Canad. Math. Bull. Vol. 60 (1), 2017 pp. 63–76 http://dx.doi.org/10.4153/CMB-2016-046-5 © Canadian Mathematical Society 2016

Power Series Rings Over Prüfer *v*-multiplication Domains. II

Gyu Whan Chang

Abstract. Let *D* be an integral domain, $X^1(D)$ be the set of height-one prime ideals of *D*, $\{X_{\beta}\}$ and $\{X_{\alpha}\}$ be two disjoint nonempty sets of indeterminates over *D*, $D[\{X_{\beta}\}]$ be the polynomial ring over *D*, and $D[\{X_{\alpha}\}][[\{X_{\alpha}\}]]_1$ be the first type power series ring over $D[\{X_{\beta}\}]$. Assume that *D* is a Prüfer *v*-multiplication domain (PvMD) in which each proper integral *t*-ideal has only finitely many minimal prime ideals (*e.g.*, *t*-SFT PvMDs, valuation domains, rings of Krull type). Among other things, we show that if $X^1(D) = \emptyset$ or D_P is a DVR for all $P \in X^1(D)$, then $D[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{1D-\{0\}}$ is a Krull domain. We also prove that if *D* is a *t*-SFT PvMD, then the complete integral closure of *D* is a Krull domain and $ht(M[\{X_{\beta}\}][[\{X_{\alpha}\}]]_1) = 1$ for every height-one maximal *t*-ideal *M* of *D*.

1 Introduction

Let *D* be an integral domain with quotient field *K*. Let $\{X_{\alpha}\}$ be a nonempty set of indeterminates over *D*, $D[\{X_{\alpha}\}]$ be the polynomial ring over *D*, and $D[[\{X_{\alpha}\}]]_1$ be the first type power series ring over *D*; *i.e.*, $D[[\{X_{\alpha}\}]]_1 = \bigcup D[[X_1, \ldots, X_n]]$, where $\{X_1, \ldots, X_n\}$ runs over all finite subsets of $\{X_{\alpha}\}$, so $D[[\{X_{\alpha}\}]]_1 = D[[\{X_{\alpha}\}]]_1$ if and only if $|\{X_{\alpha}\}| < \infty$ (*cf.* [19, Section 1] for the power series ring). Let *A* be an ideal of *D*. Then $AD[[\{X_{\alpha}\}]]_1$ is the ideal of $D[[\{X_{\alpha}\}]]_1$ generated by *A* and $A[[\{X_{\alpha}\}]]_1 = \{f \in D[[\{X_{\alpha}\}]]_1 \mid c(f) \subseteq A\}$, where c(f) is the ideal of *D* generated by the coefficients of *f*, so $A[[\{X_{\alpha}\}]]_1 = A[[\{X_{\alpha}\}]]_1$ if and only if *A* is finitely generated, and *A* is a prime ideal if and only if $A[[\{X_{\alpha}\}]]_1$ is a prime ideal.

Let $X^1(D)$ be the set of height-one prime ideals of D. A Krull domain D is an integral domain in which (i) $D = \bigcap_{P \in X^1(D)} D_P$, (ii) D_P is a rank-one discrete valuation ring (DVR) for all $P \in X^1(D)$, and (iii) the intersection $D = \bigcap_{P \in X^1(D)} D_P$ is locally finite; *i.e.*, each nonzero element of D lies in only a finite number of prime ideals in $X^1(D)$. It is clear that D is a Krull domain with $X^1(D) = \emptyset$ if and only if D is a field. Krull domains are very important because of, among other things, the following well-known results that D is a Dedekind domain if and only if D is a Krull domain of (Krull) dimension at most one; if D is a Krull domain, then Div(D), the monoid of v-ideals of D under $I * J = (IJ)_v$, is a free abelian group on $X^1(D)$ and Cl(D) = Div(D)/Prin(D), where Prin(D) is the subgroup of nonzero principal fractional ideals of D, is the divisor class group of D; for every abelian group G, there is a Dedekind domain D with Cl(D) = G; D is a UFD if and only if D is a Krull

Received by the editors March 19, 2016; revised July 13, 2016.

Published electronically August 17, 2016.

AMS subject classification: 13A15, 13F05, 13F25.

Keywords: Krull domain, PvMD, multiplicatively closed set of ideals, power series ring.

domain with $Cl(D) = \{0\}$; the integral closure of a Noetherian domain is a Krull domain; and *D* is a Krull domain if and only if $D[\{X_{\alpha}\}]$ is a Krull domain, if and only if $D[[\{X_{\alpha}\}]]_1$ is a Krull domain (see, for example, [16]).

Clearly, $D[{X_{\alpha}}]_{D-{0}} = K[{X_{\alpha}}]$, and hence $D[{X_{\alpha}}]_{D-{0}}$ is a UFD (so a Krull domain), while the next example shows that $D[[{X_{\alpha}}]]_{1D-{0}}$ need not be a Krull domain.

Example 1.1 Let *V* be a rank-one nondiscrete valuation domain with maximal ideal *M*, and let $V[[{X_{\alpha}}]]_1$ be the first type power series ring over *V*. Note that if $X \in {X_{\alpha}}$, then MV[[X]] is a prime ideal of V[[X]] such that $V[[X]]_{MV[[X]]}$ is a rank-one valuation domain,

$$V[[X]]_{MV[[X]]} \cap V[[X]]_{V-\{0\}} = V[[X]],$$

and

$$V[[{X_{\alpha}}]]_{V-\{0\}} \cap qf(V[[X]]) = V[[X]]_{V-\{0\}},$$

where qf(V[[X]]) is the quotient field of V[[X]]. Hence, if $V[[{X_{\alpha}}]]_{1_{V-\{0\}}}$ is a Krull domain, then $V[[X]]_{V-\{0\}}$ is also a Krull domain, and thus V[[X]] is a generalized Krull domain. (See Section 2 for the definition of a generalized Krull domain.) But, in this case, V must be a rank-one DVR [28, Theorem 2.5]. Thus, $V[[{X_{\alpha}}]]_{1_{V-\{0\}}}$ is not a Krull domain.

However, in [3, Theorem 3.7], it was shown that if *D* is an SFT Prüfer domain, then $D[[{X_{\alpha}}]]_{1D-{0}}$ is a Krull domain. This was generalized in [8, Theorem 9(3)] to *t*-SFT Prüfer *v*-multiplication domains (P*v*MDs) as follows: If *D* is a *t*-SFT P*v*MD, then $D[[{X_{\alpha}}]]_{1D-{0}}$ is a Krull domain. Let ${X_{\beta}}$ and ${X_{\alpha}}$ be two disjoint nonempty sets of indeterminates over *D* and $D[{X_{\beta}}]$ be the polynomial ring over *D*. If *D* is a *t*-SFT P*v*MD, then $D_0 := D[{X_{\beta}}]$ is a *t*-SFT P*v*MD [8, Theorem 11]. Hence, $D_0[[{X_{\alpha}}]]_{1D_0-{0}}$ is a Krull domain for which it is natural to ask if $D_0[[{X_{\alpha}}]]_{1D-{0}}$ is a Krull domain.

Let *D* be a PvMD such that each proper integral *t*-ideal of *D* has a finite number of minimal prime ideals (*e.g.*, *t*-SFT PvMDs, valuation domains, rings of Krull type). In this paper, we modify the proof of [8, Lemma 8] (hence that of [5, Lemma 3.3]) to prove that if $X^1(D) = \emptyset$ or D_P is a DVR for all $P \in X^1(D)$, then both the complete integral closure of *D* and $D[[{X_{\alpha}}]]_{1D-{0}}$ are Krull domains. This also gives another proof of [3, Theorem 3.7] that if *D* is an SFT Prüfer domain, then $D[[{X_{\alpha}}]]_{1D-{0}}$ is a Krull domain. We then use this result to show that $D[{X_{\beta}}][[{X_{\alpha}}]]_{1D-{0}}$ is a Krull domain. Hence, if *D* is a *t*-SFT PvMD, then

$$D[[{X_{\alpha}}]]_{1_{D-\{0\}}}$$
 and $D[{X_{\beta}}][[{X_{\alpha}}]]_{1_{D-\{0\}}}$

are both Krull domains. As a corollary, we have that if *D* is a valuation domain such that either $X^1(D) = \emptyset$ or *D* has a height-one prime ideal *P* with $P^2 \neq P$, then $D[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{1D-\{0\}}$ is a Krull domain. We finally prove that if *M* is a height-one maximal *t*-ideal of a *t*-SFT PvMD, then ht($M[\{X_{\beta}\}][[\{X_{\alpha}\}]]_1$) = 1. Although some of the proofs are similar to the proof of [8, Lemma 8], we include them for completeness.

We first review definitions related to the t-operation. A fractional ideal I of Dis a D-submodule of K such that $dI \subseteq D$ for some $0 \neq d \in D$. Let F(D) be the set of nonzero fractional ideals of D. For $I \in F(D)$, let $I^{-1} = \{x \in K \mid xI \subseteq D\}$; then $I^{-1} \in F(D)$. The v-operation is defined by $I_v = (I^{-1})^{-1}$ and the t-operation by $I_t = \bigcup \{J_v \mid J \in F(D), J \text{ is finitely generated, and } J \subseteq I\}$. Clearly, if $I \in F(D)$, then $I \subseteq I_t \subseteq I_v$, and if I is finitely generated, then $I_t = I_v$. If * = v or t, then I is called a *-*ideal* if $I = I_*$ and a *-*ideal of finite type* if $I = B_*$ for some finitely generated ideal $B \in F(D)$. A *-ideal of D is called a *maximal* *-*ideal* if it is maximal among proper integral *-ideals of D. Let *-Max(D) be the set of all maximal *-ideals of D. While v-Max(D) can be empty as in the case of a rank-one nondiscrete valuation domain D, it is well known that t-Max $(D) \neq \emptyset$ when D is not a field; a prime ideal minimal over a t-ideal is a t-ideal; each proper integral t-ideal is contained in a maximal t-ideal; each maximal t-ideal is a prime ideal; and $D = \bigcap_{P \in t - Max(D)} D_P$. An overring of D means a ring between D and K. We say that an overring R of D is t-linked over D if $I_v = D$ implies $(IR)_v = R$ for all finitely generated ideals $I \in F(D)$. It is easy to see that *R* is *t*-linked over *D* if and only if $(Q \cap D)_t \notin D$ for each prime *t*-ideal *Q* of *R* [11, Proposition 2.1]. An $I \in F(D)$ is said to be *t*-invertible if $(II^{-1})_t = D$, and we say that D is a Prüfer v-multiplication domain (PvMD) if each nonzero finitely generated ideal of D is t-invertible. It is well known that D is a PvMD if and only if D_P is a valuation domain for each maximal t-ideal P of D [20, Theorem 5]. For more on basic properties of the *v*- and *t*-operations, see [19, Sections 32 and 34].

A nonzero ideal *I* of *D* is called an *SFT-ideal* (an ideal of strong finite type) (resp., a *t-SFT-ideal*) if there exist a finitely generated ideal $J \subseteq I$ and an integer $k \ge 1$ such that $a^k \in J$ for all $a \in I$ (resp., $a^k \in J_v$ for all $a \in I_t$). The ring *D* is called an *SFT-ring* (resp., a *t-SFT-ring*) if each nonzero ideal of *D* is an SFT-ideal (resp., a *t-SFT-ideal*). It is known that *D* is an SFT-ring (resp., a *t-SFT-ring*) if and only if each prime ideal (resp., prime *t*-ideal) of *D* is an SFT-ideal (resp., a *t-SFT-ideal*) [4, Proposition 2.2] (resp., [24, Proposition 2.1]). Note that *D* is a Prüfer domain if and only if *D* is a *PvMD* whose maximal ideals are *t*-ideals, and each nonzero ideal of a Prüfer domain is a *t*-ideal. Hence, SFT Prüfer domains $\Leftrightarrow t$ -SFT Prüfer domains $\Rightarrow t$ -SFT PvMDs. It is known that *D* is a Krull domain if and only if *D* is a *t*-SFT PvMD in which each prime *t*-ideal is a maximal *t*-ideal [8, Theorem 9(2)].

2 SFT Prüfer Domains, t-SFT PvMDs, and Rings of Krull Type

A valuation domain V is said to be *strongly discrete* if each nonzero prime ideal P of V is not idempotent, *i.e.*, $P^2 \neq P$. A *strongly discrete Prüfer domain* is an integral domain D in which D_M is a strongly discrete valuation domain for all maximal ideals M of D. We say that D is a *generalized Dedekind domain* if (i) D is a strongly discrete Prüfer domain and (ii) each prime ideal of D is the radical of a finitely generated ideal. The notion of generalized Dedekind domain if and only if D is a generalized Dedekind domain of dimension at most one. For more on generalized Dedekind domains, see [15, Chapter 5] or [17]. In [23, Theorem 2.4], Kang and Park showed the following lemma.

Lemma 2.1 The concepts "SFT Prüfer domain" and "generalized Dedekind domain" are the same.

Let *F* be a field with $K \subseteq F$, where *K* is the quotient field of *D*, and let *X* be an indeterminate. It is known that R = D + XF[X] is an SFT Prüfer domain if and only if F = K and *D* is an SFT Prüfer domain [17, Corollary 4.2]. More generally, we have the following proposition.

Proposition 2.2 Let $R = \bigoplus_{n=0}^{\infty} R_n$ be a graded integral domain with $R_n \neq \{0\}$ for all $n \ge 0$. Then R is an SFT Prüfer domain if and only if $R \cong D + XK[X]$ for some SFT Prüfer domain D with quotient field K.

Proof Recall from [10, Proposition 3.4] that $R = \bigoplus_{n=0}^{\infty} R_n$ is a Prüfer domain if and only $R \cong D + XK[X]$ for some Prüfer domain *D* with quotient field *K*. Thus, the result follows directly from [17, Corollary 4.2].

As the *t*-operation analog of generalized Dedekind domains, El Baghdadi [12] introduced the notion of generalized Krull domains as follows: *D* is a *generalized Krull domain* if *D* is a PvMD such that (i) D_P is strongly discrete for each maximal *t*-ideal *P* of *D* and (ii) each prime *t*-ideal of *D* is the radical of a *t*-ideal of finite type. We noted in the introduction that *D* is a Prüfer domain if and only if *D* is a PvMD whose maximal ideals are *t*-ideals, and each nonzero ideal of a Prüfer domain is a *t*-ideal. Thus, a generalized Dedekind domain is just a generalized Krull domain in which each maximal ideal is a *t*-ideal.

Recall from [19, Section 43] that *D* is a *generalized Krull domain* if (i) D_P is a valuation domain for each $P \in X^1(D)$, (ii) $D = \bigcap_{P \in X^1(D)} D_P$, and (iii) the intersection $D = \bigcap_{P \in X^1(D)} D_P$ is locally finite. A generalized Krull domain is a PvMD whose prime *t*-ideals are maximal *t*-ideals, and a Krull domain is a generalized Krull domain. Thus, a generalized Krull domain is a Krull domain if and only if it is a *t*-SFT-ring (*cf.* [8, Proposition 9(2)]). Clearly, this notion of generalized Krull domains is different from El Baghdadi's generalized Krull domains. As in the case of SFT Prüfer domains, in [24, Theorem 2.5], Kang and Park proved the following lemma.

Lemma 2.3 D is a GK-domain if and only if D is a t-SFT PvMD.

An integral domain *D* is said to be of *finite character* (resp., *finite t-character*) if each nonzero element of *D* is contained in only finitely many maximal ideals (resp., maximal *t*-ideals) of *D*. Following [21], we say that *D* is a *ring of Krull type* if *D* is a locally finite intersection of essential valuation overrings of *D*; equivalently, *D* is a *Pv*MD of finite *t*-character [20, Theorem 7]. Clearly, both Krull domains and Prüfer domains of finite character are rings of Krull type. For easy examples of *t*-SFT *Pv*MDs and rings of Krull type, recall that a multiplicative subset *S* of *D* is *t*-splitting if for each $0 \neq d \in D$, we have $dD = (AB)_t$ for some integral ideals *A*, *B* of *D* such that $A_t \cap sD = sA_t$ for all $s \in S$ and $B_t \cap S \neq \emptyset$. Let *X* be an indeterminate over *D*, *S* be a

multiplicative subset of D, $D_S[X]$ be the polynomial ring over D_S , and

$$D + XD_{S}[X] = \{ f \in D_{S}[X] \mid f(0) \in D \},\$$

so $D + XD_S[X]$ is a ring such that $D[X] \subseteq D + XD_S[X] \subseteq D_S[X]$.

Proposition 2.4 Let S be a multiplicative subset of D and $R = D + XD_S[X]$.

- (i) *R* is a t-SFT PvMD if and only if *D* is a t-SFT PvMD and *S* is t-splitting.
- (ii) *R* is a ring of Krull type if and only if *D* is a ring of Krull type, *S* is *t*-splitting, and the set of maximal *t*-ideals of *D* that intersect *S* is finite.

Proof

- (i) See [13, Corollary 2.3].
- (ii) See [2, Theorem 2.5].

Clearly, a Krull domain is both a *t*-SFT $P\nu$ MD and a ring of Krull type. Also, it is easy to see that every multiplicative subset of a Krull domain is a *t*-splitting set [1, p. 8]. Thus, by Proposition 2.4, we have the following corollary.

Corollary 2.5 Let D be a Krull domain, S be a multiplicative subset of D and $R = D + XD_S[X]$.

- (i) R is a t-SFT PvMD.
- (ii) ([2, Corollary 2.6]) If $|\{P \in t Max(D) \mid P \cap S \neq \emptyset\}| < \infty$, then R is a ring of *Krull type*.

We recall the following useful lemma by which it follows that each *t*-ideal of a *t*-SFT PvMD has only finitely many minimal prime ideals [12, Lemma 3.8].

Lemma 2.6 ([7, Lemma 2.1]) *Let I be a proper integral t-ideal of D. If every prime ideal of D minimal over I is the radical of a t-ideal of finite type, there are only finitely many prime ideals of D minimal over I.*

Let D be a ring of Krull type. If I is a proper integral t-ideal of D, then I is contained in only finitely many maximal t-ideals, and since each maximal t-ideal contains at most one prime ideal of D minimal over I, the number of minimal prime ideals of Iis finite.

Proposition 2.7 D is a PvMD in which each integral t-ideal has only finitely many minimal prime ideals if and only if $D[\{X_{\alpha}\}]$ is. In this case, D_P is a DVR for all $P \in X^1(D)$ if and only if $D[\{X_{\alpha}\}]_Q$ is a DVR for all $Q \in X^1(D[\{X_{\alpha}\}])$.

Proof This result follows directly from the following observations: (i) *D* is a P*v*MD if and only if $D[{X_{\alpha}}]$ is; and (ii) if *Q* is a prime *t*-ideal of $D[{X_{\alpha}}]$, then either ht*Q* = 1 with $Q \cap D = (0)$ or $Q = (Q \cap D)[{X_{\alpha}}]$ and $Q \cap D$ is a prime *t*-ideal (*cf.* [22, Theorem 3.1] and [14, Lemma 2.3]).

The "in this case" part follows from the following two observations: (i) if *P* is a prime ideal of *D*, then ht*P* = 1 if and only if $P[\{X_{\alpha}\}] \in X^1(D[\{X_{\alpha}\}])$, and since

 $D[\{X_{\alpha}\}]_{P[\{X_{\alpha}\}]} \cap K = D_P, \text{ we have that } D[\{X_{\alpha}\}]_{P[\{X_{\alpha}\}]} \text{ is a DVR if and only if } D_P \text{ is a DVR; and (ii) if } Q \in X^1(D[\{X_{\alpha}\}]) \text{ with } Q \cap D = (0), \text{ then } D[\{X_{\alpha}\}]_O \text{ is a DVR.} \quad \blacksquare$

We end this section with three examples that show that SFT Prüfer domains \Rightarrow rings of Krull type; rings of Krull type \Rightarrow *t*-SFT PvMDs; and integral domains in which each integral *t*-ideal has only finitely many minimal prime ideals \Rightarrow *t*-SFT PvMDs or rings of Krull type.

Example 2.8 (i) The ring $R = \mathbb{Z} + X\mathbb{Q}[X]$ is an SFT Prüfer domain (hence a *t*-SFT PvMD), while *R* is not a ring of Krull type because $X \in R$ is contained in infinitely many maximal *t*-ideals $p\mathbb{Z} + X\mathbb{Q}[X]$ for all prime elements $p \in \mathbb{Z}$.

(ii) If V is a rank-one nondiscrete valuation domain, then V is a ring of Krull type but not a *t*-SFT PvMD.

(iii) Let *D* be a generalized Krull domain that is not a Krull domain and R = D + XK[X]. If $|X^1(D)| = \infty$, then each integral *t*-ideal of *R* has only finitely many minimal prime ideals but *R* is neither a *t*-SFT PvMD nor a ring of Krull type.

3 Power Series Rings Over PvMDs

In this section, we prove that if *D* is a PvMD such that each proper integral *t*-ideal has only finitely many minimal prime ideals and D_P is a DVR for all $P \in X^1(D)$, then $D[[{X_{\alpha}}]]_{1D-{0}}$ is a Krull domain. Hence, we note that *D* is a PvMD in which each integral *t*-ideal has only finitely many minimal prime ideals if *D* is a *t*-SFT PvMD, *D* is a ring of Krull type, *D* is a Prüfer domain of finite character, or *D* is a valuation domain. Also, throughout this section, we use the following notation.

Notation 3.1 • *D* is a PvMD in which each integral *t*-ideal has only finitely many minimal prime ideals, and *D* is not a field.

- *K* is the quotient field of *D*.
- *t*-Spec(*D*) is the set of prime *t*-ideals of *D*.
- Λ is a nonempty set of prime *t*-ideals of *D* with the property that if $\{P_{\delta}\} \subseteq \Lambda$ is a chain under inclusion, then $\bigcup P_{\delta} \in \Lambda$.
- *F*(Λ) is the family of finite sets λ of prime *t*-ideals in Λ such that no two elements
 of λ are comparable under inclusion.
- $X^1(D)$ is the set of height-one prime ideals of D.
- $R = \bigcap_{P \in X^1(D)} D_P$ (where R = K when $X^1(D) = \emptyset$).

If Θ is a set of prime *t*-ideals of an integral domain *A*, then $\bigcap_{P \in \Theta} A_P$ is called a *subintersection* of *A*. It is known that a subintersection of a PvMD is a PvMD [26, Proposition 5.1]. Thus, $R = \bigcap_{P \in X^1(D)} D_P$ is a PvMD.

Proposition 3.2 (i) *R* is a generalized Krull domain. (ii) *R* is a Krull domain if and only if D_P is a DVR for all $P \in X^1(D)$.

Proof If $X^1(D) = \emptyset$, then R = K, so we can assume that $X^1(D) \neq \emptyset$.

(i) If $P \in X^1(D)$, then P is a t-ideal and $R_{PD_P \cap R} = D_P$, and since D is a PvMD, D_P is a rank-one valuation domain. Moreover, by assumption, each nonzero nonunit

of *D* is contained in only finitely many height-one prime ideals of *D*, and hence $R = \bigcap_{P \in X^1(D)} D_P$ is locally finite. Thus, *R* is a generalized Krull domain.

(ii) This follows from (i) because a generalized Krull domain *A* is a Krull domain if and only if A_P is a DVR for each $P \in X^1(A)$.

Corollary 3.3 (i) If D is a t-SFT PvMD, then R is a Krull domain. (ii) If D is an SFT Prüfer domain, then R is a Dedekind domain.

Proof (i) Note that D_P is a DVR for all $P \in X^1(D)$ [8, Lemma 8(1)]. Thus, by Proposition 3.2(ii), *R* is a Krull domain.

(ii) By (i), *R* is a Krull domain. Also, since *D* is a Prüfer domain, *R* is a Prüfer domain [19, Theorem 26.1]. Thus, *R* is a Dedekind domain (note that Dedekind domain \Leftrightarrow Krull domain + Prüfer domain).

A set \mathfrak{S} of ideals of *D* is called a *multiplicatively closed set of ideals* if $AB \in \mathfrak{S}$ for all $A, B \in \mathfrak{S}$, and if \mathfrak{S} is a multiplicatively closed set of ideals of *D*, then

$$D_{\mathfrak{S}} = \{ x \in K \mid xA \subseteq D \text{ for some } A \in \mathfrak{S} \},\$$

called a *generalized transform of D*, is a *t*-linked overring of *D* [22, Lemma 3.10]. For more on the ring $D_{\mathfrak{S}}$, see [6].

Proposition 3.4 For $\lambda = \{P_1, \dots, P_r\} \in \mathcal{F}(\Lambda)$, let \mathfrak{S}_{λ} be the set of all t-invertible ideals A of D such that $(\prod_{i=1}^r P_i)_t \subsetneq A_t \subseteq D$, but $A \nsubseteq P_i$ for $i = 1, \dots, r$.

- (i) \mathfrak{S}_{λ} is a multiplicatively closed set of ideals of *D*.
- (ii) Let $D_{\lambda} = D_{\mathfrak{S}_{\lambda}}$. Then $(0) \neq \prod_{i=1}^{r} P_i \subseteq (D:D_{\lambda})$.
- (iii) Let $\mathfrak{S} = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} \mathfrak{S}_{\lambda}$. Then \mathfrak{S} is a multiplicatively closed set of ideals of D, $D_{\mathfrak{S}} = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$, and $D_{\mathfrak{S}}$ is a PvMD.

Proof (i) If $A \in \mathfrak{S}_{\lambda}$, then

$$P_i \supseteq \left(\prod_{i=1}^r P_i\right)_t = \left(\left(\left(\prod_{i=1}^r P_i\right)A^{-1}\right)A\right)_t \text{ and } \left(\prod_{i=1}^r P_i\right)A^{-1} \subseteq D.$$

But, since $A \notin P_i$ for i = 1, ..., r, we have $(\prod_{i=1}^r P_i)A^{-1} \subseteq \bigcap_{i=1}^r P_i$. Note that $(P_i + P_j)_t = D$ for $i \notin j$, since D is a PvMD, so $\bigcap_{i=1}^r P_i = (\prod_{i=1}^r P_i)_t$, and therefore $(\prod_{i=1}^r P_i)_t = ((\prod_{i=1}^r P_i)A^{-1})_t$. Hence, if $A_1, A_2 \in \mathfrak{S}_{\lambda}$, then A_1A_2 is *t*-invertible, $A_1A_2 \notin P_i$ for i = 1, ..., r, and

$$(A_1A_2)_t \not\supseteq \left(\left(\prod_{i=1}^r P_{\alpha_i}\right) A_1A_2 \right)_t = \left(\left(\left(\prod_{i=1}^r P_{\alpha_i}\right) A_2^{-1} A_1^{-1} \right) A_1A_2 \right)_t = \left(\prod_{i=1}^r P_{\alpha_i}\right)_t.$$

Thus, $A_1A_2 \in \mathfrak{S}_{\lambda}$.

(ii) This follows because $\prod_{i=1}^{r} P_i \subseteq A_t$ for all $A \in \mathfrak{S}_{\lambda}$.

(iii) If $A_1, A_2 \in \mathfrak{S}$, then $A_i \in \mathfrak{S}_{\lambda_i}$ for some $\lambda_i \in \mathfrak{F}(\Lambda)$ for i = 1, 2. Let λ be the set of minimal elements (under inclusion) of $\lambda_1 \cup \lambda_2$. Clearly, $\lambda \in \mathfrak{F}(\Lambda)$. Also, $\prod_{P \in \lambda} P \subseteq \prod_{Q \in \lambda_i} Q$ for i = 1, 2, and hence $(\prod_{P \in \lambda} P)_t \subsetneq (A_i)_t$ and $A_i \notin P$ for all $P \in \lambda$. (For if $A_i \subseteq P$ for some $P \in \lambda$, then $P \notin \lambda_i$. Note that $\prod_{Q \in \lambda_i} Q \subsetneq (A_i)_t \subseteq P$; hence, $Q \subsetneq P$ for some $Q \in \lambda_i$, and in this case, $P \notin \lambda$, a contradiction.) Thus, $A_1, A_2 \in \mathfrak{S}_{\lambda}$, and therefore $A_1A_2 \in \mathfrak{S}_{\lambda} \subseteq \mathfrak{S}$. Clearly, $D_{\mathfrak{S}} = \bigcup_{\lambda \in \mathfrak{F}(\Lambda)} D_{\lambda}$, and since D is a PvMD, $D_{\mathfrak{S}}$ is a PvMD [22, Theorem 3.11]. Let Θ be a set of prime *t*-ideals of *D*. Clearly,

$$\bigcap_{P \in \Theta} D_P = \begin{cases} D & \text{if } \Theta = t \cdot \text{Max}(D) \\ K & \text{if } \Theta = \emptyset. \end{cases}$$

Hence, if each prime *t*-ideal of *D* is a maximal *t*-ideal (*e.g.*, *D* is a Krull domain), then t-Max(*D*) = $X^{1}(D)$, and hence R = D.

Corollary 3.5 Let the notation be as in Proposition 3.4, $\lambda = \{P_1, \ldots, P_r\} \in \mathcal{F}(\Lambda), \Omega$ be the set of nonzero prime ideals P of D such that P is a minimal element of Λ under inclusion or $P = \bigcap_{\delta} P_{\delta}$ for some chain $\{P_{\delta}\} \subseteq \Lambda$ with the property that $P' \in \Lambda$ with $P' \subseteq P_{\delta}$ for some P_{δ} implies $P' \in \{P_{\delta}\}$, and $\Delta = \{M \in t \operatorname{-Max}(D) \mid P \notin M \text{ for all } P \in \Lambda\}.$

(i) $D_{\lambda} = (\bigcap_{i=1}^{r} D_{P_i}) \cap (\bigcap \{D_M \mid M \in t\text{-}Max(D) \text{ and } \prod_{i=1}^{r} P_i \notin M\}).$

(ii) $D_{\mathfrak{S}} = (\bigcap_{P \in \Omega} D_P) \cap (\bigcap_{M \in \Delta} D_M).$

(iii) If $\Lambda = t$ -Spec(D), then $R = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$.

(iv) *R* is the complete integral closure of *D*.

Proof (i) For convenience, let $\Delta_{\lambda} = \{M \in t \operatorname{-Max}(D) \mid \prod_{i=1}^{r} P_i \notin M\}$ and $T_{\lambda} = (\bigcap_{i=1}^{r} D_{P_i}) \cap (\bigcap_{M \in \Delta_{\lambda}} D_M)$. (\subseteq): If $x \in D_{\lambda}$, then $xA \subseteq D$ for some $A \in \mathfrak{S}_{\lambda}$. Note that $\prod_{i=1}^{r} P_i \subseteq A_t$ and $A \notin P_i$ for $i = 1, \ldots, r$, so $x \in (\bigcap_{i=1}^{r} xD_{P_i}) \cap (\bigcap_{M \in \Delta_{\lambda}} xD_M) = (\bigcap_{i=1}^{r} xAD_{P_i}) \cap (\bigcap_{M \in \Delta_{\lambda}} xAD_M) \subseteq T_{\lambda}$.

(⊇): Let $0 \neq y \in T_{\lambda}$, and let $A_y = \{d \in D \mid dy \in D\}$. Clearly, $A_y \notin P_i$ for i = 1, 2, ..., r. Note also that $A_y = (1, y)^{-1}$, so A_y is a *t*-invertible *t*-ideal of *D*. Let $I = \prod_{i=1}^{r} P_i$, and assume $M \in t$ -Max(*D*). If $A_y \notin M$, then $ID_M \subseteq D_M = A_y D_M$. Next, assume $A_y \subseteq M$. If $I \notin M$, *i.e.*, $P_i \notin M$ for i = 1, ..., r, then, by assumption, $y \in D_M$, and so $A_y \notin M$, a contradiction. Hence, $P_j \subseteq M$ for some *j*, and since $A_y \notin P_j$ and D_M is a valuation domain, $ID_M = P_j D_M \notin A_y D_M \subseteq D_M$. Thus, $I \subseteq \bigcap_{M \in t - Max(D)} ID_M \subseteq \bigcap_{M \in t - Max(D)} A_y D_M = (A_y)_t = A_y (cf. [22, Theorem 3.5] for the first equality). Clearly, <math>(\prod_{i=1}^{r} P_i)_t = I_t \neq A_y$, and hence $A_y \notin \mathfrak{S}_{\lambda}$. Thus, $y \in D_{\lambda}$.

(ii) Let $T = (\bigcap_{P \in \Omega} D_P) \cap (\bigcap_{M \in \Delta} D_M)$. (\subseteq) : If $x \in D_{\mathfrak{S}}$, then $x \in D_{\lambda}$ for some $\lambda = \{P_1, \ldots, P_r\} \in \mathcal{F}(\Lambda)$. Hence, there exists an $A \in \mathfrak{S}_{\lambda}$ such that $xA \subseteq D$. Note that $\prod_{i=1}^r P_i \subseteq A_t$, so $A \notin P$ for all $P \in \Omega \cup \Delta$. Thus, $x \in (\bigcap_{P \in \Omega} xD_P) \cap (\bigcap_{M \in \Delta} xD_M) = (\bigcap_{P \in \Omega} xAD_P) \cap (\bigcap_{M \in \Delta} xAD_M) \subseteq T$.

(\supseteq): For the reverse containment, let $0 \neq y \in T$ and $A_y = (1, y)^{-1}$. Then A_y is a *t*-invertible *t*-ideal of *D*. If $A_y = D$, then $y \in D \subseteq D_{\mathfrak{S}}$, so assume $A_y \subsetneq D$. Then there are only finitely many prime ideals of *D* minimal over A_y , say Q_1, \ldots, Q_n . Let $\Theta = \{P \in \Lambda \mid P \subsetneq Q_i \text{ for some } i\}$, whence $A_y \nsubseteq P$ for all $P \in \Theta$. If *M* is a maximal *t*-ideal of *D* with $Q_i \subseteq M$ for some *i*, then $A_y \subseteq M$, and hence $M \notin \Delta$. Thus, *M* contains at least one prime ideal in Λ , and since D_M is a valuation domain, $P \subsetneq Q_i$ for some $P \in \Lambda$ by the choice of Ω and *y*. Hence, $\Theta \neq \emptyset$. Also, if $\{P_\delta\}$ is a chain of prime ideals in Θ , then $P := \bigcup P_\delta \in \Lambda$ by the property of Λ , and since $A_y \nsubseteq P_\delta$ for all δ and A_y is of finite type, $A_y \nsubseteq P$. Thus, each element of Θ is contained in at least one maximal element under inclusion, and Θ contains a finite number of maximal elements. Let μ be the set of maximal elements of Θ , and let $I = \prod_{P \in \mu} P$. Clearly,

 $\mu \in \mathcal{F}(\Lambda)$, and it is easy to see that $I_t \not\subseteq A_y$ and $A_y \not\subseteq P$ for all $P \in \mu$ (*cf.* the proof of (i) above). Thus, $y \in D_{\mu} \subseteq D_{\mathfrak{S}}$.

(iii) It is obvious that t-Spec(D) satisfies the given property of Λ . Hence, if $\Lambda = t$ -Spec(D), then $\Omega = X^1(D)$ and $\Delta = \emptyset$, and thus by (ii) and Proposition 3.4(iii), $R = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$.

(iv) Let D^* be the complete integral closure of D. Clearly, $D^* \subseteq R$, because $D \subseteq R$ and R is completely integrally closed. For the reverse containment, let $\alpha \in R$ and $\Lambda = t$ -Spec(D). Then $\alpha \in D_{\lambda}$ for some $\lambda \in \mathcal{F}(\Lambda)$, and since D_{λ} is a ring, $\alpha^n \in D_{\lambda}$ for all integers $n \ge 1$. Note that $\prod_{P \in \lambda} P \subseteq (D : D_{\lambda})$ by Proposition 3.4(ii), so if $0 \neq d \in \prod_{P \in \lambda} P$, then $d\alpha^n \in D$ for all $n \ge 1$. Thus, $\alpha \in D^*$.

Remark 3.6 If *D* is a ring of Krull type, then each integral *t*-ideal of *D* has only a finite number of minimal prime ideals. Thus, by Corollary 3.5(iv), $R = \bigcap_{P \in X^1(D)} D_P$ is the complete integral closure of *D*. Also, if $X^1(D) \neq \emptyset$, then *R* is a generalized Krull domain by Proposition 3.2(i). This recovers Mott's results [25, Theorems 1 and 3].

It is known that the complete integral closure of an SFT Prüfer domain is a Dedekind domain [17, Corollary 3.2], and a completely integrally closed *t*-SFT PvMD is a Krull domain ([12, Theorem 3.11] or [24, Theorem 2.9]).

Corollary 3.7 The complete integral closure of a t-SFT PvMD is a Krull domain.

Proof By Corollary 3.5(iv), *R* is the complete integral closure of *D*. Thus, by Corollary 3.3, the complete integral closure of a *t*-SFT PvMD is a Krull domain.

For brevity of notations, let $A[[X_1, ..., X_n]] = A[[X_n]]$ for an integral domain A and an integer $n \ge 0$, $A[[X_0]] = A$, $\xi(X_1, ..., X_n) = \xi(X_n)$ for any $\xi(X_1, ..., X_n) \in A[[X_n]]$, and K_n be the quotient field of $D[[X_n]]$.

Lemma 3.8 Let $\Lambda = t$ -Spec(D). If $n \ge 0$ is an integer, $\{\xi_i(X_n)\}_{i=1}^{\infty}$ is a subset of $R[[X_n]], \{m_i\}_{i=1}^{\infty}$ is a set of positive integers, and $0 \ne d(X_n) \in D[[X_n]]$ is such that $d(X_n)^{m_i}\xi_i(X_n) \in D[[X_n]]$ for all $i \ge 1$, then $\{\xi_i(X_n)\}_{i=1}^{\infty} \subseteq D_{\lambda}[[X_n]]$ for some $\lambda \in \mathcal{F}(\Lambda)$.

Proof Let $\{\xi_i\}_{i=1}^{\infty}$ be a subset of R, and assume that there exist $0 \neq d \in D$ and positive integers $\{m_i\}_{i=1}^{\infty}$ such that $d^{m_i}\xi_i \in D$ for all $i \ge 1$. If dD = D, then $\xi_i \in D$, so we assume $dD \subsetneq D$. Hence, there are only finitely many minimal prime ideals of dD, say Q_1, \ldots, Q_m . If $htQ_j = 1$, let $P_j = Q_j$, and if $htQ_j \ge 2$, then choose a prime ideal P_j such that $(0) \subsetneq P_j \subsetneq Q_j$. Let $\lambda = \{P_{\alpha_1}, \ldots, P_{\alpha_r}\}$ be the set of distinct P_i 's (it is possible that $P_i = P_j$ for $i \ne j$, so $r \le m$), and let $A_{\xi_i} = \{a \in D \mid a\xi_i \in D\}$. Since $A_{\xi_i} = (1, \xi_i)^{-1}$, A_{ξ_i} is a *t*-invertible *t*-ideal of *D*. Since $\xi_i \in R$, we have $A_{\xi_i} \nsubseteq Q$ for all $Q \in X^1(D)$. Next, note that $d^{m_i} \in A_{\xi_i}$; so if $htQ_j \ge 2$, then $P_j \subsetneq Q_j$, and hence $A_{\xi_i} \notin P_j$. Thus, $A_{\xi_i} \notin P_{\alpha_j}$ for $j = 1, \ldots, r$. Let $p \in \prod_{j=1}^r P_{\alpha_j}$, and $M \in t$ -Max(D). If $d \notin M$, then $p\xi_i \in D_M$. If $d \in M$, then $P_{\alpha_j} \subseteq M$ for some j, whence if $htP_{\alpha_j} = 1$, then $p\xi_i \in pR \subseteq P_{\alpha_j}D_{P\alpha_i} = P_{\alpha_j}D_M \subsetneq D_M$. If $htP_{\alpha_j} \ge 2$, then $d \notin P_{\alpha_j}$, and so $p\xi_i \in P_{\alpha_j}$. $p(d^{m_i}\xi_i)D_{P_{\alpha_j}} \subseteq pD_{P_{\alpha_j}} \subseteq P_{\alpha_j}D_{P_{\alpha_j}} \subseteq D_M$. Hence, $p\xi_i \in \bigcap_{M \in t - Max(D)} D_M = D$. Thus, $(\prod_{i=1}^r P_{\alpha_i})_t \not\subseteq (A_{\xi_i})_t = A_{\xi_i}$, and so $A_{\xi_i} \in \mathfrak{S}_{\lambda}$. Therefore, $\xi_i \in D_{\lambda}$ for all $i \ge 0$.

Assume that if k = n - 1 is a nonnegative integer, $\{\xi_i(X_k)\}_{i=1}^{\infty}$ is a subset of $R[[X_k]], \{k_i\}_{i=1}^{\infty}$ is a set of positive integers, and $0 \neq d(X_k) \in D[[X_k]]$ is such that $d(X_k)^{k_i}\xi_i(X_k) \in D[[X_k]]$ for all $i \ge 1$, then $\{\xi_i(X_k)\}_{i=1}^{\infty} \subseteq D_v[[X_k]]$ for some $v \in \mathcal{F}(\Lambda)$. Let $\{\xi_i(X_n)\}_{i=1}^{\infty}$ be a subset of $R[[X_n]], \{n_i\}_{i=1}^{\infty}$ be a set of positive integers, and $0 \neq d(X_n) \in D[[X_n]]$ be such that $d(X_n)^{n_i}\xi_i(X_n) \in D[[X_n]]$ for all $i \ge 1$. We can write

$$d(X_n) = \sum_{j=0}^{\infty} d_j(X_{n-1}) X_n^j$$
 and $\xi_i(X_n) = \sum_{j=0}^{\infty} \xi_{ij}(X_{n-1}) X_n^j$,

where $d_j(X_{n-1}) \in D[[X_{n-1}]]$ and $\xi_{ij}(X_{n-1}) \in R[[X_{n-1}]]$, and we can assume that $d_0(X_{n-1}) \neq 0$. Hence, $\{\xi_{ij}(X_{n-1})\}$ is a subset of $D[[X_{n-1}]]$ such that $d_0(X_{n-1})^{n_i(j+1)}\xi_{ij}(X_{n-1}) \in D[[X_{n-1}]]$ for all $j \geq 0$ (*cf.* the proof of [27, Proposition 2.5]), and thus $\{\xi_{ij}(X_{n-1})\}_{j=0}^{\infty} \subseteq D_{\mu}[[X_{n-1}]]$ for some $\mu \in \mathcal{F}(\Lambda)$ by assumption. Therefore, $\xi_i(X_n) \in D_{\mu}[[X_n]]$ for $i \geq 1$.

Lemma 3.9 If $\Lambda = t$ -Spec(D), then $R[[X_n]] \cap K_n = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}[[X_n]]$.

Proof (\supseteq): Note that if $\lambda \in \mathcal{F}(\Lambda)$, then $(D : D_{\lambda}) \neq (0)$ by Proposition 3.4(ii), so $D_{\lambda}[[X_n]] \subseteq D[[X_n]]_{D-\{0\}} \subseteq K_n$. Hence, the result follows, because $R = \bigcup_{\lambda \in \mathcal{F}(\Lambda)} D_{\lambda}$ by Corollary 3.5(iii).

 $(\subseteq): \text{Let } \xi(X_n) = \frac{f(X_n)}{g(X_n)} \in R[[X_n]] \cap K_n, \text{ where } 0 \neq f(X_n), g(X_n) \in D[[X_n]], \text{ and}$ write $\xi(X_n) = \sum_{i=0}^{\infty} \xi_i(X_{n-1})X_n^i$ and $g(X_n) = \sum_{i=0}^{\infty} d_i(X_{n-1})X_n^i$. We may assume that $d_0(X_{n-1}) \neq 0$; then

$$\xi(X_n)g(X_n) = \sum_{k=0}^{\infty} \left(\sum_{i+j=k} \xi_i(X_{n-1}) d_j(X_{n-1}) \right) X_n^k \in D[[X_n]].$$

Hence, $d_0(X_{n-1})^{i+1}\xi_i(X_{n-1}) \in D[[X_{n-1}]]$ for all $i \ge 0$, and thus

$$\{\xi_i(X_{n-1})\}\subseteq D_{\lambda}[[X_{n-1}]]$$

for some $\lambda \in \mathcal{F}(\Lambda)$ by Lemma 3.8. Thus, $\xi(X_n) \in D_{\lambda}[[X_n]]$.

Theorem 3.10 If $R = \bigcap_{P \in X^1(D)} D_P$ is a Krull domain, then $D[[{X_\alpha}]]_{1D-{0}}$ is a Krull domain.

Proof Since *R* is a Krull domain, $R[[{X_{\alpha}}]]_1$ is a Krull domain [18, Theorem 2.1], and hence $R[[{X_{\alpha}}]]_{1D-{0}}$ is a Krull domain [19, Corollary 43.6]. Clearly, if we let $qf(D[[{X_{\alpha}}]]_1)$ be the quotient field of $D[[{X_{\alpha}}]]_1$, then $qf(D[[{X_{\alpha}}]]_1)$ is a Krull domain. Hence, by [19, Corollary 44.10], it suffices to show that

$$R[[\{X_{\alpha}\}]]_{1_{D-\{0\}}} \cap qf(D[[\{X_{\alpha}\}]]_{1}) = D[[\{X_{\alpha}\}]]_{1_{D-\{0\}}}.$$

The containment "⊇" is clear. For the reverse containment, note that if

$$u \in R[[{X_{\alpha}}]]_{1_{D-\{0\}}} \cap qf(D[[{X_{\alpha}}]]_{1}),$$

then $du \in R[[X_n]] \cap K_n$ for some $X_1, \ldots, X_n \in \{X_\alpha\}$ and $0 \neq d \in D$. However, since $R[[X_n]] \cap K_n = D[[X_n]]$ by Lemma 3.9, we have $u \in D[[X_n]]_{D-\{0\}} \subseteq D[[\{X_\alpha\}]]_{1D-\{0\}}$.

Corollary 3.11 Let $\{X_{\beta}\}$ and $\{X_{\alpha}\}$ be two disjoint nonempty sets of indeterminates over D. If $R = \bigcap_{P \in X^{1}(D)} D_{P}$ is a Krull domain, then $D[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{1D-\{0\}}$ is a Krull domain.

Proof Let $D_0 = D[{X_\beta}]$. Note that D_P is a DVR for all $P \in X^1(D)$ by Proposition 3.2(ii), so D_0 is a PvMD in which each integral *t*-ideal has only finitely many minimal prime ideals and D_{0Q} is a rank-one DVR for all $Q \in X^1(D_0)$ by Proposition 2.7. Hence, again by Proposition 3.2, $\bigcap_{Q \in X^1(D_0)} D_{0Q}$ is a Krull domain, and thus $D_0[[{X_\alpha}]]_{1D_0-\{0\}}$ is a Krull domain by Theorem 3.10.

Claim. $D_0[[{X_{\alpha}}]]_{1_{D_0}-{0}} \cap K[{X_{\beta}}][[{X_{\alpha}}]]_1 = D_0[[{X_{\alpha}}]]_{1_{D-{0}}}.$

Proof of Claim Let $h = \frac{f}{g} \in D_0[[\{X_{\alpha}\}]]_{1D_0-\{0\}} \cap K[\{X_{\beta}\}][[\{X_{\alpha}\}]]_1$, where $0 \neq f \in D_0[[\{X_{\alpha}\}]]_1$ and $0 \neq g \in D_0$. Let $h_i \in K[\{X_{\beta}\}]$ (resp., $f_i \in D_0$) be the coefficients of h (resp., f) such that $gh_i = f_i \in D_0 = D[\{X_{\beta}\}]$. Since D is a PvMD, $D \supseteq c(f_i)_v = c(gh_i)_v = (c(g)c(h_i))_v \supseteq a \cdot c(h_i) = c(ah_i)$ for all $0 \neq a \in c(g)$. Hence, $ah_i \in D[\{X_{\beta}\}]$ for all i, and thus $ah \in D_0[[\{X_{\alpha}\}]]_1$. Therefore, $h = \frac{ah}{a} \in D_0[[\{X_{\alpha}\}]]_{1D-\{0\}}$. The reverse containment is clear.

Note that $K[{X_\beta}]$ is a Krull domain, so $K[{X_\beta}][[{X_\alpha}]]_1$ is a Krull domain [18, Theorem 2.1]. Thus, $D[{X_\beta}][[{X_\alpha}]]_{1_{D-\{0\}}}$ is a Krull domain by the claim and [19, Corollary 44.10].

If *D* is a *t*-SFT PvMD, then each proper integral *t*-ideal has only finitely many minimal prime ideals and $R = \bigcap_{P \in X^1(D)} D_P$ is a Krull domain. Thus, by Theorem 3.10 and Corollary 3.11, we have the following corollary.

Corollary 3.12 Let $\{X_{\beta}\}$ and $\{X_{\alpha}\}$ be two disjoint nonempty sets of indeterminates over D. If D is a t-SFT PvMD, then $D[[\{X_{\alpha}\}]]_{1D-\{0\}}$ and $D[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{1D-\{0\}}$ are both Krull domains.

Let *D* be a valuation domain, and assume that $|\{X_{\beta}\}| < \infty$. It is known that if $X^{1}(D) = \emptyset$, then $D[[\{X_{\alpha}\}]]_{1D-\{0\}}$ is a UFD [3, Proposition 2.1 and Corollary 3.4]. Also, if *D* has a height-one prime ideal *P* that is not idempotent, *i.e.*, $P \neq P^{2}$, then D_{P} is a rank-one DVR, and hence $D_{P}[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{1}$ is a UFD (*cf.* [30, Theorem 2.1]). Note that

 $D[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{1_{D-\{0\}}} = D_{P}[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{1_{D_{P}-\{0\}}}.$

Thus, $D[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{1_{D-\{0\}}}$ is a UFD.

Corollary 3.13 Let $\{X_{\beta}\}$ and $\{X_{\alpha}\}$ be two disjoint nonempty sets of indeterminates over a valuation domain V. If either $X^{1}(V) = \emptyset$ or V has a height-one prime ideal P with $P^{2} \neq P$, then $V[\{X_{\beta}\}][[\{X_{\alpha}\}]]_{V-\{0\}}$ is a Krull domain.

Proof Let $R = \bigcap_{P \in X^1(V)} V_P$. Then either *R* is a field or $R = V_P$ is a rank-one DVR (so a Krull domain) by assumption. Thus, by Corollary 3.11, $V[{X_\beta}][[{X_\alpha}]]_{1_{V-\{0\}}}$ is a Krull domain.

We end this paper by a *t*-SFT P*v*MD analog of Arnold's result [5, Proposition 3.2] that if *D* is a finite dimensional Prüfer domain with the SFT-property and *M* is a height-one maximal ideal of *D*, then $ht(M[[X_n]]) = 1$ for all integers $n \ge 1$. We first need two lemmas.

Lemma 3.14 (cf. [5, Lemma 3.1]) Let D be a t-SFT PvMD and let A be a nonzero ideal of D with the property that each prime ideal of D minimal over A is a maximal t-ideal. Then A is t-invertible, and hence each maximal t-ideal is t-invertible.

Proof Since *D* is a *t*-SFT-ring, A_t has only finitely many minimal prime ideals of *D*, say M_1, \ldots, M_k , which are maximal *t*-ideals by assumption. Note that $M_i D_{M_i}$ is principal, so $AD_{M_i} = a_i D_{M_i}$ for some $a_i \in A$. Also, there exists a finitely generated ideal $J \subseteq A$ of *D* such that $\sqrt{A_t} = \sqrt{J_v}$. So if we let $B = J + (a_1, \ldots, a_n)$, then $B \subseteq A$ is finitely generated, AD_M is principal, and $AD_M = BD_M$ for all maximal *t*-ideals *M* of *D*. Thus, $A_t = B_t$ and B_t is *t*-invertible [22, Theorem 3.5 and Corollary 2.7]. Thus, *A* is *t*-invertible.

Lemma 3.15 (cf. [5, Proposition 2.1(v)]) Let D be a t-SFT PvMD and let Q be a prime t-ideal of $D[[{X_{\alpha}}]]_1$. If $Q \cap D = P$, then $P[[{X_{\alpha}}]]_1 \subseteq Q$.

Proof If P = (0), then $P[[{X_{\alpha}}]]_1 = (0) \subseteq Q$, and so assume $P \neq (0)$. Note that if $I \subseteq P$ is a nonzero finitely generated ideal of D, then $Q \supseteq (ID[[{X_{\alpha}}]]_1)_{\nu} = I_{\nu}[[{X_{\alpha}}]]_1$ [9, Lemma 3.1], and thus $P = Q \cap D \supseteq I_{\nu}[[{X_{\alpha}}]]_1 \cap D = I_{\nu}$. Thus, $P_t = P$, so there are a nonzero finitely generated ideal B and an integer $k \ge 1$ such that $a^k \in B_{\nu}$ for all $a \in P$. If $\overline{P} = P/B_{\nu}$, then each element of $\overline{P}[[{X_{\alpha}}]]_1$ is nilpotent (*cf.* the proof of [5, Proposition 2.1(v)]). Thus, $P[[{X_{\alpha}}]]_1 = \sqrt{B_{\nu}[[{X_{\alpha}}]]_1}$, and since $B_{\nu}[[{X_{\alpha}}]]_1 = (BD[[{X_{\alpha}}]]_1)_{\nu} \subseteq Q_t = Q$, we have $P[[{X_{\alpha}}]]_1 = \sqrt{B_{\nu}[[{X_{\alpha}}]]_1} \subseteq Q$.

Proposition 3.16 (cf. [5, Proposition 3.2]) Let D be a t-SFT PvMD and let M be a maximal t-ideal of D. If htM = 1, then $ht(M[[{X_{\alpha}}]]_1) = 1$.

Proof By Lemma 3.14, $M = (a_1, ..., a_k)_v$ and $MD_M = mD_M$ for some $a_1, ..., a_k$, $m \in M$. Hence, there is an $s \in D-M$ such that $sM = s(a_1, ..., a_k)_v = (sa_1, ..., sa_k)_v \subseteq mD$, whence $s^r(M^r)_t \subseteq m^rD$ for all integers $r \ge 1$.

Assume that $\operatorname{ht}(M[[{X_{\alpha}}]]_1) > 1$, and let Q be a prime t-ideal of $D[[{X_{\alpha}}]]_1$ such that $(0) \subseteq Q \subseteq M[[{X_{\alpha}}]]_1$. Clearly, there are some $X_1, \ldots, X_n \in {X_{\alpha}}$ so that $Q \cap D[[X_n]] \neq (0)$ and $Q \cap D[[X_n]]$ is a prime t-ideal. Replacing Q with $Q \cap D[[X_n]]$, we assume that $(0) \subseteq Q \subseteq M[[X_n]]$. If $Q \cap D \neq (0)$, then $Q \cap D \subseteq M$, and since $\operatorname{ht} M = 1$, $Q \cap D = M$. Thus, $M[[X_n]] = (MD[[X_n]])_v = (MD[[X_n]])_t \subseteq Q$, a contradiction. Hence, $Q \cap D = (0)$. Choose $0 \neq q \in Q$. Note that $(M^i)_t$ is M-primary for all integers $i \ge 1$; hence, $q \in \bigcap_{i=1}^{\infty} (M^i)_t [[X_n]]$ by an argument similar to the proof

of [5, Proposition 3.2]. Thus, $\bigcap_{i=1}^{\infty} M^i D_M = \bigcap_{i=1}^{\infty} (M^i)_t D_M \supseteq \bigcap_{i=1}^{\infty} (M^i)_t \neq (0)$, and therefore htM = ht $MD_M > 1$, a contradiction.

Corollary 3.17 Let D be a t-SFT PvMD and $\{X_{\beta}\} \cup \{X_{\alpha}\}$ be the union of two disjoint nonempty sets of indeterminates over D. If M is a height-one maximal t-ideal of D, then $ht(M[\{X_{\alpha}\}][[\{X_{\alpha}\}]]) = 1.$

Proof This follows directly from Proposition 3.16, because $D[{X_\beta}]$ is a *t*-SFT PvMD by [8, Theorem 11], $M[{X_\beta}]$ is a maximal *t*-ideal by [14, Lemma 2.1], and ht($M[{X_\beta}]$) = 1 (note that D_M is a one-dimensional valuation domain).

Acknowledgment The author would like to thank the referee for careful reading and several valuable comments.

References

- [1] D. D. Anderson, D. F. Anderson, and M. Zafrullah, *The ring* $D + XD_S[X]$ and *t*-splitting sets. In: Commutative algebra, Arab J. Sci. Eng. Sect. C Theme Issues 26(2001), 3–16.
- D. D. Anderson, G. W. Chang, and M. Zafrullah, *Integral domains of finite t-character*. J. Algebra 396(2013), 169–183. http://dx.doi.org/10.1016/j.jalgebra.2013.08.014
- [3] D. D. Anderson, B. G. Kang, and M. H. Park, Anti-Archimedean rings and power series rings. Comm. Algebra 26(1998), no. 10, 3223–3238. http://dx.doi.org/10.1080/00927879808826338
- [4] J. T. Arnold, Power series rings over Prüfer domains. Pacific J. Math. 44(1973), 1–11. http://dx.doi.org/10.2140/pjm.1973.44.1
- [5] _____, Power series rings with finite Krull dimension. Indiana Univ. Math. J. 31(1982), no. 6, 897–911. http://dx.doi.org/10.1512/iumj.1982.31.31061
- [6] J. T. Arnold and J. W. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring. J. Algebra 18(1971), 254–263. http://dx.doi.org/10.1016/0021-8693(71)90058-5
- [7] G. W. Chang, Spectral localizing systems that are t-splitting multiplicative sets of ideals. J. Korean Math. Soc. 44(2007), 863–872. http://dx.doi.org/10.4134/JKMS.2007.44.4.863
- [8] _____, Power series rings over Prüfer v-multiplication domains. J. Korean Math. Soc. 53(2016), no. 2, 447–459. http://dx.doi.org/10.4134/JKMS.2016.53.2.447
- [10] F. Decruyenaere and E. Jespers, *Prüfer domains and graded rings*. J. Algebra 150(1992), no. 2, 308–320. http://dx.doi.org/10.1016/S0021-8693(05)80034-1
- D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer v-multiplication domains. Comm. Algebra 17(1989), no. 11, 2835–2852. http://dx.doi.org/10.1080/00927878908823879
- [12] S. El Baghdadi, On a class of Prüfer v-multiplication domains. Comm. Algebra 30(2002), no. 8, 3723–3724. http://dx.doi.org/10.1081/AGB-120005815
- [13] S. El Baghdadi and H. Kim, Generalized Krull semigroup rings. Comm. Algebra 44(2016), no. 4, 1783–1794. http://dx.doi.org/10.1080/00927872.2015.1027378
- [14] M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure. Comm. Algebra 26(1998), 1017–1039. http://dx.doi.org/10.1080/00927879808826181
- [15] M. Fontana, J. A. Huckaba, and I. J. Papick, *Prüfer domains*. Monographs and Textbooks in Pure and Applied Math., 203, Marcel Dekker, New York, 1997.
- [16] R. M. Fossum, The divisor class group of a Krull domain. Springer-Verlag, New York-Heidelberg, 1973.
- [17] S. Gabelli, Generalized Dedekind domains. In: Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 189–206. http://dx.doi.org/10.1007/978-0-387-36717-0_12
- [18] R. Gilmer, Power series rings over a Krull domain. Pacific J. Math. 29(1969), 543–549. http://dx.doi.org/10.2140/pjm.1969.29.543
- [19] _____, *Multiplicative ideal theory.* Pure and Applied Mathematics, 12, Marcel Dekker, New York, 1972.

- [20] M. Griffin, Some results on v-multiplication rings. Canad. J. Math. 19(1967), 710–722. http://dx.doi.org/10.4153/CJM-1967-065-8
- [21] _____, Rings of Krull type. J. Reine Angew. Math. 229(1968), 1–27.
- [22] B. G. Kang, Prüfer v-multiplication domains and the ring R[X]_{Nv}. J. Algebra 123(1989), no. 1, 151–170. http://dx.doi.org/10.1016/0021-8693(89)90040-9
- [23] B. G. Kang and M. H. Park, On Mockor's question. J. Algebra 216(1999), 481–510. http://dx.doi.org/10.1006/jabr.1998.7785
- [24] _____, A note on t-SFT-rings. Comm. Algebra 34(2006), no. 9, 3153–3165. http://dx.doi.org/10.1080/00927870600639476
- [25] J. L. Mott, On the complete integral closure of an integral domain of Krull type. Math. Ann. 173(1967), 238–240. http://dx.doi.org/10.1007/BF01361714
- [26] J. L. Mott and M. Zafrullah, On Prüfer v-multiplication domains. Manuscripta Math. 35(1981), 1–26. http://dx.doi.org/10.1007/BF01168446
- [27] J. Ohm, Some counterexamples related to integral closure in D[[X]]. Trans. Amer. Math. Soc. 122(1966), 321–333.
- [28] E. Paran and M. Temkin, Power series over generalized Krull domains. J. Algebra 323(2010), no. 2, 546–550. http://dx.doi.org/10.1016/j.jalgebra.2009.08.011
- [29] N. Popescu, On a class of Prüfer domains. Rev. Roumaine Math. Pures Appl. 29(1984), 777-786.
- [30] P. Samuel, On unique factorization domains. Illinois J. Math. 5(1961), 1–17.

Department of Mathematics Education, Incheon National University, Incheon 22012, Korea e-mail: whan@inu.ac.kr