

2
.

It is also possible to add a term k that represents broker/exchange fees in order to get
the net executed price of an order of volume q at time t, that is,

Net average executed price(t−, q) = S (t−) +
1
q

∫ q

0
ψ(t−, v) dv + sgn(q)

(
k +

θ

2

)
.

Using the net executed profit, it is possible to extract the profit function. For the case
in which the final position is zero, it is not necessary to mark to market, and so the
profit function is given by

Profit(Π) = −

n∑
i=1

S (t−i )qi︸         ︷︷         ︸
gross profit

−

n∑
i=1

∫ qi

0
ψ(t−i , v) dv︸                     ︷︷                     ︸

impact cost

−

(
k +

θ

2

) n∑
i=1

|qi|︸              ︷︷              ︸
fixed cost

.
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The first term of the above equation is the gross profit of the trading strategy. The
second represents the impact cost for each order that composes the strategy, which
could be made more elaborate and depend on the shape of the order book. The third
term is fixed costs related to broker/exchange fees and the bid–ask spread.

4.2. Price-manipulating strategy In this subsection we investigate market
conditions under which the price-impact function may allow price manipulation. First,
we define some basic concepts, similar to those explained in the papers [1, 19].

Definition 4.1 (Trading strategy). A trading strategy is a sequence of orders
(q1, q2, q3, . . . , qn) to be sent to the market in a finite interval [0,T ].

Definition 4.2 (Round-trip trading strategy). A round-trip trading strategy is a trading
strategy that is pre-determined to have a net position of zero at terminal time T , that is,

n∑
i=1

qi = 0.

The definition of price-manipulating strategy was given by Huberman and
Stanzl [22].

Definition 4.3 (Price-manipulating strategy). A price-manipulating strategy is a
round-trip trading strategy in which the expected profit is greater than zero, that is,

E[Profit(Π)] > 0,
n∑

i=1

qi = 0.

In the rest of this subsection some simple strategies are checked to see whether or
not market conditions of the proposed model allow for price manipulation.

4.2.1 Strategies with only two orders and linear impact function. Consider a case
in which a buy order of size q is sent to the market at time zero and is closed after the
passage of t units of time. In this case, based on the profit function described in the
previous section, the expected profit is

E[Profit(Π)] = q
(
ψ1(t−, q) +

[αψ1(t−, q) − δ(λ2(t−) + λ1(t−))](e−∆t(α+β) − 1)
α + β

)
−

∫ q

0
ψ1(t−, v) dv +

∫ 0

−q
Eψ2(t + ∆t, v) dv − q(2k + θ),

where ψ1 is the impact of the first order of size q and ψ2 is the impact of the following
order of size −q. For the linear impact function defined in equation (3.5), the expected
profit is

E[Profit(Π)] = q
(
c(t)q +

[c(t)qα − δ(λ2(t−) + λ1(t−))](e−∆t(α+β) − 1)
α + β

)
−

c(t) + c(t + ∆t)
2

q2 − q(2k + θ).
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This quantity is monotone in ∆t, and so as ∆t → 0 (because c(t) is a continuous
function) we have price manipulation if

E[Profit(Π)] = −q(2k + θ) < 0,

or when ∆t→∞, assuming that lim∆t→∞ c(t + ∆t) = c(t), we might have

E[Profit(Π)] ≈ q
(
c(t)q −

c(t)qα − δ(λ2(t−) + λ1(t−))
α + β

)
− c(t)q2 − q(2k + θ) > 0,

and therefore, the trading strategy is profitable if

λ2(t−) − λ1(t−) >
1
δ

((2k + θ)(α + β) + c(t)αq). (4.1)

Again, the lowest boundary is achieved when q→ 0, so the price manipulation is
present in this case:

λ2(t−) − λ1(t−) >
1
δ

(2k + θ)(α + β).

Similarly, it is possible first to send a sell order and then to close the position after t.
To consider both cases, manipulation is present when

|λ2(t−) − λ1(t−)| >
1
δ

(2k + θ)(α + β).

Note that the price manipulation strategy here is not only restricted by the OFI λ2 − λ1,
but also by the order size given in (4.1).

4.2.2 Strategies with only two orders and logarithmic impact function. This is
similar to the previous strategy , except that we consider the logarithmic impact
function from Example 3.8 satisfying all points of Condition 3.6.

Proposition 4.4. Consider a concave impact function such that, asymptotically,

ψ(t, q) ∼ log (1 + q), q� 1,

for all t ≥ 0. Then there is a negative expected profit for a large round-trip trading
strategy consisting of two orders.

Proof. The expected profit is

E[Profit(Π)] = E
[
q
{
ψ(t−, q) +

(δ(λ2(t−) − λ1(t−)) − αψ(t−, q))(1 − e−(T−t)(α+β))
α + β

}
−

∫ q

0
ψ(t−, v) dv +

∫ 0

−q
ψ(T−, v) dv

]
− q(2k + θ)

= q ln(q + 1)
{
−1 −

α(1 − e−(T−t)(α+β))
α + β

+
2

ln(q + 1)
−

2
q︸                                               ︷︷                                               ︸

< 0

}

+ q
{
δ(λ2(t−) − λ1(t−))(1 − e−(T−t)(α+β))

α + β
− (2k + θ)

}
< 0, for q� 0 and λ2(t−) = λ1(t−).
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The same asymptotic method could be applied to the case in which a sell order is sent
and then the position is closed at T if λ2(t−) = λ1(t−). �

5. Time-weighted average price

For the years leading up to 2016, it was estimated that high-frequency trading
accounted for roughly 55% of trading volume in US equity markets and about 40%
in European equity markets (see more on these statistics in [27]). From November
2012 to October 2014, automatic trading systems accounted for 79.9% of foreign-
exchange futures trading volume and 62.3% of interest-rate futures trading volume
(see [21]). The increasing number of trades made by algorithms has created a demand
for execution strategies to reduce the market impact of large orders. Algorithms
such as time-weighted average price (TWAP) and the volume-weighted average price
(VWAP) (see [2, 4]) are some of the strategies widely used by brokers, hedge funds
and banks to optimize their execution. Such strategies share the idea that it is better to
slice a large order into several smaller orders as a means to reduce impact. The idea of
a TWAP strategy is to slice the order into equally sized market orders to be executed
successively at equally spaced times. In this section we study the benefits of using a
TWAP strategy.

5.1. Optimal waiting time after a large order is executed Suppose that a large
buy order was executed at time t and a new large buy order needs to be executed soon
after. If the time between these two orders is too short, the market will not mean-revert
and the execution price for the second order will be too high. If the trader waits too
long to make the second trade, then there is a good chance the market will move in
an undesirable way and the trader will suffer a loss. Therefore, the trader should look
for an optimal time interval to make this trade. Given a trade at time t with impact
ψ(t−, q), the temporary impact is defined as follows.

Definition 5.1 (Temporary impact function). The expected temporary impact function
of an order with impact ψ(t−, q) at time t is

T (q,∆t) = E[S (t + ∆t)|Ft− ∨ {ψ(t−, q)}] − E[S (t + ∆t)|Ft−] − P(q),

where P(q) is the permanent impact.

The problem of choosing optimal ∆t can be formulated as the minimum time to
wait for the expected impacted price to be within a constant value ξ of its long-term
limit, that is,

∆t∗ = argmin
∆t>0

|T (q,∆t)| ≤ ξ where ξ > 0. (5.1)

Proposition 5.2 (Optimal waiting time). If the price S (t) follows a two-factor Hawkes
process, the optimal waiting time after an order of size q to ensure that the expected
price is no more than a constant ξ from the long-term limit is

∆t∗ =

(
−

1
α + β

ln
(
ξ(1 + β/α)
|ψ(t−, q)|

))+

.
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Proof. See Appendix A.2. �

A trader who implements a TWAP strategy will split a large order into several equal-
sized smaller orders, and then send them in successive time increments of ∆t > 0.
Hence, it is clear that the optimal ∆t∗ from Proposition 5.2 will be useful for TWAP.

5.2. Temporary impact of a sequence of large orders (TWAP strategy) The
execution of a market order will have an immediate impact of ψ(t−, q), but the market
will have some reaction to this impact. In particular, it has been empirically observed
that markets exhibit some reversion towards the pre-impact price, or retracement as we
henceforth will refer to it. For example, a large buy order will have impact ψ(t−, q), but
in the time period [t, t + ∆t] the price will exhibit some retracement downward towards
the pre-impact price. Figure 5 illustrates this idea.

Definition 5.3 (Retrace function). For a TWAP strategy with order size q, we define
the retracement function

R(t, q; ∆t) = E[S (t + ∆t) − S (t)|Ft− ∨ {ψ(t−, q)}],

that is, the amount of expected price retrace ∆t time units after the order is executed at
time t.

Repeating the steps taken in the proof of Proposition 3.11 yields

E[S (t + ∆t)|Ft− ∨ {ψ(t−, q)}]

= S (t−) + ψ(t−, q) +
(δ(λ2(t−) − λ1(t−)) − αψ(t−, q))(1 − e−∆t(α+β))

α + β

= S (t) +
δ(λ2(t−) − λ1(t−))(1 − e−∆t(α+β))

α + β
−
αψ(t, q)(1 − e−∆t(α+β))

α + β︸                                                                      ︷︷                                                                      ︸
retrace

,

where S (t) = S (t−) + ψ(t−, q) almost surely, and the expected retracement

R(t, q; ∆t) =
(δ(λ2(t−) − λ1(t−)) − αψ(t−, q))(1 − e−∆t(α+β))

α + β
. (5.2)

The retrace function helps us to identify the components of an impact ψ(t−, q), namely,
it helps to determine which part of the initial impact is permanent and which part is
temporary.

5.3. TWAP effectiveness In this section, we investigate the effectiveness of the
TWAP strategy for our proposed model. We find that, generally speaking, it is better
to implement TWAP than to execute a single large order, but sometimes it may be
better to finish the strategy early if a condition on λ2 − λ1 indicates poor performance
otherwise. The latter idea is what we refer to as quasi-TWAP, which we will explain
shortly.
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Figure 5. The immediate impact and subsequent retracement for a TWAP strategy. The TWAP strategy
is to divide a large order into several equal-sized orders and then execute them successively at equally
spaced time increments. In this case, buy orders have a positive impact on the price, and the retracement
is downward towards the pre-impact price.

5.3.1 Expected average execution price for TWAP under linear impact function. In
this section we show that the TWAP strategy is “better” than a single order in the sense
that the expected average price per share for a TWAP strategy is better than the price
per share for a single large order. Focusing on the buy order case, the average executed
price (Avg Exec Price) of a single order of size q is

Avg Exec Price 1 Order(t−, q) = S (t−) +
1
q

∫ q

0
ψ(t−, v) dv + sgn(q)

θ

2
,

and the expected average execution price for the TWAP strategy is

Avg Exec Price n Orders(t−, q)

=
1
n

n−1∑
i=0

E
[
S ((t + i∆t)−)|Ft− ∨

i∨
j=0

{ψ((t + j∆t)−, q/n)}
]

+
1
q

n−1∑
i=0

∫ q/n

0
E
[
ψ(t + i∆t, v)|Ft− ∨

i−1∨
j=0

{ψ((t + j∆t)−, q/n)}
]

dv + sgn(q)
θ

2
.

Based on expected average execution price, a trader faced with linear price impact
will have the following criterion to help him/her in choosing to either (a) place a single
large market order or (b) implement TWAP.

Proposition 5.4 (TWAP effectiveness under the linear impact function). Consider the
linear impact function ψ(t, q) = c(t)q, where c(t) is continuous and independent with
E[c(t + s)|Ft] = c(t). Then the n-order TWAP strategy with buy orders of size q/n > 0
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scheduled at times ti = t + i∆t, for i = 0, 1, 2, . . . , n − 1, has better average price than
a single order of size q if and only if

λ2(t−) − λ1(t−) ≤
αc(t)q
δn

×

[ (n − 1)(1 − e−(α+β)∆t)/2 − e−(α+β)∆t + e−(α+β)∆t(1 − e−(α+β)n∆t)/n(1 − e−(α+β)∆t)
1 − e−(α+β)∆t − (1 − e−(α+β)n∆t)/n

]
.

(5.3)

For λ2(t−) − λ1(t−) = 0 and n > 1, it is clear that TWAP is better. For a TWAP of sell
orders of size q/n < 0, the condition has the reverse inequality.

Proof. See Appendix A.3. �

The proof of Proposition 5.4 derives the following:

Avg Exec Price n Orders(t−, q)
= Exec Price 1 Order(t−, q)

+ δ
λ2(t−) − λ1(t−)

n(α + β)

(
n −

1 − e−(α+β)n∆t

1 − e−(α+β)∆t

)
−

αc(t)q
n2(α + β)

(n(n − 1)
2

−
ne−(α+β)∆t

1 − e−(α+β)∆t +
1 − e−(α+β)n∆t

(1 − e−(α+β)∆t)2 e−(α+β)∆t
)
.

For λ2(0−) − λ1(0−) = 0, the right-hand side of this expression is minimized as ∆t→∞
and n→∞, and so there is a best possible expected average TWAP execution price for
buy orders,

Avg Exec Price n Orders(t−, q)

≥ Exec Price 1 Order(t−, q) −
αc(t)q

2(α + β)
for λ2(0−) − λ1(0−) = 0. (5.4)

The bound in (5.4) will be demonstrated through simulations in Section 5.5.

5.4. A quasi-TWAP strategy The large single-order strategy has one advantage
over the TWAP: it does not have price uncertainty. This price uncertainty is sometimes
referred to as market risk, because the TWAP’s average execution price may be worse
than a single order if there is a significant price movement. Therefore, we propose
a quasi-TWAP strategy, which is essentially a TWAP with an early-exit trigger. The
quasi-TWAP always takes less or equal time to execute than a TWAP, and therefore
it has less market risk. The following algorithm gives a step-by-step decision process
for the quasi-TWAP.

For the linear impact function, the quasi-TWAP early-exit trigger is given in the
following proposition.

Proposition 5.5 (quasi-TWAP: linear impact function). We denote the quantity

τ(n,∆t)

=
(n − 1)(1 − e−(α+β)∆t)/2 − e−(α+β)∆t + e−(α+β)∆t(1 − e−(α+β)n∆t)/n(1 − e−(α+β)∆t)

1 − e−(α+β)∆t − (1 − e−(α+β)n∆t)/n
.
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Algorithm quasi-TWAP algorithm (buy order)

for i = 0 to n − 1 do
if Avg Exec Price n − i Orders(t−i , q(n − i)/n)< Exec Price 1 Order(t−i , q(n −

i)/n) then
Send a buy Order of size q/n;
Wait ∆t;

else
Send a buy Order of size q(n − i)/n; break;

end if
end for

Based on inequality (5.3), the early-exit trigger for the quasi-TWAP with linear price-
impact function is

λ2(t−) − λ1(t−) ≥
αc(t)q
δn

τ(n − i,∆t). (5.5)

The trader should continue with TWAP if

λ2(t−) − λ1(t−) <
αc(t)q
δn

τ(n − i,∆t).

TWAP analysis for the logarithmic impact function in (3.6) is much harder to do
analytically, as formulae like (5.3) and (5.4) are not easily obtained due to nonlinearity.
However, we can apply the linear quasi-TWAP exit trigger from (5.5), and through
simulation we can see improvement.

5.5. Numerical simulations We use numerical simulations to check the
effectiveness of the TWAP and quasi-TWAP strategies when compared to simpler
strategies. The metrics used to compare the performance of the strategies are the
expected average executed price and the expected execution time, when the executed
prices between the strategies are similar. The following three strategies are used in our
analysis.

• One order strategy: send one buy(sell) order of size q at time t = 0.
• TWAP strategy: send n buy(sell) orders of size q/n at time t = 0,∆t, 2∆t, . . . ,

(n − 1)∆t.
• Quasi-TWAP strategy: send buy(sell) orders of size q/n following the rules

defined in Section 5.4.

We ignore the broker and exchange fees (k) and the bid–ask spread (θ) since they
have the same effect on the execution price for both strategies. Moreover, we assume
that at time t = 0 there is no OFI , that is, λ2(0) = λ1(0). Lastly, we assume the linear
impact function has c(t) that is constant during the execution of the entire TWAP
order, that is, c(t) is constant from t = 0 to t = (n − 1)∆t. An example of a price-
path simulation with the exogenous effect of a TWAP order, assuming a linear impact
function, is shown in Figure 6.
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Figure 6. Three price paths simulation using the parameters µ = 0.008, α = 0.004, β = 0.008, S (0) = 20.0,
c(t) = 0.04/50 000, δ = 0.01 with the exogenous effect of 10 orders, each of size 10 000, sent at times
t = 0, t1, t2, . . . , t9.

Simulation 5.6 (Linear impact function). In the first simulation, we assume a linear
price impact given in equation (3.5). Tables 1 and 3 show the expected average
executed price and expected execution time of the strategies for different parameters
α and β. The simulations in Table 1 show for all α, β and linear price impact that the
TWAP strategy has a lower expected average price for the buy case than a one-order
strategy. Table 3 shows that the quasi-TWAP strategy has a similar expected average
executed price than the TWAP but less market exposure (measured by the expected
execution time) due to the rule of early termination.

Simulation 5.7 (Logarithm-based impact function). In the second simulation, we
assume a logarithm price impact given by (3.6). Now, the price impact is stochastic
and a function of OFI, and therefore it is not as obvious as in the linear case that
the TWAP and quasi-TWAP strategies will have a better expected average execution
price than the alternative of sending only one large market order. The results of the
simulations are similar to the results in the linear case. Table 2 shows the expected
average executed price for the TWAP strategy for different parameters α and β. For
most α and β in the simulation, the TWAP strategy has a lower expected average price
for the buy case than a one-order strategy. The parameterization for which a one-order
strategy is almost the same as TWAP or quasi-TWAP, is when α is very small, that
is, the parameterizations where the Hawkes intensities are least impacted by trading.
Analogously to the conclusions in the linear case, Table 4 shows that the quasi-TWAP
strategy has an expected average price similar to the TWAP, but it has a lower expected
execution time.

5.6. TWAP with linear impact and latent Hawkes intensity Finally, we consider
the issue of latency in λ1 and λ2, and, using simulation, we test the effectiveness of
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Table 1. The expected executed price for the TWAP strategy and one-order strategy using a linear
impact function for 50 000 simulations, λ1(0) = λ2(0) = 0.15, µ = 0.1, q = 100 000, n = 10, S (0) = 20.0,
c(t) = 0.04/50 000, side = buy, δ = 0.01.

Parameter Parameter One order TWAP TWAP TWAP Best TWAP
α β execution ∆t = 5 s ∆t = 15 s ∆t = 30 s

0.001 0.005 20.04 20.0394 20.0385 20.0372 20.0333
0.001 0.01 20.04 20.0394 20.0387 20.0382 20.0364
0.001 0.02 20.04 20.0396 20.039 20.0389 20.0381
0.001 0.05 20.04 20.0397 20.0393 20.0393 20.0392
0.001 0.1 20.04 20.0397 20.0395 20.0395 20.0396
0.001 0.2 20.04 20.0399 20.0399 20.0399 20.0398
0.001 0.5 20.04 20.04 20.04 20.04 20.0399
0.005 0.01 20.04 20.0373 20.0341 20.0318 20.0267
0.005 0.02 20.04 20.0376 20.0353 20.0336 20.032
0.005 0.05 20.04 20.0383 20.0371 20.0371 20.0364
0.005 0.1 20.04 20.0386 20.0383 20.0385 20.0381
0.005 0.2 20.04 20.0392 20.0392 20.0391 20.039
0.005 0.5 20.04 20.0396 20.0396 20.0395 20.0395
0.01 0.02 20.04 20.0354 20.0315 20.03 20.0267
0.01 0.05 20.04 20.0363 20.0349 20.0344 20.0333
0.01 0.1 20.04 20.0376 20.0372 20.0368 20.0364
0.01 0.2 20.04 20.0386 20.0385 20.0387 20.0381
0.01 0.5 20.04 20.0393 20.0393 20.0395 20.0392
0.02 0.05 20.04 20.0336 20.0309 20.0304 20.0286
0.02 0.1 20.04 20.0354 20.0344 20.0342 20.0333
0.02 0.2 20.04 20.037 20.0369 20.0368 20.0364
0.02 0.5 20.04 20.0387 20.0385 20.0383 20.0383
0.05 0.1 20.04 20.0303 20.0286 20.0283 20.0267
0.05 0.2 20.04 20.0335 20.0329 20.0326 20.032
0.05 0.5 20.04 20.0367 20.0367 20.0367 20.0364
0.1 0.2 20.04 20.0289 20.0281 20.028 20.0267
0.1 0.5 20.04 20.034 20.0338 20.0342 20.0333
0.2 0.5 20.04 20.0302 20.0297 20.0299 20.0286

TWAP and quasi-TWAP under this added uncertainty. Section 3.1 suggests that the λs
would need to be filtered in practice, and so this section considers a model where N1(t)
and N2(t) are observed but λ1 and λ2 are unobserved with additive noise.

The model we consider is the one studied by Vacarescu [34]. It is similar in
its mutually exciting behaviour, but with a Brownian motion continuously adding
movement to the intensity,(

λ1(t)
λ2(t)

)
= µ +

∫ t

−∞

e−β(t−s)
(
α

(
0 1
1 0

) (
dN1(s)
dN2(s)

)
+ σ

(
dW1(s)
dW2(s)

))
,
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Table 2. The expected executed price for the TWAP strategy and one-order strategy using a logarithm
impact function for 50 000 simulations, λ1(0) = λ2(0) = 0.15, µ = 0.1, q = 100 000, n = 10, S (0) = 20.0,
c(t) = 0.04/50 000, side = buy, δ = 0.01, b = 1.

Parameter Parameter One order TWAP TWAP TWAP
α β execution ∆t = 5 s ∆t = 15 s ∆t = 30 s

0.001 0.005 20.039 20.0384 20.0377 20.0367
0.001 0.01 20.039 20.0386 20.0378 20.0376
0.001 0.02 20.039 20.0388 20.0383 20.0379
0.001 0.05 20.039 20.0389 20.0391 20.0395
0.001 0.1 20.039 20.0392 20.0393 20.0394
0.001 0.2 20.039 20.0395 20.0397 20.0397
0.001 0.5 20.039 20.0398 20.0397 20.0397
0.005 0.01 20.039 20.0365 20.0336 20.0314
0.005 0.02 20.039 20.0369 20.035 20.0339
0.005 0.05 20.039 20.0376 20.0366 20.0368
0.005 0.1 20.039 20.0383 20.0384 20.0383
0.005 0.2 20.039 20.0389 20.0389 20.0388
0.005 0.5 20.039 20.0395 20.0396 20.0394
0.01 0.02 20.039 20.0347 20.0315 20.0298
0.01 0.05 20.039 20.036 20.0348 20.0344
0.01 0.1 20.039 20.0372 20.0366 20.0367
0.01 0.2 20.039 20.0381 20.0378 20.0385
0.01 0.5 20.039 20.0391 20.0393 20.0396
0.02 0.05 20.039 20.0331 20.0307 20.0303
0.02 0.1 20.039 20.0352 20.0342 20.0341
0.02 0.2 20.039 20.0369 20.0367 20.0365
0.02 0.5 20.039 20.0385 20.0386 20.0381
0.05 0.1 20.039 20.03 20.0285 20.0282
0.05 0.2 20.039 20.0335 20.0328 20.0329
0.05 0.5 20.039 20.0367 20.0367 20.0364
0.1 0.2 20.039 20.0287 20.028 20.0283
0.1 0.5 20.039 20.034 20.0341 20.0337
0.2 0.5 20.039 20.0299 20.0296 20.0296

where σ is a scalar noise parameter, W1 and W2 are independent Brownian motions,
and each of the increments dN1(t) and dN2(t) is Poisson with intensity equal to the
positive part of λ,

dN1(t) ∼ Poisson(λ+
1 (t) dt) and dN2(t) ∼ Poisson(λ+

2 (t) dt)

with N1(0) = N2(0) = 0 and λ+ = max(λ, 0). Letting Gt denote the σ-algebra generated
by the observable processes {S (0−), (N1(s),N2(s))s≤t}, the expected average execution
price for the TWAP needs to be conditional on Gt instead of the larger, fully informed
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Table 3. The expected executed price and expected execution time for the quasi-TWAP strategy using
a linear impact function for 50 000 simulations, λ1(0) = λ2(0) = 0.15, µ = 0.1, q = 100 000, n = 10,
S (0) = 20.0, c(t) = 0.04/50 000, side = buy, δ = 0.01.

Parameter Parameter Quasi-TWAP Quasi-TWAP Quasi-TWAP
α β ∆t = 5 s ∆t = 15 s ∆t = 30 s

0.001 0.005 20.0394 43.85 s 20.0384 113.65 s 20.0372 194.48 s
0.001 0.01 20.0395 43.88 s 20.0387 114.86 s 20.0377 199.83 s
0.001 0.02 20.0395 43.94 s 20.0389 117.84 s 20.0385 208.24 s
0.001 0.05 20.0395 44.26 s 20.0394 122.96 s 20.0391 232.02 s
0.001 0.1 20.0398 44.47 s 20.0397 127.35 s 20.0398 250.0 s
0.001 0.2 20.04 44.49 s 20.0399 131.08 s 20.0398 261.43 s
0.001 0.5 20.04 44.68 s 20.0398 133.78 s 20.0401 267.59 s
0.005 0.01 20.0372 43.65 s 20.0337 111.47 s 20.0307 188.75 s
0.005 0.02 20.0376 43.74 s 20.0351 115.03 s 20.0337 200.95 s
0.005 0.05 20.0381 44.12 s 20.0372 121.66 s 20.0368 230.36 s
0.005 0.1 20.0387 44.37 s 20.0384 127.0 s 20.0383 249.73 s
0.005 0.2 20.0393 44.46 s 20.039 130.99 s 20.039 261.44 s
0.005 0.5 20.0396 44.67 s 20.0394 133.77 s 20.0397 267.52 s
0.01 0.02 20.0353 43.42 s 20.0313 111.17 s 20.0287 190.52 s
0.01 0.05 20.0364 43.89 s 20.0347 119.95 s 20.0341 227.2 s
0.01 0.1 20.0375 44.23 s 20.0369 126.52 s 20.0366 249.2 s
0.01 0.2 20.0385 44.41 s 20.0383 130.93 s 20.0383 261.44 s
0.01 0.5 20.0394 44.67 s 20.0391 133.76 s 20.0393 267.52 s
0.02 0.05 20.0334 43.32 s 20.0307 115.75 s 20.0297 219.42 s
0.02 0.1 20.0353 43.89 s 20.0343 125.59 s 20.0339 248.38 s
0.02 0.2 20.0371 44.32 s 20.0368 130.89 s 20.0366 261.28 s
0.02 0.5 20.0386 44.66 s 20.0385 133.76 s 20.0386 267.54 s
0.05 0.1 20.03 42.51 s 20.0282 120.48 s 20.0279 239.68 s
0.05 0.2 20.0334 43.92 s 20.033 130.32 s 20.0328 260.56 s
0.05 0.5 20.0368 44.63 s 20.0367 133.74 s 20.0367 267.43 s
0.1 0.2 20.0287 42.88 s 20.0281 128.25 s 20.0281 257.1 s
0.1 0.5 20.0341 44.57 s 20.0341 133.68 s 20.034 267.39 s
0.2 0.5 20.0299 44.36 s 20.0297 133.37 s 20.03 266.8 s

σ-algebra Ft,
Avg Exec Price n Orders(t−, q)

=
1
n

n−1∑
i=0

E
[
S ((t + i∆t)−)|Gt− ∨

i∨
j=0

{ψ((t + j∆t)−, q/n)}
]

+
1
q

n−1∑
i=0

∫ q/n

0
E
[
ψ(t + i∆t, v)|Gt− ∨

i−1∨
j=0

{ψ((t + j∆t)−, q/n)}
]

dv + sgn(q)
θ

2
.
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Table 4. The expected executed price and expected execution time for the quasi-TWAP strategy using
a logarithm impact function for 50 000 simulations, λ1(0) = λ2(0) = 0.15, µ = 0.1, q = 100 000, n = 10,
S (0) = 20.0, c(t) = 0.04/50 000, side = buy, δ = 0.01, b = 1.

Parameter Parameter Quasi-TWAP Quasi-TWAP Quasi-TWAP
α β ∆t = 5 s ∆t = 15 s ∆t = 30 s

0.001 0.005 20.0384 43.83 s 20.0376 113.47 s 20.0364 193.69 s
0.001 0.01 20.0386 43.85 s 20.038 114.71 s 20.0374 199.95 s
0.001 0.02 20.0387 43.9 s 20.0384 117.78 s 20.0383 208.14 s
0.001 0.05 20.039 44.26 s 20.0392 122.76 s 20.0394 231.76 s
0.001 0.1 20.0393 44.44 s 20.0395 127.22 s 20.0395 249.83 s
0.001 0.2 20.0397 44.5 s 20.0397 131.01 s 20.0399 261.42 s
0.001 0.5 20.0397 44.67 s 20.0398 133.79 s 20.0396 267.54 s
0.005 0.01 20.0365 43.65 s 20.0333 111.62 s 20.0305 188.54 s
0.005 0.02 20.0368 43.72 s 20.0346 114.99 s 20.0334 200.69 s
0.005 0.05 20.0376 44.1 s 20.0369 121.68 s 20.0366 229.91 s
0.005 0.1 20.0383 44.36 s 20.0381 127.05 s 20.0379 249.54 s
0.005 0.2 20.039 44.46 s 20.0388 131.02 s 20.0391 261.52 s
0.005 0.5 20.0395 44.67 s 20.0395 133.73 s 20.0395 267.54 s
0.01 0.02 20.0346 43.39 s 20.0309 111.32 s 20.0285 190.24 s
0.01 0.05 20.0359 43.86 s 20.0345 119.79 s 20.034 227.39 s
0.01 0.1 20.037 44.22 s 20.0367 126.56 s 20.0367 249.39 s
0.01 0.2 20.0382 44.4 s 20.0383 131.01 s 20.0381 261.39 s
0.01 0.5 20.0391 44.67 s 20.0392 133.78 s 20.0392 267.55 s
0.02 0.05 20.033 43.32 s 20.0305 115.65 s 20.0295 218.79 s
0.02 0.1 20.035 43.89 s 20.034 125.54 s 20.0339 248.09 s
0.02 0.2 20.0369 44.3 s 20.0366 130.87 s 20.0366 261.37 s
0.02 0.5 20.0384 44.66 s 20.0382 133.75 s 20.0383 267.56 s
0.05 0.1 20.0297 42.5 s 20.0282 120.52 s 20.0279 239.73 s
0.05 0.2 20.0331 43.9 s 20.0328 130.34 s 20.0327 260.62 s
0.05 0.5 20.0365 44.63 s 20.0365 133.74 s 20.0366 267.49 s
0.1 0.2 20.0287 42.88 s 20.028 128.23 s 20.0281 257.27 s
0.1 0.5 20.034 44.57 s 20.0339 133.65 s 20.034 267.37 s
0.2 0.5 20.0297 44.36 s 20.0296 133.36 s 20.0297 266.72 s

For the linear impact function, the effects of filtering are minimal, as the TWAP
effective criterion set forth in (5.3) is simply taken to be the filtered version

E[λ2(t−) − λ1(t−)|Gt−] ≤
αc(t)q
δn

τ(n,∆t), (5.6)

where τ(n,∆t) is the same as in Proposition 5.5. Following Vacarescu’s work [34], the
filtered intensities are calculated with a linear equation in between TWAP execution
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Table 5. The expected executed price and expected execution time for the quasi-TWAP strategy using a
linear impact function and the filter for 50 000 simulations, λ1(0) = λ2(0) = 0.15, µ = 0.1, q = 100 000,
n = 10, S (0) = 20.0, c(t) = 0.04/50 000, side = buy, δ = 0.01, b = 1.

Parameter Parameter Parameter Quasi-TWAP Quasi-TWAP Quasi-TWAP
α β σ ∆t = 5 s ∆t = 15 s ∆t = 30 s

0.01 0.05 0.001 20.0366 43.89 s 20.0348 119.96 s 20.0341 227.3 s
0.01 0.05 0.005 20.0366 43.86 s 20.0348 119.5 s 20.0342 225.84 s
0.01 0.05 0.01 20.0366 43.75 s 20.035 118.19 s 20.0346 222.09 s
0.01 0.05 0.05 20.0383 41.72 s 20.0398 101.02 s 20.0412 175.45 s
0.01 0.1 0.001 20.0375 44.22 s 20.0369 126.63 s 20.0368 249.55 s
0.01 0.1 0.005 20.0375 44.21 s 20.0369 126.57 s 20.0368 249.05 s
0.01 0.1 0.01 20.0375 44.18 s 20.0369 126.16 s 20.0368 248.58 s
0.01 0.1 0.05 20.0384 43.0 s 20.0385 117.47 s 20.0387 227.8 s
0.01 0.5 0.001 20.0394 44.7 s 20.0395 133.91 s 20.0393 267.75 s
0.01 0.5 0.005 20.0393 44.7 s 20.0394 133.88 s 20.0393 267.72 s
0.01 0.5 0.01 20.0394 44.69 s 20.0391 133.86 s 20.0396 267.77 s
0.01 0.5 0.05 20.0393 44.66 s 20.0393 133.72 s 20.0393 267.43 s
0.05 0.1 0.001 20.0301 42.58 s 20.0282 120.75 s 20.0279 240.3 s
0.05 0.1 0.005 20.03 42.52 s 20.0283 120.51 s 20.0278 240.04 s
0.05 0.1 0.01 20.0301 42.53 s 20.0284 120.57 s 20.0279 239.86 s
0.05 0.1 0.05 20.0312 41.55 s 20.0302 114.34 s 20.0301 224.33 s
0.05 0.5 0.001 20.0368 44.66 s 20.0366 133.87 s 20.0368 267.71 s
0.05 0.5 0.005 20.0368 44.66 s 20.037 133.87 s 20.0368 267.76 s
0.05 0.5 0.01 20.0368 44.66 s 20.0368 133.85 s 20.0368 267.72 s
0.05 0.5 0.05 20.0369 44.62 s 20.0369 133.72 s 20.0371 267.39 s
0.1 0.5 0.001 20.0343 44.6 s 20.0341 133.8 s 20.0341 267.64 s
0.1 0.5 0.005 20.0342 44.6 s 20.0341 133.84 s 20.0343 267.62 s
0.1 0.5 0.01 20.0342 44.61 s 20.0341 133.82 s 20.0342 267.59 s
0.1 0.5 0.05 20.0342 44.59 s 20.0343 133.66 s 20.0341 267.4 s

times,

dE[λ2(t) − λ1(t)|Gt] = −βE[λ2(t−) − λ1(t−)|Gt−] + α(dN1(t) − dN2(t)), (5.7)

and for linear impact function ψ(t, q) = c(t)q, at the time of a TWAP trade the filter is
adjusted by the amount that the trade will affect intensities, namely,

E[λ2(t) − λ1(t)|Gt] = E[λ2(t−) − λ1(t−)|Gt−] +
α

δ
c(t)

q
n
,

at an execution time. Table 5 shows the simulation results for the filtered quasi-TWAP
for linear impact function using the criterion set forth in equation (5.6).

We do not go further and address latency for the log impact function. The reason
is because λ2(t) − λ1(t) is observable at the times of TWAP trades for ψ(t, q) given
by equation (3.6). In this case trading would reveal the latent state, thereby resetting
the filter’s variance to zero, which does not seem quite realistic. Instead, it would
perhaps be better to have the impact function take λ2(t) − λ1(t)+ “noise”, for example,
so that the process remains latent. In addition, the linear filter of (5.7) is not enough
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for the nonlinear impact functions, but rather the entire posterior distribution function
of λ2(t) − λ1(t) is needed to evaluate the posterior expected price impact’s contribution
to the posterior. Hence, log impact and general concave ψ can be done but will require
nonlinear filtering.

6. Conclusion

Using the model proposed by Bacry et al. [7] for the tick-by-tick asset price, this
paper has analysed the price dynamic after the order book receives one or more large
orders. Both linear and logarithmic impact functions are proposed; the logarithmic
function is consistent with other studies which found execution prices to have sub-
linear dependence on trading volume [3, 12, 35]. In the logarithmic case, the impact
function has a dependence on the order-flow imbalance, which is a property that is
also consistent with the literature. We show that for some specific strategies, price
manipulation is present in specific market conditions determined by the parameters
λ2(t) − λ1(t), and that this arbitrage opportunity will vanish if traders exploit it with
orders of growing size.

In Section 5 we study the particular case of the TWAP strategy. Our calculations
show that this strategy can be effective for execution of large orders, and further
evidence is provided in our numerical simulations. Using both logarithmic and linear
impact, we notice that the TWAP strategy often has a better expected execution price
than the strategy of sending only one market order at t = 0. In addition, we have
proposed the quasi-TWAP strategy as a slight improvement to ordinary TWAP, with
the improvement attributed to the strategy’s consideration of order flow.

Interesting future work would include analysis of VWAP strategies, and calculation
of optimal scheduled execution using the dynamic impact function proposed in this
paper. The optimization under these conditions could lead to more robust solutions,
since the dynamic impact function has the property of changing accordingly the
incoming order flow.

Appendix A. Proofs

A.1. Proof of Proposition 3.11 The proposed model in equation (2.2) is driven by
the following pair of stochastic differential equations:

dλ1(t) = β(µ − λ1(t)) dt + α dN2(t),
dλ2(t) = β(µ − λ2(t)) dt + α dN1(t).

The expected value of these two equations is given by

dEλ1(t) = β(µ − Eλ1(t)) dt + αEλ2(t) dt,
dEλ2(t) = β(µ − Eλ2(t)) dt + αEλ1(t) dt.

Taking the difference between the equations yields

d
dt
E[λ2(t) − λ1(t)] = −(α + β)E[λ2(t) − λ1(t)],
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and the solution of the above differential equation is given by

E[λ2(T ) − λ1(T )|Ft−] = [λ2(t−) − λ1(t−)]e−(T−t)(α+β).

Using this solution along with the impact of ψ(t−, q) at time t and using the impact
relationships shown in equations (3.3) and (3.4), we have

E[λ2(T ) − λ1(T )|Ft− ∨ {ψ(t−, q)}] =

(
λ2(t−) − λ1(t−) −

α

δ
ψ(t−, q)

)
e−(T−t)(α+β),

where T > t. So, the expected price after t is

E[S (T )|Ft− ∨ {ψ(t−, q)}]

= S (t−) + ψ(t−, q) + δE
[∫ T

t
(dN2(u) − dN1(u))

∣∣∣∣∣Ft− ∨ {ψ(t−, q)}
]

= S (t−) + ψ(t−, q) + δE
[∫ T

t
(λ2(u) − λ1(u)) du

∣∣∣∣∣Ft− ∨ {ψ(t−, q)}
]

= S (t−) + ψ(t−, q) + (δ(λ2(t−) − λ1(t−)) − αψ(t−, q))
∫ T

t
e−(u−t)(α+β) du

= S (t−) + ψ(t−, q) +
(δ(λ2(t−) − λ1(t−)) − αψ(t−, q))(1 − e−(T−t)(α+β))

α + β
.

Thus, the permanent impact P(q) = ψ(t−, q)β/(α + β), which completes the proof. �

A.2. Proof of Proposition 5.2 The proof of Proposition 3.11 showed the permanent
impact

P(q) = ψ(t−, q)
(

β

α + β

)
(A.1)

and the expected price after an order of size q as

E[S (t + ∆t)|Ft− ∨ {ψ(t−, q)}] − E[S (t + ∆t)|Ft−] = ψ(t−, q) +
αψ(t−, q)
α + β

(e−∆t(α+β) − 1).

(A.2)

Subtracting equations (A.2) and (A.1) from each other, we get the objective in (5.1),
which we seek to optimize over ∆t. Evaluating the objective at any ∆t > 0 yields

∆t ≥ −
1

α + β
ln

(
ξ(1 + β/α)
|ψ(t−, q)|

)
,

which for threshold ξ < |ψ(t−, q)|/(1 + β/α) is maximized at

∆t∗ = −
1

α + β
ln

(
ξ(1 + β/α)
|ψ(t−, q)|

)
.

It is possible that the choice for ξ > |ψ(t−, q)|/(1 + β/α) (that is, if the order size is not
so large), in which case price impact does not pose a reason for waiting to trade.
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A.3. Proof of Proposition 5.4 For a TWAP strategy of n orders at times ti = i∆t and
order size q/n > 0, with linear impact function ψ(q) = cq, let us use the retracement
function R in equation (5.2) to prove the statement of the proposition. For any
i > 0, using the retracement in equation (5.2) and then proceeding inductively, the
expectation of future retracements given the future n-order TWAP impacts is given by

E
[
S (t−i+1) − S (t−i )

∣∣∣∣∣F0− ∨

n−1∨
j=0

{ψ(t−j , q/n)}
]

=
cq
n

+ δ
(1 − e−(α+β)∆t

α + β

)
E
[
λ2(t−i ) − λ1(t−i ) −

acq
δn

∣∣∣∣∣F0− ∨

n−1∨
j=0

{ψ(t−j , q/n)}
]

=
cq
n

+ δ
(1 − e−(α+β)∆t

α + β

)
E
[(
λ2(t−i−1) − λ1(t−i−1) −

acq
δn

)
e−(α+β)∆t

−
acq
δn

∣∣∣∣∣F0− ∨

n−1∨
j=0

{ψ(t−j , q/n)}
]

=
...

=
cq
n

+ δ
(1 − e−(α+β)∆t

α + β

){
(λ2(0−) − λ1(0−))e−(α+β)i∆t −

acq
δn

i∑
j=0

e−(α+β) j∆t
}
.

Summing the expected retracements yields expected total retracement up to time t−i ,

E
[
S (t−i ) − S (0−)

∣∣∣∣∣F0− ∨

n−1∨
j=0

{ψ(t−j , q/n)}
]

=

i−1∑
j=0

E
[
S (t−j+1) − S (t−j )

∣∣∣∣∣F0− ∨

n−1∨
`=0

{ψ(t−` , q/n)}
]

= i
cq
n

+ δ
(1 − e−(α+β)∆t

α + β

) i−1∑
j=0

{
(λ2(0−) − λ1(0−))e−(α+β) j∆t −

acq
δn

j∑
`=0

e−(α+β)`∆t
}
,

and using geometric series, the summations can be simplified as

E
[
S (t−i ) − S (0−)

∣∣∣∣∣F0− ∨

n−1∨
j=0

{ψ(t−j , q/n)}
]

= i
cq
n

+
δ

α + β

{
(λ2(0−) − λ1(0−))(1 − e−(α+β)i∆t) −

acq
δn

i−1∑
j=0

(1 − e−(α+β)( j+1)∆t)
}
.
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Next, the average execution price of the n-order TWAP can be calculated as

Avg Exec Price n Orders(t−, q)

=
c(t)q
2n

+ sgn(q)
θ

2
+ S (0−) +

1
n

n−1∑
i=0

E
[
S (t−i ) − S (0−)

∣∣∣∣∣F0− ∨

n−1∨
j=0

{ψ(t−j , q/n)}
]

=
c(t)q
2n

+ sgn(q)
θ

2
+ S (0−) +

cq
n2

n−1∑
i=0

i

+
δ

n(α + β)

n−1∑
i=0

{
(λ2(0−) − λ1(0−))(1 − e−(α+β)i∆t)

−
acq
δn

i−1∑
j=0

(1 − e−(α+β)( j+1)∆t)
}

= Exec Price 1 Order(t−, q)

+ δ
λ2(0−) − λ1(0−)

n(α + β)

n−1∑
i=0

(1 − e−(α+β)i∆t) −
acq

n2(α + β)

n−1∑
i=0

i−1∑
j=0

(1 − e−(α+β)( j+1)∆t).

The double sum can be simplified to a single summation,

Avg Exec Price n Orders(t−, q) = Exec Price 1 Order(t−, q)

+ δ
λ2(0−) − λ1(0−)

n(α + β)

n−1∑
i=0

(1 − e−(α+β)i∆t) −
acq

n2(α + β)

n−1∑
i=0

(
i − e−(α+β)∆t 1 − e−(α+β)i∆t

1 − e−(α+β)∆t

)
,

and then geometric series applied once again to have summations completely removed:

Avg Exec Price n Orders(t−, q)
= Exec Price 1 Order(t−, q)

+ δ
λ2(0−) − λ1(0−)

n(α + β)

(
n −

1 − e−(α+β)n∆t

1 − e−(α+β)∆t

)
−

acq
n2(α + β)

(n(n − 1)
2

−
ne−(α+β)∆t

1 − e−(α+β)∆t +
1 − e−(α+β)n∆t

(1 − e−(α+β)∆t)2 e−(α+β)∆t
)
.

From this it follows that the TWAP strategy has better expected average execution
price than a single order if and only if equation (5.3) holds. In particular,

Avg Exec Price n Orders(t−, q) ≤ Exec Price 1 Order(t−, q),

if the TWAP condition holds, that is,

λ2(0−) − λ1(0−) ≤
αcq
nδ

×

[ (n − 1)(1 − e−(α+β)∆t)/2 − e−(α+β)∆t + e−(α+β)∆t(1 − e−(α+β)n∆t)/n(1 − e−(α+β)∆t)
1 − e−(α+β)∆t − (1 − e−(α+β)n∆t)/n

]
.

This completes the proof of Proposition 5.4. �
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