Power Series Rings Over Prüfer v-multiplication Domains. II

Gyu Whan Chang

Abstract

Let D be an integral domain, $X^{1}(D)$ be the set of height-one prime ideals of $D,\left\{X_{\beta}\right\}$ and $\left\{X_{\alpha}\right\}$ be two disjoint nonempty sets of indeterminates over $D, D\left[\left\{X_{\beta}\right\}\right]$ be the polynomial ring over D, and $D\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$ be the first type power series ring over $D\left[\left\{X_{\beta}\right\}\right]$. Assume that D is a Prüfer v-multiplication domain ($\mathrm{P} v \mathrm{MD}$) in which each proper integral t-ideal has only finitely many minimal prime ideals (e.g., t-SFT $\mathrm{P} v \mathrm{MDs}$, valuation domains, rings of Krull type). Among other things, we show that if $X^{1}(D)=\varnothing$ or D_{P} is a DVR for all $P \in X^{1}(D)$, then $D\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.$ is a Krull domain. We also prove that if D is a t-SFT P $v \mathrm{MD}$, then the complete integral closure of D is a Krull domain and $\operatorname{ht}\left(M\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right)=1\right.$ for every height-one maximal t-ideal M of D.

1 Introduction

Let D be an integral domain with quotient field K. Let $\left\{X_{\alpha}\right\}$ be a nonempty set of indeterminates over $D, D\left[\left\{X_{\alpha}\right\}\right]$ be the polynomial ring over D, and $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$ be the first type power series ring over D; i.e., $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}=\cup D\left[\left[X_{1}, \ldots, X_{n}\right]\right]\right.$, where $\left\{X_{1}, \ldots, X_{n}\right\}$ runs over all finite subsets of $\left\{X_{\alpha}\right\}$, so $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}=D\left[\left[\left\{X_{\alpha}\right\}\right]\right]\right.$ if and only if $\left|\left\{X_{\alpha}\right\}\right|<\infty$ (cf. [19, Section 1] for the power series ring). Let A be an ideal of D. Then $A D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$ is the ideal of $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$ generated by A and $A\left[\left[\left\{X_{\alpha}\right\}\right]_{1}=\left\{f \in D\left[\left[\left\{X_{\alpha}\right\}\right]_{1} \mid c(f) \subseteq A\right\}\right.\right.$, where $c(f)$ is the ideal of D generated by the coefficients of f, so $A\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$ is an ideal of $D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$ such that $A D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1} \subseteq$ $A\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$. Also, $A D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}=A\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$ if and only if A is finitely generated, and A is a prime ideal if and only if $A\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$ is a prime ideal.

Let $X^{1}(D)$ be the set of height-one prime ideals of D. A Krull domain D is an integral domain in which (i) $D=\bigcap_{P \in X^{1}(D)} D_{P}$, (ii) D_{P} is a rank-one discrete valuation ring (DVR) for all $P \in X^{1}(D)$, and (iii) the intersection $D=\bigcap_{P \in X^{1}(D)} D_{P}$ is locally finite; i.e., each nonzero element of D lies in only a finite number of prime ideals in $X^{1}(D)$. It is clear that D is a Krull domain with $X^{1}(D)=\varnothing$ if and only if D is a field. Krull domains are very important because of, among other things, the following well-known results that D is a Dedekind domain if and only if D is a Krull domain of (Krull) dimension at most one; if D is a Krull domain, then $\operatorname{Div}(D)$, the monoid of v-ideals of D under $I * J=(I J)_{v}$, is a free abelian group on $X^{1}(D)$ and $C l(D)=\operatorname{Div}(D) / \operatorname{Prin}(D)$, where $\operatorname{Prin}(D)$ is the subgroup of nonzero principal fractional ideals of D, is the divisor class group of D; for every abelian group G, there is a Dedekind domain D with $C l(D)=G ; D$ is a UFD if and only if D is a Krull

[^0]domain with $C l(D)=\{0\}$; the integral closure of a Noetherian domain is a Krull domain; and D is a Krull domain if and only if $D\left[\left\{X_{\alpha}\right\}\right]$ is a Krull domain, if and only if $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$ is a Krull domain (see, for example, [16]).

Clearly, $D\left[\left\{X_{\alpha}\right\}\right]_{D-\{0\}}=K\left[\left\{X_{\alpha}\right\}\right]$, and hence $D\left[\left\{X_{\alpha}\right\}\right]_{D-\{0\}}$ is a UFD (so a Krull domain), while the next example shows that $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1 D-\{0\}}\right.$ need not be a Krull domain.

Example 1.1 Let V be a rank-one nondiscrete valuation domain with maximal ideal M, and let $V\left[\left\{\left\{X_{\alpha}\right\}\right]_{1}\right.$ be the first type power series ring over V. Note that if $X \in$ $\left\{X_{\alpha}\right\}$, then $M V\left[[X]\right.$ is a prime ideal of $V[[X]]$ such that $V\left[[X]_{M V \llbracket X]]}\right.$ is a rank-one valuation domain,

$$
V\left[[X] _ { M V [[X] } \cap V \left[[X]_{V-\{0\}}=V[[X],\right.\right.
$$

and

$$
V\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{V-\{0\}}} \cap \operatorname{qf}(V[[X]])=V\left[[X]_{V-\{0\}},\right.\right.
$$

where $\mathrm{qf}(V[[X]])$ is the quotient field of $V[[X]]$. Hence, if $V\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{V-\{0\}}}\right.$ is a Krull domain, then $V\left[[X]_{V-\{0\}}\right.$ is also a Krull domain, and thus $V[[X]$ is a generalized Krull domain. (See Section 2 for the definition of a generalized Krull domain.) But, in this case, V must be a rank-one $\operatorname{DVR}\left[28\right.$, Theorem 2.5]. Thus, $V\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{V-\{0\}}}\right.$ is not a Krull domain.

However, in [3, Theorem 3.7], it was shown that if D is an SFT Prüfer domain, then $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.$ is a Krull domain. This was generalized in [8, Theorem 9(3)] to t-SFT Prüfer v-multiplication domains ($\mathrm{P} v \mathrm{MDs}$) as follows: If D is a t-SFT P $v \mathrm{MD}$, then $D\left[\left\{\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.$ is a Krull domain. Let $\left\{X_{\beta}\right\}$ and $\left\{X_{\alpha}\right\}$ be two disjoint nonempty sets of indeterminates over D and $D\left[\left\{X_{\beta}\right\}\right]$ be the polynomial ring over D. If D is a t-SFT P $v \mathrm{MD}$, then $D_{0}:=D\left[\left\{X_{\beta}\right\}\right]$ is a t-SFT $\mathrm{P} v \mathrm{MD}[8$, Theorem 11]. Hence, $D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D_{0}-\{0\}}}$ is a Krull domain for which it is natural to ask if $D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}$ is a Krull domain.

Let D be a $\mathrm{P} v \mathrm{MD}$ such that each proper integral t-ideal of D has a finite number of minimal prime ideals (e.g., t-SFT $\mathrm{P} v \mathrm{MDs}$, valuation domains, rings of Krull type). In this paper, we modify the proof of [8, Lemma 8] (hence that of [5, Lemma 3.3]) to prove that if $X^{1}(D)=\varnothing$ or D_{P} is a DVR for all $P \in X^{1}(D)$, then both the complete integral closure of D and $D\left[\left[\left\{X_{\alpha}\right\} \rrbracket_{1_{D-\{0\}}}\right.\right.$ are Krull domains. This also gives another proof of [3, Theorem 3.7] that if D is an SFT Prüfer domain, then $D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}$ is a Krull domain. We then use this result to show that $D\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.$ is a Krull domain. Hence, if D is a t-SFT P v MD, then

$$
D\left[[\{ X _ { \alpha } \}] _ { 1 _ { D - \{ 0 \} } } \quad \text { and } \quad D [\{ X _ { \beta } \}] \left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.\right.
$$

are both Krull domains. As a corollary, we have that if D is a valuation domain such that either $X^{1}(D)=\varnothing$ or D has a height-one prime ideal P with $P^{2} \neq P$, then $D\left[\left\{X_{\beta}\right\}\right]\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}$ is a Krull domain. We finally prove that if M is a height-one maximal t-ideal of a t-SFT $\mathrm{P} v \mathrm{MD}$, then $\operatorname{ht}\left(M\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right)=1\right.$. Although some of the proofs are similar to the proof of [8, Lemma 8], we include them for completeness.

We first review definitions related to the t-operation. A fractional ideal I of D is a D-submodule of K such that $d I \subseteq D$ for some $0 \neq d \in D$. Let $F(D)$ be the set of nonzero fractional ideals of D. For $I \in F(D)$, let $I^{-1}=\{x \in K \mid x I \subseteq D\}$; then $I^{-1} \in F(D)$. The v-operation is defined by $I_{v}=\left(I^{-1}\right)^{-1}$ and the t-operation by $I_{t}=\bigcup\left\{J_{v} \mid J \in F(D), J\right.$ is finitely generated, and $\left.J \subseteq I\right\}$. Clearly, if $I \in F(D)$, then $I \subseteq I_{t} \subseteq I_{v}$, and if I is finitely generated, then $I_{t}=I_{v}$. If $*=v$ or t, then I is called a $*$-ideal if $I=I_{*}$ and a *-ideal of finite type if $I=B_{*}$ for some finitely generated ideal $B \in F(D)$. A *-ideal of D is called a maximal $*$-ideal if it is maximal among proper integral $*$-ideals of D. Let $*-\operatorname{Max}(D)$ be the set of all maximal $*$-ideals of D. While $v-\operatorname{Max}(D)$ can be empty as in the case of a rank-one nondiscrete valuation domain D, it is well known that $t-\operatorname{Max}(D) \neq \varnothing$ when D is not a field; a prime ideal minimal over a t-ideal is a t-ideal; each proper integral t-ideal is contained in a maximal t-ideal; each maximal t-ideal is a prime ideal; and $D=\bigcap_{P \in t-\operatorname{Max}(D)} D_{P}$. An overring of D means a ring between D and K. We say that an overring R of D is t-linked over D if $I_{v}=D$ implies $(I R)_{v}=R$ for all finitely generated ideals $I \in F(D)$. It is easy to see that R is t-linked over D if and only if $(Q \cap D)_{t} \mp D$ for each prime t-ideal Q of R [11, Proposition 2.1]. An $I \in F(D)$ is said to be t-invertible if $\left(I I^{-1}\right)_{t}=D$, and we say that D is a Prüfer v-multiplication domain ($\mathrm{P} v \mathrm{MD}$) if each nonzero finitely generated ideal of D is t-invertible. It is well known that D is a $\mathrm{P} v \mathrm{MD}$ if and only if D_{P} is a valuation domain for each maximal t-ideal P of D [20, Theorem 5]. For more on basic properties of the v - and t-operations, see [19, Sections 32 and 34].

A nonzero ideal I of D is called an SFT-ideal (an ideal of strong finite type) (resp., a t-SFT-ideal) if there exist a finitely generated ideal $J \subseteq I$ and an integer $k \geq 1$ such that $a^{k} \in J$ for all $a \in I$ (resp., $a^{k} \in J_{v}$ for all $a \in I_{t}$). The ring D is called an SFT-ring (resp., a t-SFT-ring) if each nonzero ideal of D is an SFT-ideal (resp., a t-SFT-ideal). It is known that D is an SFT-ring (resp., a t-SFT-ring) if and only if each prime ideal (resp., prime t-ideal) of D is an SFT-ideal (resp., a t-SFT-ideal) [4, Proposition 2.2] (resp., [24, Proposition 2.1]). Note that D is a Prüfer domain if and only if D is a $\mathrm{P} \nu \mathrm{MD}$ whose maximal ideals are t-ideals, and each nonzero ideal of a Prüfer domain is a t-ideal. Hence, SFT Prüfer domains $\Leftrightarrow t$-SFT Prüfer domains $\Rightarrow t$-SFT P v MDs. It is known that D is a Krull domain if and only if D is a t-SFT $\mathrm{P} v \mathrm{MD}$ in which each prime t-ideal is a maximal t-ideal [8, Theorem 9(2)].

2 SFT Prüfer Domains, t-SFT PvMDs, and Rings of Krull Type

A valuation domain V is said to be strongly discrete if each nonzero prime ideal P of V is not idempotent, i.e., $P^{2} \neq P$. A strongly discrete Prüfer domain is an integral domain D in which D_{M} is a strongly discrete valuation domain for all maximal ideals M of D. We say that D is a generalized Dedekind domain if (i) D is a strongly discrete Prüfer domain and (ii) each prime ideal of D is the radical of a finitely generated ideal. The notion of generalized Dedekind domains was introduced by Popescu [29]. It is easy to see that D is a Dedekind domain if and only if D is a generalized Dedekind domain of dimension at most one. For more on generalized Dedekind domains, see [15, Chapter 5] or [17]. In [23, Theorem 2.4], Kang and Park showed the following lemma.

Lemma 2.1 The concepts "SFT Prüfer domain" and "generalized Dedekind domain" are the same.

Let F be a field with $K \subseteq F$, where K is the quotient field of D, and let X be an indeterminate. It is known that $R=D+X F[X]$ is an SFT Prüfer domain if and only if $F=K$ and D is an SFT Prüfer domain [17, Corollary 4.2]. More generally, we have the following proposition.

Proposition 2.2 Let $R=\oplus_{n=0}^{\infty} R_{n}$ be a graded integral domain with $R_{n} \neq\{0\}$ for all $n \geq 0$. Then R is an SFT Prüfer domain if and only if $R \cong D+X K[X]$ for some SFT Prüfer domain D with quotient field K.

Proof Recall from [10, Proposition 3.4] that $R=\oplus_{n=0}^{\infty} R_{n}$ is a Prüfer domain if and only $R \cong D+X K[X]$ for some Prüfer domain D with quotient field K. Thus, the result follows directly from [17, Corollary 4.2].

As the t-operation analog of generalized Dedekind domains, El Baghdadi [12] introduced the notion of generalized Krull domains as follows: D is a generalized Krull domain if D is a $\mathrm{P} v \mathrm{MD}$ such that (i) D_{P} is strongly discrete for each maximal t-ideal P of D and (ii) each prime t-ideal of D is the radical of a t-ideal of finite type. We noted in the introduction that D is a Prüfer domain if and only if D is a $P v$ MD whose maximal ideals are t-ideals, and each nonzero ideal of a Prüfer domain is a t-ideal. Thus, a generalized Dedekind domain is just a generalized Krull domain in which each maximal ideal is a t-ideal.

Recall from [19, Section 43] that D is a generalized Krull domain if (i) D_{P} is a valuation domain for each $P \in X^{1}(D)$, (ii) $D=\bigcap_{P \in X^{1}(D)} D_{P}$, and (iii) the intersection $D=\bigcap_{P \in X^{1}(D)} D_{P}$ is locally finite. A generalized Krull domain is a $\mathrm{P} v \mathrm{MD}$ whose prime t-ideals are maximal t-ideals, and a Krull domain is a generalized Krull domain. Thus, a generalized Krull domain is a Krull domain if and only if it is a t-SFT-ring (cf. [8, Proposition 9(2)]). Clearly, this notion of generalized Krull domains is different from El Baghdadi's generalized Krull domains, so we denote by GK-domains El Baghdadi's generalized Krull domains. As in the case of SFT Prüfer domains, in [24, Theorem 2.5], Kang and Park proved the following lemma.

Lemma 2.3 D is a GK-domain if and only if D is a t-SFT PvMD.
An integral domain D is said to be of finite character (resp., finite t-character) if each nonzero element of D is contained in only finitely many maximal ideals (resp., maximal t-ideals) of D. Following [21], we say that D is a ring of Krull type if D is a locally finite intersection of essential valuation overrings of D; equivalently, D is a $\mathrm{P} v \mathrm{MD}$ of finite t-character [20, Theorem 7]. Clearly, both Krull domains and Prüfer domains of finite character are rings of Krull type. For easy examples of t-SFT P v MDs and rings of Krull type, recall that a multiplicative subset S of D is t-splitting if for each $0 \neq d \in D$, we have $d D=(A B)_{t}$ for some integral ideals A, B of D such that $A_{t} \cap s D=s A_{t}$ for all $s \in S$ and $B_{t} \cap S \neq \varnothing$. Let X be an indeterminate over D, S be a
multiplicative subset of $D, D_{S}[X]$ be the polynomial ring over D_{S}, and

$$
D+X D_{S}[X]=\left\{f \in D_{S}[X] \mid f(0) \in D\right\}
$$

so $D+X D_{S}[X]$ is a ring such that $D[X] \subseteq D+X D_{S}[X] \subseteq D_{S}[X]$.
Proposition 2.4 Let S be a multiplicative subset of D and $R=D+X D_{S}[X]$.
(i) R is a t-SFT PvMD if and only if D is a t-SFT PvMD and S is t-splitting.
(ii) R is a ring of Krull type if and only if D is a ring of Krull type, S is t-splitting, and the set of maximal t-ideals of D that intersect S is finite.

Proof
(i) See [13, Corollary 2.3].
(ii) See [2, Theorem 2.5].

Clearly, a Krull domain is both a t-SFT PvMD and a ring of Krull type. Also, it is easy to see that every multiplicative subset of a Krull domain is a t-splitting set [1, p. 8]. Thus, by Proposition 2.4, we have the following corollary.

Corollary 2.5 Let D be a Krull domain, S be a multiplicative subset of D and $R=$ $D+X D_{S}[X]$.
(i) R is a t-SFT PvMD.
(ii) ([2, Corollary 2.6]) If $|\{P \in t-\operatorname{Max}(D) \mid P \cap S \neq \varnothing\}|<\infty$, then R is a ring of Krull type.

We recall the following useful lemma by which it follows that each t-ideal of a t-SFT P $v \mathrm{MD}$ has only finitely many minimal prime ideals [12, Lemma 3.8].

Lemma 2.6 ([7, Lemma 2.1]) Let I be a proper integral t-ideal of D. If every prime ideal of D minimal over I is the radical of a t-ideal of finite type, there are only finitely many prime ideals of D minimal over I.

Let D be a ring of Krull type. If I is a proper integral t-ideal of D, then I is contained in only finitely many maximal t-ideals, and since each maximal t-ideal contains at most one prime ideal of D minimal over I, the number of minimal prime ideals of I is finite.

Proposition $2.7 \quad D$ is a PvMD in which each integral t-ideal has only finitely many minimal prime ideals if and only if $D\left[\left\{X_{\alpha}\right\}\right]$ is. In this case, D_{P} is a $D V R$ for all $P \in$ $X^{1}(D)$ if and only if $D\left[\left\{X_{\alpha}\right\}\right]_{Q}$ is a $D V R$ for all $Q \in X^{1}\left(D\left[\left\{X_{\alpha}\right\}\right]\right)$.

Proof This result follows directly from the following observations: (i) D is a $\mathrm{P} v \mathrm{MD}$ if and only if $D\left[\left\{X_{\alpha}\right\}\right]$ is; and (ii) if Q is a prime t-ideal of $D\left[\left\{X_{\alpha}\right\}\right]$, then either ht $Q=1$ with $Q \cap D=(0)$ or $Q=(Q \cap D)\left[\left\{X_{\alpha}\right\}\right]$ and $Q \cap D$ is a prime t-ideal (cf. [22, Theorem 3.1] and [14, Lemma 2.3]).

The "in this case" part follows from the following two observations: (i) if P is a prime ideal of D, then ht $P=1$ if and only if $P\left[\left\{X_{\alpha}\right\}\right] \in X^{1}\left(D\left[\left\{X_{\alpha}\right\}\right]\right)$, and since
$D\left[\left\{X_{\alpha}\right\}\right]_{P\left[\left\{X_{\alpha}\right\}\right]} \cap K=D_{P}$, we have that $D\left[\left\{X_{\alpha}\right\}\right]_{P\left[\left\{X_{\alpha}\right\}\right]}$ is a DVR if and only if D_{P} is a DVR; and (ii) if $Q \in X^{1}\left(D\left[\left\{X_{\alpha}\right\}\right]\right)$ with $Q \cap D=(0)$, then $D\left[\left\{X_{\alpha}\right\}\right]_{Q}$ is a DVR.

We end this section with three examples that show that SFT Prüfer domains \nRightarrow rings of Krull type; rings of Krull type $\nRightarrow t$-SFT P v MDs; and integral domains in which each integral t-ideal has only finitely many minimal prime ideals $\nRightarrow t$-SFT $\mathrm{P} v$ MDs or rings of Krull type.

Example 2.8 (i) The ring $R=\mathbb{Z}+X \mathbb{Q}[X]$ is an SFT Prüfer domain (hence a t-SFT P $v \mathrm{MD}$), while R is not a ring of Krull type because $X \in R$ is contained in infinitely many maximal t-ideals $p \mathbb{Z}+X \mathbb{Q}[X]$ for all prime elements $p \in \mathbb{Z}$.
(ii) If V is a rank-one nondiscrete valuation domain, then V is a ring of Krull type but not a t-SFT P v MD.
(iii) Let D be a generalized Krull domain that is not a Krull domain and $R=$ $D+X K[X]$. If $\left|X^{1}(D)\right|=\infty$, then each integral t-ideal of R has only finitely many minimal prime ideals but R is neither a t-SFT P v MD nor a ring of Krull type.

3 Power Series Rings Over P v MDs

In this section, we prove that if D is a $\mathrm{P} v \mathrm{MD}$ such that each proper integral t-ideal has only finitely many minimal prime ideals and D_{P} is a DVR for all $P \in X^{1}(D)$, then $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.$ is a Krull domain. Hence, we note that D is a $\mathrm{P} v \mathrm{MD}$ in which each integral t-ideal has only finitely many minimal prime ideals if D is a t-SFT PvMD, D is a ring of Krull type, D is a Prüfer domain of finite character, or D is a valuation domain. Also, throughout this section, we use the following notation.

Notation 3.1 • D is a $\mathrm{P} v \mathrm{MD}$ in which each integral t-ideal has only finitely many minimal prime ideals, and D is not a field.

- K is the quotient field of D.
- $t-\operatorname{Spec}(D)$ is the set of prime t-ideals of D.
- Λ is a nonempty set of prime t-ideals of D with the property that if $\left\{P_{\delta}\right\} \subseteq \Lambda$ is a chain under inclusion, then $\cup P_{\delta} \in \Lambda$.
- $\mathcal{F}(\Lambda)$ is the family of finite sets λ of prime t-ideals in Λ such that no two elements of λ are comparable under inclusion.
- $X^{1}(D)$ is the set of height-one prime ideals of D.
- $R=\bigcap_{P \in X^{1}(D)} D_{P}\left(\right.$ where $R=K$ when $\left.X^{1}(D)=\varnothing\right)$.

If Θ is a set of prime t-ideals of an integral domain A, then $\bigcap_{P \in \Theta} A_{P}$ is called a subintersection of A. It is known that a subintersection of a $\mathrm{P} v \mathrm{MD}$ is a $\mathrm{P} v \mathrm{MD}$ [26, Proposition 5.1]. Thus, $R=\bigcap_{P \in X^{1}(D)} D_{P}$ is a $\mathrm{P} v \mathrm{MD}$.

Proposition 3.2 (i) $\quad R$ is a generalized Krull domain.
(ii) R is a Krull domain if and only if D_{P} is a $D V R$ for all $P \in X^{1}(D)$.

Proof If $X^{1}(D)=\varnothing$, then $R=K$, so we can assume that $X^{1}(D) \neq \varnothing$.
(i) If $P \in X^{1}(D)$, then P is a t-ideal and $R_{P D_{P} \cap R}=D_{P}$, and since D is a $\mathrm{P} v \mathrm{MD}$, D_{P} is a rank-one valuation domain. Moreover, by assumption, each nonzero nonunit
of D is contained in only finitely many height-one prime ideals of D, and hence $R=$ $\bigcap_{P \in X^{1}(D)} D_{P}$ is locally finite. Thus, R is a generalized Krull domain.
(ii) This follows from (i) because a generalized Krull domain A is a Krull domain if and only if A_{P} is a DVR for each $P \in X^{1}(A)$.

Corollary 3.3 (i) If D is a t-SFT PvMD, then R is a Krull domain.
(ii) If D is an SFT Prüfer domain, then R is a Dedekind domain.

Proof (i) Note that D_{P} is a DVR for all $P \in X^{1}(D)$ [8, Lemma 8(1)]. Thus, by Proposition 3.2(ii), R is a Krull domain.
(ii) By (i), R is a Krull domain. Also, since D is a Prüfer domain, R is a Prüfer domain [19, Theorem 26.1]. Thus, R is a Dedekind domain (note that Dedekind domain \Leftrightarrow Krull domain + Prüfer domain).

A set \mathfrak{S} of ideals of D is called a multiplicatively closed set of ideals if $A B \in \mathfrak{S}$ for all $A, B \in \mathfrak{S}$, and if \mathfrak{S} is a multiplicatively closed set of ideals of D, then

$$
D_{\mathfrak{S}}=\{x \in K \mid x A \subseteq D \text { for some } A \in \mathfrak{S}\},
$$

called a generalized transform of D, is a t-linked overring of D [22, Lemma 3.10]. For more on the ring $D_{\mathfrak{S}}$, see [6].

Proposition 3.4 For $\lambda=\left\{P_{1}, \ldots, P_{r}\right\} \in \mathcal{F}(\Lambda)$, let \mathfrak{S}_{λ} be the set of all t-invertible ideals A of D such that $\left(\prod_{i=1}^{r} P_{i}\right)_{t} \mp A_{t} \subseteq D$, but $A \nsubseteq P_{i}$ for $i=1, \ldots, r$.
(i) \mathfrak{S}_{λ} is a multiplicatively closed set of ideals of D.
(ii) Let $D_{\lambda}=D_{\mathfrak{S}_{\lambda}}$. Then $(0) \neq \prod_{i=1}^{r} P_{i} \subseteq\left(D: D_{\lambda}\right)$.
(iii) Let $\mathfrak{S}=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} \mathfrak{S}_{\lambda}$. Then \mathfrak{S} is a multiplicatively closed set of ideals of $D, D_{\mathfrak{S}}=$ $\cup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$, and $D_{\mathfrak{S}}$ is a PvMD.

Proof (i) If $A \in \mathfrak{S}_{\lambda}$, then

$$
P_{i} \supseteq\left(\prod_{i=1}^{r} P_{i}\right)_{t}=\left(\left(\left(\prod_{i=1}^{r} P_{i}\right) A^{-1}\right) A\right)_{t} \quad \text { and } \quad\left(\prod_{i=1}^{r} P_{i}\right) A^{-1} \subseteq D .
$$

But, since $A \nsubseteq P_{i}$ for $i=1, \ldots, r$, we have $\left(\prod_{i=1}^{r} P_{i}\right) A^{-1} \subseteq \bigcap_{i=1}^{r} P_{i}$. Note that $\left(P_{i}+P_{j}\right)_{t}=D$ for $i \neq j$, since D is a $\mathrm{P} v \mathrm{MD}$, so $\bigcap_{i=1}^{r} P_{i}=\left(\prod_{i=1}^{r} P_{i}\right)_{t}$, and therefore $\left(\prod_{i=1}^{r} P_{i}\right)_{t}=\left(\left(\prod_{i=1}^{r} P_{i}\right) A^{-1}\right)_{t}$. Hence, if $A_{1}, A_{2} \in \mathfrak{S}_{\lambda}$, then $A_{1} A_{2}$ is t-invertible, $A_{1} A_{2} \nsubseteq P_{i}$ for $i=1, \ldots, r$, and

$$
\left(A_{1} A_{2}\right)_{t} \varsubsetneqq\left(\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) A_{1} A_{2}\right)_{t}=\left(\left(\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right) A_{2}^{-1} A_{1}^{-1}\right) A_{1} A_{2}\right)_{t}=\left(\prod_{i=1}^{r} P_{\alpha_{i}}\right)_{t}
$$

Thus, $A_{1} A_{2} \in \mathfrak{S}_{\lambda}$.
(ii) This follows because $\prod_{i=1}^{r} P_{i} \subseteq A_{t}$ for all $A \in \mathfrak{S}_{\lambda}$.
(iii) If $A_{1}, A_{2} \in \mathfrak{S}$, then $A_{i} \in \mathfrak{S}_{\lambda_{i}}$ for some $\lambda_{i} \in \mathcal{F}(\Lambda)$ for $i=1,2$. Let λ be the set of minimal elements (under inclusion) of $\lambda_{1} \cup \lambda_{2}$. Clearly, $\lambda \in \mathcal{F}(\Lambda)$. Also, $\prod_{P \in \lambda} P \subseteq \prod_{Q \in \lambda_{i}} Q$ for $i=1,2$, and hence $\left(\prod_{P \in \lambda} P\right)_{t} \mp\left(A_{i}\right)_{t}$ and $A_{i} \nsubseteq P$ for all $P \in \lambda$. (For if $A_{i} \subseteq P$ for some $P \in \lambda$, then $P \notin \lambda_{i}$. Note that $\prod_{Q \in \lambda_{i}} Q \mp\left(A_{i}\right)_{t} \subseteq P$; hence, $Q \mp P$ for some $Q \in \lambda_{i}$, and in this case, $P \notin \lambda$, a contradiction.) Thus, $A_{1}, A_{2} \in \mathfrak{S}_{\lambda}$, and therefore $A_{1} A_{2} \in \mathfrak{S}_{\lambda} \subseteq \mathfrak{S}$. Clearly, $D_{\mathfrak{S}}=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$, and since D is a $\mathrm{P} v \mathrm{MD}$, $D_{\mathfrak{S}}$ is a $\mathrm{P} v \mathrm{MD}$ [22, Theorem 3.11].

Let Θ be a set of prime t-ideals of D. Clearly,

$$
\bigcap_{P \in \Theta} D_{P}= \begin{cases}D & \text { if } \Theta=t-\operatorname{Max}(D) \\ K & \text { if } \Theta=\varnothing\end{cases}
$$

Hence, if each prime t-ideal of D is a maximal t-ideal (e.g., D is a Krull domain), then $t-\operatorname{Max}(D)=X^{1}(D)$, and hence $R=D$.

Corollary 3.5 Let the notation be as in Proposition 3.4, $\lambda=\left\{P_{1}, \ldots, P_{r}\right\} \in \mathcal{F}(\Lambda), \Omega$ be the set of nonzero prime ideals P of D such that P is a minimal element of Λ under inclusion or $P=\bigcap_{\delta} P_{\delta}$ for some chain $\left\{P_{\delta}\right\} \subseteq \Lambda$ with the property that $P^{\prime} \in \Lambda$ with $P^{\prime} \subseteq P_{\delta}$ for some P_{δ} implies $P^{\prime} \in\left\{P_{\delta}\right\}$, and $\Delta=\{M \in t-\operatorname{Max}(D) \mid P \nsubseteq M$ for all $P \in \Lambda\}$.
(i) $\quad D_{\lambda}=\left(\bigcap_{i=1}^{r} D_{P_{i}}\right) \cap\left(\bigcap\left\{D_{M} \mid M \in t-\operatorname{Max}(D)\right.\right.$ and $\left.\left.\prod_{i=1}^{r} P_{i} \nsubseteq M\right\}\right)$.
(ii) $\quad D_{\mathfrak{S}}=\left(\bigcap_{P \in \Omega} D_{P}\right) \cap\left(\bigcap_{M \in \Delta} D_{M}\right)$.
(iii) If $\Lambda=t-\operatorname{Spec}(D)$, then $R=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$.
(iv) R is the complete integral closure of D.

Proof (i) For convenience, let $\Delta_{\mathcal{\lambda}}=\left\{M \in t-\operatorname{Max}(D) \mid \prod_{i=1}^{r} P_{i} \nsubseteq M\right\}$ and $T_{\lambda}=$ $\left(\bigcap_{i=1}^{r} D_{P_{i}}\right) \cap\left(\bigcap_{M \in \Delta_{\lambda}} D_{M}\right)$. (\subseteq): If $x \in D_{\lambda}$, then $x A \subseteq D$ for some $A \in \mathfrak{S}_{\lambda}$. Note that $\prod_{i=1}^{r} P_{i} \subseteq A_{t}$ and $A \nsubseteq P_{i}$ for $i=1, \ldots, r$, so $x \in\left(\bigcap_{i=1}^{r} x D_{P_{i}}\right) \cap\left(\bigcap_{M \in \Delta_{\lambda}} x D_{M}\right)=$ $\left(\cap_{i=1}^{r} x A D_{P_{i}}\right) \cap\left(\bigcap_{M \in \Delta_{\lambda}} x A D_{M}\right) \subseteq T_{\lambda}$.
(Э): Let $0 \neq y \in T_{\lambda}$, and let $A_{y}=\{d \in D \mid d y \in D\}$. Clearly, $A_{y} \nsubseteq P_{i}$ for $i=$ $1,2, \ldots, r$. Note also that $A_{y}=(1, y)^{-1}$, so A_{y} is a t-invertible t-ideal of D. Let $I=\prod_{i=1}^{r} P_{i}$, and assume $M \in t-\operatorname{Max}(D)$. If $A_{y} \nsubseteq M$, then $I D_{M} \subseteq D_{M}=A_{y} D_{M}$. Next, assume $A_{y} \subseteq M$. If $I \nsubseteq M$, i.e., $P_{i} \nsubseteq M$ for $i=1, \ldots, r$, then, by assumption, $y \in D_{M}$, and so $A_{y} \nsubseteq M$, a contradiction. Hence, $P_{j} \subseteq M$ for some j, and since $A_{y} \nsubseteq P_{j}$ and D_{M} is a valuation domain, $I D_{M}=P_{j} D_{M} \mp A_{y} D_{M} \subseteq D_{M}$. Thus, $I \subseteq \bigcap_{M \in t-\operatorname{Max}(D)} I D_{M} \subseteq \bigcap_{M \epsilon t-\operatorname{Max}(D)} A_{y} D_{M}=\left(A_{y}\right)_{t}=A_{y}$ (cf. [22, Theorem 3.5] for the first equality). Clearly, $\left(\prod_{i=1}^{r} P_{i}\right)_{t}=I_{t} \neq A_{y}$, and hence $A_{y} \in \mathfrak{S}_{\lambda}$. Thus, $y \in D_{\lambda}$.
(ii) Let $T=\left(\bigcap_{P \in \Omega} D_{P}\right) \cap\left(\bigcap_{M \in \Delta} D_{M}\right)$. (؟): If $x \in D_{\mathfrak{S}}$, then $x \in D_{\lambda}$ for some $\lambda=\left\{P_{1}, \ldots, P_{r}\right\} \in \mathcal{F}(\Lambda)$. Hence, there exists an $A \in \mathfrak{S}_{\lambda}$ such that $x A \subseteq D$. Note that $\prod_{i=1}^{r} P_{i} \subseteq A_{t}$, so $A \nsubseteq P$ for all $P \in \Omega \cup \Delta$. Thus, $x \in\left(\bigcap_{P \in \Omega} x D_{P}\right) \cap\left(\bigcap_{M \in \Delta} x D_{M}\right)=$ $\left(\bigcap_{P \in \Omega} x A D_{P}\right) \cap\left(\bigcap_{M \in \Delta} x A D_{M}\right) \subseteq T$.
(\supseteq) : For the reverse containment, let $0 \neq y \in T$ and $A_{y}=(1, y)^{-1}$. Then A_{y} is a t-invertible t-ideal of D. If $A_{y}=D$, then $y \in D \subseteq D_{\mathfrak{S}}$, so assume $A_{y} \mp D$. Then there are only finitely many prime ideals of D minimal over A_{y}, say Q_{1}, \ldots, Q_{n}. Let $\Theta=\left\{P \in \Lambda \mid P \nsubseteq Q_{i}\right.$ for some $\left.i\right\}$, whence $A_{y} \nsubseteq P$ for all $P \in \Theta$. If M is a maximal t-ideal of D with $Q_{i} \subseteq M$ for some i, then $A_{y} \subseteq M$, and hence $M \notin \Delta$. Thus, M contains at least one prime ideal in Λ, and since D_{M} is a valuation domain, $P \mp Q_{i}$ for some $P \in \Lambda$ by the choice of Ω and y. Hence, $\Theta \neq \varnothing$. Also, if $\left\{P_{\delta}\right\}$ is a chain of prime ideals in Θ, then $P:=\bigcup P_{\delta} \in \Lambda$ by the property of Λ, and since $A_{y} \nsubseteq P_{\delta}$ for all δ and A_{y} is of finite type, $A_{y} \nsubseteq P$. Thus, each element of Θ is contained in at least one maximal element under inclusion, and Θ contains a finite number of maximal elements. Let μ be the set of maximal elements of Θ, and let $I=\prod_{P \in \mu} P$. Clearly,
$\mu \in \mathcal{F}(\Lambda)$, and it is easy to see that $I_{t} \varsubsetneqq A_{y}$ and $A_{y} \nsubseteq P$ for all $P \in \mu$ (cf. the proof of (i) above). Thus, $y \in D_{\mu} \subseteq D_{\mathfrak{S}}$.
(iii) It is obvious that $t-\operatorname{Spec}(D)$ satisfies the given property of Λ. Hence, if $\Lambda=$ $t-\operatorname{Spec}(D)$, then $\Omega=X^{1}(D)$ and $\Delta=\varnothing$, and thus by (ii) and Proposition 3.4(iii), $R=\cup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$.
(iv) Let D^{*} be the complete integral closure of D. Clearly, $D^{*} \subseteq R$, because $D \subseteq R$ and R is completely integrally closed. For the reverse containment, let $\alpha \in R$ and $\Lambda=t-\operatorname{Spec}(D)$. Then $\alpha \in D_{\lambda}$ for some $\lambda \in \mathcal{F}(\Lambda)$, and since D_{λ} is a ring, $\alpha^{n} \in D_{\lambda}$ for all integers $n \geq 1$. Note that $\prod_{P \in \lambda} P \subseteq\left(D: D_{\lambda}\right)$ by Proposition 3.4(ii), so if $0 \neq d \in \prod_{P \in \lambda} P$, then $d \alpha^{n} \in D$ for all $n \geq 1$. Thus, $\alpha \in D^{*}$.

Remark 3.6 If D is a ring of Krull type, then each integral t-ideal of D has only a finite number of minimal prime ideals. Thus, by Corollary 3.5(iv), $R=\bigcap_{P \in X^{1}(D)} D_{P}$ is the complete integral closure of D. Also, if $X^{1}(D) \neq \varnothing$, then R is a generalized Krull domain by Proposition 3.2(i). This recovers Mott's results [25, Theorems 1 and 3].

It is known that the complete integral closure of an SFT Prüfer domain is a Dedekind domain [17, Corollary 3.2], and a completely integrally closed t-SFT P $v \mathrm{MD}$ is a Krull domain ([12, Theorem 3.11] or [24, Theorem 2.9]).

Corollary 3.7 The complete integral closure of a t-SFT PvMD is a Krull domain.

Proof By Corollary 3.5(iv), R is the complete integral closure of D. Thus, by Corollary 3.3, the complete integral closure of a t-SFT $\mathrm{P} v \mathrm{MD}$ is a Krull domain.

For brevity of notations, let $A\left[\left[X_{1}, \ldots, X_{n}\right]\right]=A\left[\left[X_{n}\right]\right.$ for an integral domain A and an integer $n \geq 0, A\left[\left[X_{0}\right]\right]=A, \xi\left(X_{1}, \ldots, X_{n}\right)=\xi\left(X_{n}\right)$ for any $\xi\left(X_{1}, \ldots, X_{n}\right) \in$ $A\left[\left[X_{n}\right]\right]$, and K_{n} be the quotient field of $D\left[\left[X_{n}\right]\right]$.

Lemma 3.8 Let $\Lambda=t-\operatorname{Spec}(D)$. If $n \geq 0$ is an integer, $\left\{\xi_{i}\left(X_{n}\right)\right\}_{i=1}^{\infty}$ is a subset of $R\left[\left[X_{n}\right],\left\{m_{i}\right\}_{i=1}^{\infty}\right.$ is a set of positive integers, and $0 \neq d\left(X_{n}\right) \in D\left[\left[X_{n}\right]\right.$ is such that $d\left(X_{n}\right)^{m_{i}} \xi_{i}\left(X_{n}\right) \in D\left[\left[X_{n}\right]\right]$ for all $i \geq 1$, then $\left\{\xi_{i}\left(X_{n}\right)\right\}_{i=1}^{\infty} \subseteq D_{\lambda}\left[\left[X_{n}\right]\right]$ for some $\lambda \in \mathcal{F}(\Lambda)$.

Proof Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ be a subset of R, and assume that there exist $0 \neq d \in D$ and positive integers $\left\{m_{i}\right\}_{i=1}^{\infty}$ such that $d^{m_{i}} \xi_{i} \in D$ for all $i \geq 1$. If $d D=D$, then $\xi_{i} \in D$, so we assume $d D \mp D$. Hence, there are only finitely many minimal prime ideals of $d D$, say Q_{1}, \ldots, Q_{m}. If ht $Q_{j}=1$, let $P_{j}=Q_{j}$, and if $\mathrm{ht} Q_{j} \geq 2$, then choose a prime ideal P_{j} such that $(0) \mp P_{j} \mp Q_{j}$. Let $\lambda=\left\{P_{\alpha_{1}}, \ldots, P_{\alpha_{r}}\right\}$ be the set of distinct P_{i} 's (it is possible that $P_{i}=P_{j}$ for $i \neq j$, so $r \leq m$), and let $A_{\xi_{i}}=\left\{a \in D \mid a \xi_{i} \in D\right\}$. Since $A_{\xi_{i}}=\left(1, \xi_{i}\right)^{-1}, A_{\xi_{i}}$ is a t-invertible t-ideal of D. Since $\xi_{i} \in R$, we have $A_{\xi_{i}} \nsubseteq Q$ for all $Q \in X^{1}(D)$. Next, note that $d^{m_{i}} \in A_{\xi_{i}}$; so if ht $Q_{j} \geq 2$, then $P_{j} \mp Q_{j}$, and hence $A_{\xi_{i}} \nsubseteq P_{j}$. Thus, $A_{\xi_{i}} \nsubseteq P_{\alpha_{j}}$ for $j=1, \ldots, r$. Let $p \in \prod_{j=1}^{r} P_{\alpha_{j}}$, and $M \in t-\operatorname{Max}(D)$. If $d \notin M$, then $p \xi_{i} \in D_{M}$. If $d \in M$, then $P_{\alpha_{j}} \subseteq M$ for some j, whence if $\operatorname{ht} P_{\alpha_{j}}=1$, then $p \xi_{i} \in p R \subseteq P_{\alpha_{j}} D_{P_{\alpha_{j}}}=P_{\alpha_{j}} D_{M} \mp D_{M}$. If ht $P_{\alpha_{j}} \geq 2$, then $d \notin P_{\alpha_{j}}$, and so $p \xi_{i} \in$
$p\left(d^{m_{i}} \xi_{i}\right) D_{P_{\alpha_{j}}} \subseteq p D_{P_{\alpha_{j}}} \subseteq P_{\alpha_{j}} D_{P_{\alpha_{j}}} \subseteq D_{M}$. Hence, $p \xi_{i} \in \bigcap_{M \in t-\operatorname{Max}(D)} D_{M}=D$. Thus, $\left(\prod_{j=1}^{r} P_{\alpha_{j}}\right)_{t} \mp\left(A_{\xi_{i}}\right)_{t}=A_{\xi_{i}}$, and so $A_{\xi_{i}} \in \mathfrak{S}_{\lambda}$. Therefore, $\xi_{i} \in D_{\lambda}$ for all $i \geq 0$.

Assume that if $k=n-1$ is a nonnegative integer, $\left\{\xi_{i}\left(X_{k}\right)\right\}_{i=1}^{\infty}$ is a subset of $R\left[\left[X_{k}\right]\right],\left\{k_{i}\right\}_{i=1}^{\infty}$ is a set of positive integers, and $\left.\left.0 \neq d\left(X_{k}\right) \in D \llbracket X_{k}\right]\right]$ is such that $d\left(X_{k}\right)^{k_{i}} \xi_{i}\left(X_{k}\right) \in D\left[\left[X_{k}\right]\right]$ for all $i \geq 1$, then $\left\{\xi_{i}\left(X_{k}\right)\right\}_{i=1}^{\infty} \subseteq D_{v}\left[\left[X_{k}\right]\right]$ for some $v \in \mathcal{F}(\Lambda)$. Let $\left\{\xi_{i}\left(X_{n}\right)\right\}_{i=1}^{\infty}$ be a subset of $R\left[\left[X_{n}\right],\left\{n_{i}\right\}_{i=1}^{\infty}\right.$ be a set of positive integers, and $0 \neq d\left(X_{n}\right) \in D\left[\left[X_{n}\right]\right]$ be such that $d\left(X_{n}\right)^{n_{i}} \xi_{i}\left(X_{n}\right) \in D\left[\left[X_{n}\right]\right]$ for all $i \geq 1$. We can write

$$
d\left(X_{n}\right)=\sum_{j=0}^{\infty} d_{j}\left(X_{n-1}\right) X_{n}^{j} \quad \text { and } \quad \xi_{i}\left(X_{n}\right)=\sum_{j=0}^{\infty} \xi_{i j}\left(X_{n-1}\right) X_{n}^{j}
$$

where $d_{j}\left(X_{n-1}\right) \in D\left[\left[X_{n-1}\right]\right]$ and $\xi_{i j}\left(X_{n-1}\right) \in R\left[\left[X_{n-1}\right]\right]$, and we can assume that $d_{0}\left(X_{n-1}\right) \neq 0$. Hence, $\left\{\xi_{i j}\left(X_{n-1}\right)\right\}$ is a subset of $D\left[\left[X_{n-1}\right]\right]$ such that $d_{0}\left(X_{n-1}\right)^{n_{i}(j+1)} \xi_{i j}\left(X_{n-1}\right) \in D\left[\left[X_{n-1}\right]\right]$ for all $j \geq 0$ (cf. the proof of [27, Proposition 2.5]), and thus $\left\{\xi_{i j}\left(X_{n-1}\right)\right\}_{j=0}^{\infty} \subseteq D_{\mu}\left[\left[X_{n-1}\right]\right]$ for some $\mu \in \mathcal{F}(\Lambda)$ by assumption. Therefore, $\xi_{i}\left(X_{n}\right) \in D_{\mu}\left[\left[X_{n}\right]\right]$ for $i \geq 1$.

Lemma 3.9 If $\Lambda=t-\operatorname{Spec}(D)$, then $R\left[\left[X_{n}\right]\right] \cap K_{n}=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}\left[\left[X_{n}\right]\right]$.
Proof (Э): Note that if $\lambda \in \mathcal{F}(\Lambda)$, then $\left(D: D_{\lambda}\right) \neq(0)$ by Proposition 3.4(ii), so $D_{\lambda}\left[\left[X_{n}\right] \subseteq D\left[\left[X_{n}\right]_{D-\{0\}} \subseteq K_{n}\right.\right.$. Hence, the result follows, because $R=\bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$ by Corollary 3.5(iii).
(\subseteq) : Let $\xi\left(X_{n}\right)=\frac{f\left(X_{n}\right)}{g\left(X_{n}\right)} \in R\left[\left[X_{n}\right]\right] \cap K_{n}$, where $0 \neq f\left(X_{n}\right), g\left(X_{n}\right) \in D\left[\left[X_{n}\right]\right]$, and write $\xi\left(X_{n}\right)=\sum_{i=0}^{\infty} \xi_{i}\left(X_{n-1}\right) X_{n}^{i}$ and $g\left(X_{n}\right)=\sum_{i=0}^{\infty} d_{i}\left(X_{n-1}\right) X_{n}^{i}$. We may assume that $d_{0}\left(X_{n-1}\right) \neq 0$; then

$$
\xi\left(X_{n}\right) g\left(X_{n}\right)=\sum_{k=0}^{\infty}\left(\sum_{i+j=k} \xi_{i}\left(X_{n-1}\right) d_{j}\left(X_{n-1}\right)\right) X_{n}^{k} \in D\left[\left[X_{n}\right] .\right.
$$

Hence, $d_{0}\left(X_{n-1}\right)^{i+1} \xi_{i}\left(X_{n-1}\right) \in D\left[\left[X_{n-1}\right]\right]$ for all $i \geq 0$, and thus

$$
\left\{\xi_{i}\left(X_{n-1}\right)\right\} \subseteq D_{\lambda}\left[\left[X_{n-1}\right]\right]
$$

for some $\lambda \in \mathcal{F}(\Lambda)$ by Lemma 3.8. Thus, $\xi\left(X_{n}\right) \in D_{\lambda}\left[\left[X_{n}\right]\right]$.
Theorem 3.10 If $R=\bigcap_{P \in X^{1}(D)} D_{P}$ is a Krull domain, then $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.$ is a Krull domain.

Proof Since R is a Krull domain, $R\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$ is a Krull domain [18, Theorem 2.1], and hence $R\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.$ is a Krull domain [19, Corollary 43.6]. Clearly, if we let $\mathrm{qf}\left(D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right)\right.$ be the quotient field of $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$, then $\mathrm{qf}\left(D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right)\right.$ is a Krull domain. Hence, by [19, Corollary 44.10], it suffices to show that

$$
R\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}} \cap \operatorname{qf}\left(D \llbracket\left\{X_{\alpha}\right\}\right]_{1}\right)=D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}
$$

The containment " \supseteq " is clear. For the reverse containment, note that if

$$
u \in R\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}} \cap \operatorname{qf}\left(D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}\right)
$$

then $d u \in R\left[\left[X_{n}\right]\right] \cap K_{n}$ for some $X_{1}, \ldots, X_{n} \in\left\{X_{\alpha}\right\}$ and $0 \neq d \in D$. However, since $R\left[\left[X_{n}\right]\right] \cap K_{n}=D\left[\left[X_{n}\right]\right]$ by Lemma 3.9, we have $u \in D\left[\left[X_{n}\right]\right]_{D-\{0\}} \subseteq D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}$.

Corollary 3.11 Let $\left\{X_{\beta}\right\}$ and $\left\{X_{\alpha}\right\}$ be two disjoint nonempty sets of indeterminates over D. If $R=\bigcap_{P \in X^{1}(D)} D_{P}$ is a Krull domain, then $D\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]_{1 D-\{0\}}\right.$ is a Krull domain.

Proof Let $D_{0}=D\left[\left\{X_{\beta}\right\}\right]$. Note that D_{P} is a DVR for all $P \in X^{1}(D)$ by Proposition 3.2(ii), so D_{0} is a $\mathrm{P} v \mathrm{MD}$ in which each integral t-ideal has only finitely many minimal prime ideals and $D_{0 Q}$ is a rank-one DVR for all $Q \in X^{1}\left(D_{0}\right)$ by Proposition 2.7. Hence, again by Proposition 3.2, $\bigcap_{Q \in X^{1}\left(D_{0}\right)} D_{0 Q}$ is a Krull domain, and thus $D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D_{0}-\{0\}}}\right.$ is a Krull domain by Theorem 3.10.
Claim. $D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D_{0}-\{0\}}} \cap K\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}=D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.\right.$.
Proof of Claim Let $h=\frac{f}{g} \in D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D_{0}-\{0\}}} \cap K\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}\right.$, where $0 \neq f \in$ $D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$ and $0 \neq g \in D_{0}$. Let $h_{i} \in K\left[\left\{X_{\beta}\right\}\right]$ (resp., $f_{i} \in D_{0}$) be the coefficients of h (resp., f) such that $g h_{i}=f_{i} \in D_{0}=D\left[\left\{X_{\beta}\right\}\right]$. Since D is a $\mathrm{P} v \mathrm{MD}, D \supseteq c\left(f_{i}\right)_{v}=$ $c\left(g h_{i}\right)_{v}=\left(c(g) c\left(h_{i}\right)\right)_{v} \supseteq a \cdot c\left(h_{i}\right)=c\left(a h_{i}\right)$ for all $0 \neq a \in c(g)$. Hence, $a h_{i} \in$ $D\left[\left\{X_{\beta}\right\}\right]$ for all i, and thus $a h \in D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$. Therefore, $h=\frac{a h}{a} \in D_{0}\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{D-\{0\}}}\right.$. The reverse containment is clear.

Note that $K\left[\left\{X_{\beta}\right\}\right]$ is a Krull domain, so $K\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$ is a Krull domain [18, Theorem 2.1]. Thus, $D\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}$ is a Krull domain by the claim and [19, Corollary 44.10].

If D is a t-SFT $\mathrm{P} v \mathrm{MD}$, then each proper integral t-ideal has only finitely many minimal prime ideals and $R=\bigcap_{P \in X^{1}(D)} D_{P}$ is a Krull domain. Thus, by Theorem 3.10 and Corollary 3.11, we have the following corollary.

Corollary 3.12 Let $\left\{X_{\beta}\right\}$ and $\left\{X_{\alpha}\right\}$ be two disjoint nonempty sets of indeterminates over D. If D is a t-SFT PvMD, then $D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}$ and $D\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}$ are both Krull domains.

Let D be a valuation domain, and assume that $\left|\left\{X_{\beta}\right\}\right|<\infty$. It is known that if $X^{1}(D)=\varnothing$, then $D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}$ is a UFD [3, Proposition 2.1 and Corollary 3.4]. Also, if D has a height-one prime ideal P that is not idempotent, i.e., $P \neq P^{2}$, then D_{P} is a rank-one DVR, and hence $D_{P}\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$ is a UFD (cf. [30, Theorem 2.1]). Note that

$$
D\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}=D_{P}\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D_{P}-\{0\}}}
$$

Thus, $D\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{D-\{0\}}}$ is a UFD.
Corollary 3.13 Let $\left\{X_{\beta}\right\}$ and $\left\{X_{\alpha}\right\}$ be two disjoint nonempty sets of indeterminates over a valuation domain V. If either $X^{1}(V)=\varnothing$ or V has a height-one prime ideal P with $P^{2} \neq P$, then $V\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]_{1_{V-\{0\}}}\right.$ is a Krull domain.

Proof Let $R=\bigcap_{P \in X^{1}(V)} V_{P}$. Then either R is a field or $R=V_{P}$ is a rank-one DVR (so a Krull domain) by assumption. Thus, by Corollary 3.11, $\left.V\left[\left\{X_{\beta}\right\}\right]\left[\left\{X_{\alpha}\right\}\right]\right]_{1_{V-\{0\}}}$ is a Krull domain.

We end this paper by a t-SFT P v MD analog of Arnold's result [5, Proposition 3.2] that if D is a finite dimensional Prüfer domain with the SFT-property and M is a height-one maximal ideal of D, then $\operatorname{ht}\left(M\left[\left[X_{n}\right]\right]\right)=1$ for all integers $n \geq 1$. We first need two lemmas.

Lemma 3.14 (cf. [5, Lemma 3.1]) Let D be a t-SFT PvMD and let A be a nonzero ideal of D with the property that each prime ideal of D minimal over A is a maximal t-ideal. Then A is t-invertible, and hence each maximal t-ideal is t-invertible.

Proof Since D is a t-SFT-ring, A_{t} has only finitely many minimal prime ideals of D, say M_{1}, \ldots, M_{k}, which are maximal t-ideals by assumption. Note that $M_{i} D_{M_{i}}$ is principal, so $A D_{M_{i}}=a_{i} D_{M_{i}}$ for some $a_{i} \in A$. Also, there exists a finitely generated ideal $J \subseteq A$ of D such that $\sqrt{A_{t}}=\sqrt{J_{v}}$. So if we let $B=J+\left(a_{1}, \ldots, a_{n}\right)$, then $B \subseteq A$ is finitely generated, $A D_{M}$ is principal, and $A D_{M}=B D_{M}$ for all maximal t-ideals M of D. Thus, $A_{t}=B_{t}$ and B_{t} is t-invertible [22, Theorem 3.5 and Corollary 2.7]. Thus, A is t-invertible.

Lemma 3.15 (cf. [5, Proposition 2.1(v)]) Let D be a $t-S F T P v M D$ and let Q be a prime t-ideal of $D\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$. If $Q \cap D=P$, then $P\left[\left[\left\{X_{\alpha}\right\}\right]_{1} \subseteq Q\right.$.

Proof If $P=(0)$, then $P\left[\left[\left\{X_{\alpha}\right\}\right]_{1}=(0) \subseteq Q\right.$, and so assume $P \neq(0)$. Note that if $I \subseteq$ P is a nonzero finitely generated ideal of D, then $Q \supseteq\left(I D\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}\right)_{v}=I_{v}\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$ [9, Lemma 3.1], and thus $P=Q \cap D \supseteq I_{v}\left[\llbracket\left\{X_{\alpha}\right\}\right]_{1} \cap D=I_{v}$. Thus, $P_{t}=P$, so there are a nonzero finitely generated ideal B and an integer $k \geq 1$ such that $a^{k} \in B_{v}$ for all $a \in P$. If $\bar{P}=P / B_{v}$, then each element of $\bar{P}\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.$ is nilpotent (cf. the proof of [5, Proposition 2.1(v)]). Thus, $P\left[\left[\left\{X_{\alpha}\right\}\right]_{1}=\sqrt{B_{v}\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}}\right.$, and since $B_{v}\left[\left[\left\{X_{\alpha}\right\}\right]_{1}=\right.$ $\left.\left(B D \llbracket\left\{X_{\alpha}\right\}\right]_{1}\right)_{v} \subseteq Q_{t}=Q$, we have $P\left[\left[\left\{X_{\alpha}\right\}\right]_{1}=\sqrt{B_{v}\left[\left[\left\{X_{\alpha}\right\}\right]_{1}\right.} \subseteq Q\right.$.

Proposition 3.16 (cf. [5, Proposition 3.2]) Let D be a $t-S F T$ PvMD and let M be a maximal t-ideal of D. If $h t M=1$, then $h t\left(M\left[\left\lfloor\left\{X_{\alpha}\right\} \rrbracket_{1}\right)=1\right.\right.$.

Proof By Lemma 3.14, $M=\left(a_{1}, \ldots, a_{k}\right)_{v}$ and $M D_{M}=m D_{M}$ for some a_{1}, \ldots, a_{k}, $m \in M$. Hence, there is an $s \in D-M$ such that $s M=s\left(a_{1}, \ldots, a_{k}\right)_{v}=\left(s a_{1}, \ldots, s a_{k}\right)_{v} \subseteq$ $m D$, whence $s^{r}\left(M^{r}\right)_{t} \subseteq m^{r} D$ for all integers $r \geq 1$.

Assume that ht $\left(M\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}\right)>1$, and let Q be a prime t-ideal of $\left.D\left[\left\{X_{\alpha}\right\}\right]\right]_{1}$ such that $(0) \mp Q \mp M\left[\left\{\left\{X_{\alpha}\right\}\right]_{1}\right.$. Clearly, there are some $X_{1}, \ldots, X_{n} \in\left\{X_{\alpha}\right\}$ so that $Q \cap D\left[\left[X_{n}\right] \neq(0)\right.$ and $Q \cap D\left[\left[X_{n}\right]\right.$ is a prime t-ideal. Replacing Q with $Q \cap D\left[\left[X_{n}\right]\right]$, we assume that $(0) \mp Q \mp M\left[\left[X_{n}\right]\right.$. If $Q \cap D \neq(0)$, then $Q \cap D \subseteq M$, and since $\operatorname{ht} M=1, Q \cap D=M$. Thus, $M\left[\left[X_{n}\right]\right]=\left(M D\left[\left[X_{n}\right]\right]\right)_{v}=\left(M D\left[\left[X_{n}\right]\right)_{t} \subseteq Q\right.$, a contradiction. Hence, $Q \cap D=(0)$. Choose $0 \neq q \in Q$. Note that $\left(M^{i}\right)_{t}$ is M-primary for all integers $i \geq 1$; hence, $q \in \bigcap_{i=1}^{\infty}\left(M^{i}\right)_{t}\left[\left[X_{n}\right]\right]$ by an argument similar to the proof
of [5, Proposition 3.2]. Thus, $\bigcap_{i=1}^{\infty} M^{i} D_{M}=\bigcap_{i=1}^{\infty}\left(M^{i}\right)_{t} D_{M} \supseteq \bigcap_{i=1}^{\infty}\left(M^{i}\right)_{t} \neq(0)$, and therefore ht $M=\mathrm{ht} M D_{M}>1$, a contradiction.

Corollary 3.17 Let D be a t-SFT PvMD and $\left\{X_{\beta}\right\} \cup\left\{X_{\alpha}\right\}$ be the union of two disjoint nonempty sets of indeterminates over D. If M is a height-one maximal t-ideal of D, then $\operatorname{ht}\left(M\left[\left\{X_{\beta}\right\}\right]\left[\left[\left\{X_{\alpha}\right\}\right]\right]_{1}\right)=1$.

Proof This follows directly from Proposition 3.16, because $D\left[\left\{X_{\beta}\right\}\right]$ is a t-SFT $\mathrm{P} v \mathrm{MD}$ by [8, Theorem 11], $M\left[\left\{X_{\beta}\right\}\right]$ is a maximal t-ideal by [14, Lemma 2.1], and $\operatorname{ht}\left(M\left[\left\{X_{\beta}\right\}\right]\right)=1$ (note that D_{M} is a one-dimensional valuation domain).

Acknowledgment The author would like to thank the referee for careful reading and several valuable comments.

References

[1] D. D. Anderson, D. F. Anderson, and M. Zafrullah, The ring $D+X D_{S}[X]$ and t-splitting sets. In: Commutative algebra, Arab J. Sci. Eng. Sect. C Theme Issues 26(2001), 3-16.
[2] D. D. Anderson, G. W. Chang, and M. Zafrullah, Integral domains of finite t-character. J. Algebra 396(2013), 169-183. http://dx.doi.org/10.1016/j.jalgebra.2013.08.014
[3] D. D. Anderson, B. G. Kang, and M. H. Park, Anti-Archimedean rings and power series rings. Comm. Algebra 26(1998), no. 10 ,3223-3238. http://dx.doi.org/10.1080/00927879808826338
[4] J. T. Arnold, Power series rings over Prüfer domains. Pacific J. Math. 44(1973), 1-11. http://dx.doi.org/10.2140/pjm.1973.44.1
[5] , Power series rings with finite Krull dimension. Indiana Univ. Math. J. 31(1982), no. 6, 897-911. http://dx.doi.org/10.1512/iumj.1982.31.31061
[6] J. T. Arnold and J. W. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring. J. Algebra 18(1971), 254-263. http://dx.doi.org/10.1016/0021-8693(71)90058-5
[7] G. W. Chang, Spectral localizing systems that are t-splitting multiplicative sets of ideals. J. Korean Math. Soc. 44(2007), 863-872. http://dx.doi.org/10.4134/JKMS.2007.44.4.863
[8] , Power series rings over Prüfer v-multiplication domains. J. Korean Math. Soc. 53(2016), no. 2, 447-459. http://dx.doi.org/10.4134/JKMS.2016.53.2.447
[9] G. W. Chang and D. Y. Oh, The rings $D((X))_{i}$ and $D\{\{X\}\}_{i}$. J. Algebra Appl. 12(2013), no. 2, 1250147. http://dx.doi.org/10.1142/S0219498812501472
[10] F. Decruyenaere and E. Jespers, Prüfer domains and graded rings. J. Algebra 150(1992), no. 2, 308-320. http://dx.doi.org/10.1016/S0021-8693(05)80034-1
[11] D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains. Comm. Algebra 17(1989), no. 11, 2835-2852. http://dx.doi.org/10.1080/00927878908823879
[12] S. El Baghdadi, On a class of Prüfer v-multiplication domains. Comm. Algebra 30(2002), no. 8, 3723-3724. http://dx.doi.org/10.1081/AGB-120005815
[13] S. El Baghdadi and H. Kim, Generalized Krull semigroup rings. Comm. Algebra 44(2016), no. 4, 1783-1794. http://dx.doi.org/10.1080/00927872.2015.1027378
[14] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure. Comm. Algebra 26(1998), 1017-1039. http://dx.doi.org/10.1080/00927879808826181
[15] M. Fontana, J. A. Huckaba, and I. J. Papick, Prüfer domains. Monographs and Textbooks in Pure and Applied Math., 203, Marcel Dekker, New York, 1997.
[16] R. M. Fossum, The divisor class group of a Krull domain. Springer-Verlag, New York-Heidelberg, 1973.
[17] S. Gabelli, Generalized Dedekind domains. In: Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 189-206. http://dx.doi.org/10.1007/978-0-387-36717-0_12
[18] R. Gilmer, Power series rings over a Krull domain. Pacific J. Math. 29(1969), 543-549. http://dx.doi.org/10.2140/pjm.1969.29.543
[19] 1972.
[20] M. Griffin, Some results on v-multiplication rings. Canad. J. Math. 19(1967), 710-722. http://dx.doi.org/10.4153/CJM-1967-065-8
[21] , Rings of Krull type. J. Reine Angew. Math. 229(1968), 1-27.
[22] B. G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_{v}}$. J. Algebra 123(1989), no. 1, 151-170. http://dx.doi.org/10.1016/0021-8693(89)90040-9
[23] B. G. Kang and M. H. Park, On Mockor's question. J. Algebra 216(1999), 481-510. http://dx.doi.org/10.1006/jabr. 1998.7785
[24] , A note on t-SFT-rings. Comm. Algebra 34(2006), no. 9, 3153-3165. http://dx.doi.org/10.1080/00927870600639476
[25] J. L. Mott, On the complete integral closure of an integral domain of Krull type. Math. Ann. 173(1967), 238-240. http://dx.doi.org/10.1007/BF01361714
[26] J. L. Mott and M. Zafrullah, On Prüfer v-multiplication domains. Manuscripta Math. 35(1981), 1-26. http://dx.doi.org/10.1007/BF01168446
[27] J. Ohm, Some counterexamples related to integral closure in $D[[X]]$. Trans. Amer. Math. Soc. 122(1966), 321-333.
[28] E. Paran and M. Temkin, Power series over generalized Krull domains. J. Algebra 323(2010), no. 2, 546-550. http://dx.doi.org/10.1016/j.jalgebra.2009.08.011
[29] N. Popescu, On a class of Prüfer domains. Rev. Roumaine Math. Pures Appl. 29(1984), 777-786.
[30] P. Samuel, On unique factorization domains. Illinois J. Math. 5(1961), 1-17.
Department of Mathematics Education, Incheon National University, Incheon 22012, Korea
e-mail: whan@inu.ac.kr

[^0]: Received by the editors March 19, 2016; revised July 13, 2016.
 Published electronically August 17, 2016.
 AMS subject classification: 13A15, 13F05, 13F25.
 Keywords: Krull domain, $\mathrm{P} v \mathrm{MD}$, multiplicatively closed set of ideals, power series ring.

