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ORBITAL INTEGRALS ON FORMS OF SL(3), / / 

R. P. LANGLANDS AND D. SHELSTAD 

0. Introduction. In the paper [6] we described in a precise fashion the 
notion of transfer of orbital integrals from a reductive group over a local 
field to an endoscopic group. We did not, however, prove the existence of 
the transfer. This remains, indeed, an unsolved problem, although in [7] 
we have reduced it to a local problem at the identity. 

In the present paper we solve this local problem for two special cases, 
the group SX(3), which is not so interesting, and the group S£/(3), and 
then conclude that transfer exists for any group of type A2. The methods 
are those of [4], and are based on techniques of Igusa for the study of the 
asymptotic behavior of integrals on /?-adic manifolds. (As observed in [7], 
the existence of the transfer over archimedean fields is a result of earlier 
work by Shelstad.) 

Since the problem is solved in so few cases, some doubts about the value 
of the method are justified. However, in the hands of Thomas Hales ( [1], 
[2] ) it is revealing itself to be a powerful and suggestive technique, and the 
simple case treated here may serve as a useful introduction to his work. 
Moreover, the theory of automorphic forms on SU(3) or U(3) is well 
worth studying as an example and in its own right ( [9] ); many phenome­
na that are absent for GL(2) but present in general appear first with these 
groups. 

1. Local transfer of Shalika germs. Recall from ( [7], Section 2.1) that 
the problem of local transfer is to show that for any smooth, compactly 
supported function / on G(F) there is a function f of the same type on 
the endoscopic group H(F) such that 

(1.1) **( Y / / , f
H) = 2 A loc(Y//, YC)<D(YC, f) 

for all strongly (7-regular yH near the identity in H(F). The sum is over a 
set of representatives for the conjugacy classes in the stable conjugacy 
class of which yH is an image. 

Fix one yG with yH as an image, and let TG be the centralizer of yG, 
TH that of yH. Choose an admissible embedding TH —» T —> TG and let 
y e T Q G* be the image of yH. Recall that ^(T) is the image of 
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HX{TSC) in Hl(T\ and may of course be identified with g(TG\ The 
element s of the endoscopic data defining H can be transported to T or to 
TG and defines a character, customarily denoted /c, of X*(T), X*(TG), or of 
é(T), S{JG\ Recall that Tate-Nakayama duality implies that S(T) is a sub-
quotient of X*(T). If 8 e £(7^), there is a g G G(F) such that the cocycle 
{°(g)g~1} hes in T and belongs to the class of ô. Set 

y G = # ~ W 
Since A(y//, y^) and 0(y^, / ) depend only on S and not on g, we write 
A(y^, yG) and $(y(;, / ) . It is a consequence of Section 3.4 of [6] that 

Aloc(ï//> Y C ) = K( 5 ) A 1OC(Y// , YG)» 

so that the right side of (1.1) is 

Aloc(y^,yG) 2 K(S)^(y%f). 
8e*(TG) 

For y^ near the identity we may write y = exp X, and, for any root a, 
define a(y)1/2 to be exp a(X)/2. Then 

{aa = a(y)1/2 - a(y)~l/2} 

is a set of a-data to which we may apply the construction of [6, Section 2.3] 
to obtain a cohomology class 

X(T) = inv(r, y) 

in <f(T). In terms of the classes introduced in [10] it is a product 

inv(7", y) = inv(y) inv(T). 

Observe that the choice of F-splitting implicit in Section 2.3 is made as in 
[10] and [6, Section 5.1]. 

To calculate Aloc(y^, y) we may use the «-data just introduced. This 
yields 

MY// , Y) = 1 

and 

A/(Y//, Y) = /c(inv(r, y) ). 

In addition, A^y^, y) is 1 by definition, and A2(y//, y) is 1 near the identity. 
Thus, choosing the overall constant correctly, we have 

(1.2) Aloc(Y//, y) = ic(inv(r, y) )DGVH(y\ 

where ( [6], Section 3.6) 

A?v*(Y) = DG,{y)DH(yHy\ 

If, with the notation of [6, Section 4.2] and [3], we set 
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inv(rc, yG) = inv(r, y)9(E, E') 

then the Local Hypothesis (Corollary 4.2.B of [6] ) yields 

(1.3) A1OC(YH, yG) = K(inv(rG, yG) )DG/H(yG). 

The usual germ expansion on G(F) is 

* ( Y C , / ) - 2 ^ ( Y C ) ^ ( / ) . 

The germ expansion for 

$(7//, / ) = 2 Aloc(Y//, YG)$(YG, / ) 
yG 

is 

%,/)-2fe)a,(/) 
with 

ItfCY//) = <mv(rG , yc) )DG/H(yG) 2 /c(S)r^(yG) 

if Y// is an image of an element of G. Otherwise T@(yIf) = 0. It will be 
referred to as the K germ-expansion, and the T@ as K-germs, even though 
the true parameter is the collection of endoscopic data, the character K 
changing from Cartan subgroup to Cartan subgroup. Taking H = G*, so 
that all the K are trivial, we obtain the stable germs Ty. 

The existence of the local transfer for a group H and all / is clearly 
equivalent to the validity of the following assertion for all (9. 

ASSERTION A. The K-germ T@ is a linear combination of stable germs 
forH. 

2. Some easy general cases. There are a few general cases for which 
Assertion A is either easy to verify directly or easy to deduce from known 
results. 

The endoscopic group 7/, or the data defining it, will be said to be 
cuspidal if the maximal split subgroup SH of the center of H is contained 
in the center of G (a condition whose precise meaning should be clear 
enough). 

LEMMA 2.1. Suppose H is not cuspidal. If local transfer exists for all 
endoscopic groups of all Levi factors of proper parabolic subgroups of G then 
it exists for H. 

Proof If an admissible embedding TH~* T—> TG exists then we say that 
TH is an image of TG. If no Cartan subgroup of H is an image, as can very 
well happen if, for example, G is anisotropic, then fH = 0 will be the 
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transfer of all / . Thus, suppose that some Cartan subgroup Tff is an 
image of, say, T°. 

We suppose that H is not cuspidal. Then SH is transported by 
TH —> T to a split group SG in G that is not central. The centralizer M of 
SG is a Levi factor of a proper parabolic subgroup P over F. Any two split 
tori in G over F that are conjugate in G(F) are already conjugate in G(F). 
Thus if TH is an image of some TG, it is the image of a TG contained 
in M. 

If m G M(F) set 

DG/M(m) = |det(l - adm) | g ] m | 1 / 2 

and 

W « ) = |detm|n|1/2, 

where n is the Lie algebra of the unipotent radical of P. It follows readily 
from the definitions that H is also an endoscopic group for M. We denote 
transfer factors for M by the addition of the superscript M. We can easily 
arrange [7] 

A(7//, y) = A"(yw, y)DG/M(y). 

Thus to prove the lemma, we need only verify the existence of a smooth 
compactly supported function fM on M(F) such that 

(2.1) DG/Miy)H>(y,f) = $ ( y , / M ) . 

However, it is well known that for this purpose we can take 

fM(m) = c8G/M(m) JK jN{F)f{k-xmnk)dndk, 

with a suitable constant c. 

LEMMA 2.2. Assertion A is valid for regular unipotent classes (9 and 
all H. 

This follows readily from Theorem 5.5.A of [6]. 

LEMMA 2.3. Assertion A is valid for the class 0 = {1} and all H. 

Proof Abbreviate Tr^ to T{. By results of Howe, Harish-Chandra and 
Rogawski, T] vanishes on tori that are not anisotropic, and is a constant cG 

on all anisotropic tori. Moreover cG = cG* for compatible choices of the 
measures. Thus it is clear that if H = G* then 

1 ! - 1 ! — 1 p , 

where 1* denotes the identity in G*. 

If H ¥= G* the lemma takes an even stronger form. 
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LEMMA 2.4. If H # G* then Y\ = 0. 

Proof. On tori that are not anisotropic this is a consequence of (2.1). On 
the other hand, for an anisotropic torus T the group <o(T) ~ $(TG) is a 
quotient of X*(Tad). Since H ¥= G* the character /c is not trivial on <o{TG) 
and 

2 K(8)TX = 0. 

COROLLARY 2.5. If G is anisotropic modulo its center then local transfer 
exists for all H. 

With these scraps of general information at our disposal, we now turn to 
forms of SX(3), excluding, because of the last corollary, anisotropic 
groups, and thus confining ourselves to quasi-split groups, so that we may 
take G = G*. We observe, moreover, that every endoscopic group H of G 
arises in a natural way from some H,sc^ for Gsc, and that it follows readily 
from [7] that if local transfer is possible for the pair Gsc, H^ then 
it is possible for G, H. Thus we shall eventually obtain the following 
statement. 

THEOREM. If G is of type A2 then all pairs (G, H) admit /^-transfer. 

In treating forms of SX(3), we need only consider cuspidal endoscopic 
groups and subregular classes 0. We now begin to examine the possible 
endoscopic groups. 

3. Endoscopic groups. Since G is simply connected, we confine ourselves 
to endoscopic data (H,J%s, £) (see [6], (1.2) ) for which 3tf = LH, so that 
£ is an embedding of LH in LG. The most important element among the 
data is then s. If we realize G in the usual way as PGL(3, C), then we may 
suppose that s is diagonal and that the diagonal matrices form part of a 
T-splitting of LH. There are then three possibilities: (i) all eigenvalues of s 
are equal; (ii) two are equal to each other but not to the third, (iii) no two 
eigenvalues are equal. 

In case (i), the group LH is LG and H = G* = G. In case (ii), we 
may suppose that it is the first and third eigenvalues that are equal. If 
a' = xx — x2, a" = x2 — JC3, and a!" = xl — x3 are the usual roots of 
t then oa'" = a!" for all o G T. Thus oaf = a\ oa" = a" or aa' = a", 
oa" = a'. The second possibility can occur for some a if and only if G is a 
unitary group, and then 

1 0 0' 
0 - 1 0 
,0 0 1, 

A A 

If no two eigenvalues of s are equal then T = H and H is a torus T. 
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When discussing a given Cartan subgroup with an image TH it is 
convenient to fix a diagram: 

T„ >T< T 

TG 
A A A 

Then T and TG may be identified with T, the group of diagonal matrices in 
PGL(3, C). The group TT acts on f. 

LEMMA 3.1. If H ^ G* then the group TT cannot contain all reflections 
in the Weyl group. 

Proof. Since H ¥= G*, we have a{s) ¥* 1 for at least one root a. However, 
if a, is the reflection corresponding to a then there is another root B such 

" A A A Ar ° A 

that p — oap = OL Thus fi(s) ¥= oa/3(s) and oa cannot lie in TT. 
COROLLARY 3.2. If G is an inner form of SL(3), H =£ G*, and T is 

anisotropic then TT is the cyclic subgroup of the Weyl group of order three 
and H is a torus. 

Proof. TT must be a proper subgroup of the Weyl group whose only 
fixed point in X*(T) is 0. Thus TT is cyclic of order three. Since s is 
protectively invariant under TT and not a scalar, its three eigenvalues must 
be of the form À, fÀ, f2À where f3 = 1, f ^ 1. Thus 77 is a torus, and so 
isH. 

A A 

Since T has been identified with T by means of the fixed diagram, the 
group X*(T) is identified with triples of integers (x, y, z) whose sum 
is zero. 

COROLLARY 3.3. If G is SU(3), T is anisotropic, and the element s has 
exactly two eigenvalues equal then we may suppose that TT is one of the two 
groups: 

(a) O, y, z) -> ± 0 , y, z); 

(b) (x, y9z)-> ±(x, y, z\ ±(z, y, x). 

Proof. Choose the diagram so that (1,0, — 1) is a root that is 1 on s. 

LEMMA 3.4. If G is SU'(3) and H = T is an anisotropic torus, then TT is a 
group of order six containing the cyclic permutations of order three. It can 
also be assumed to contain 

(x, y, z) -> ( - z , -y, -x). 

Proof The argument of Lemma 2.1 implies that TT contains no 
reflections. Thus the intersection of TT with the Weyl group is trivial or 
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cyclic of order three. If it is trivial then TT must be (x, y, z) —> =t(x, y, z), 
because T is anisotropic, but then all eigenvalues of sT have the same 
square, so that two are equal. Then H is not a torus. Thus TT is of order six 
and, with a suitable choice of diagram, either contains (x, y, z) —> 
( —z, —y, — x) or the direct product of the cyclic subgroup of order three 
with the group of order two generated by (x, y, z) —> — (x, y, z). There is 
however no sT invariant under the second group that is not scalar. 

There is one more lemma to be noted. Its proof is immediate. 

LEMMA 3.5. If H is cuspidal but is neither G* nor a torus, then G is SU(3) 
and s is of type (ii). 

4. Recapitulation. Up to conjugacy there are only finitely many Cartan 
subgroups of H over F. Suppose TH is one of them, and tH its Lie algebra. 
As a consequence of a theorem of Harish-Chandra, there is a neighbor­
hood VH of 0 in tH such that for regular X e VH and t e F*, \t\ < 1, 

T ^ ( e x p ^ ) = k l ^ ' r ^ e x p * ) , 

if 0 is a unipotent conjugacy class and d = de is defined by the condition 
that 2d -f / i s the dimension of the centralizer of any element in it. The 
integer / is the rank of H, and 2dx + / is the dimension of H. 

A similar assertion is valid for the /c-germ. Thus if for a given unipotent 
class 0 in G(F) there is a collection of unipotent classes 0X, . . . , 0n in 
H(F) and complex numbers ax, . . ., an such that for every Cartan sub­
group TH and every regular ray {tX\t G F*} in tH we have 

n 

r<£(exp tX) = 2 fl^exp /JQ 

for ? sufficiently small, then there is an equality of germs 
n 

I# — 2a a^Q 
i = l 

with 

«0. = d# 

for all /'. Hence the theorem of Harish-Chandra allows us in principle to 
apply the methods of Igusa. 

For forms of SX(3) only the subregular classes 0 are not dealt with by 
the remarks of Section 2; so we suppose henceforth that (9 is subregular. 
There are two lemmas to be proven. The first is simple to state. 

LEMMA 4.1. If H is a torus and (9 is subregular then 

IS = o. 
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Otherwise we may suppose that G is SU (3) and 

s = 

1 0 0 
0 - 1 0 
o 0 1 

Then the derived group of H is SL(2). Moreover d@ = 1 if 0 is subregular 
and d& = 1 if and only if 0i = {1}. 

LEMMA 4.2. If G is SU(3), H is cuspidal but neither G* nor a torus, and if 
(9 is subregular then for some a e C 

rK — nVst 

Y® — av !. 
Recall that Pf, a stable germ for H, has been calculated in [5]. It is 0 on 

Cartan subgroups whose intersection with //der is not anisotropic. If, how­
ever, T0 = TH n HdeT is anisotropic then TT is a group of order two: 

I>n = {1, o). 7 0 

Take Q = QT to be the form of P1 X P1 defined by the cocycle: 

a0- (x, y) -> (y, x). 

Here x9 y are inhomogeneous coordinates on P1 X P1. Then, apart from a 
constant that is the same for all Cartan subgroups, Tf is the principal-
value integral ( [5] ) 

«•» w * > i 4 n ^ 
\x - y\ 

times 

£//W 
Here yG = ex and a is one of the two roots of Hder Thus, we prefer to 
study 

A/(Y/y)lS(Yi/) = <inv(rG, YG) ) ^ ( y G ) 2 / c (ô )T^) . 

5. The method of Igusa. For a given 7^ the method of Igusa [4] yields 
(for forms of SL(3) ) an asymptotic expression for 

Dc(yc) 2 K(8)rv(yS
G) = 2 K(S)DG(yS

G)Tff(y
S
G) 

along rays. One begins with 

2 K(8)DG(yG)$(yG, f), 

which in the notation of [4] is FK(y, / ) , and applies Proposition 1.1 of [4]. 
The theorem of Harish-Chandra implies that the terms appearing in 

that proposition are 0 for r > 1 or $ < 1. For r = 1, ft i^ 1 the factor 
Fr(0, /?, / ) is a principal-value integral 
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à E{6,p) iE\vE\ 

over the union E(0, ft) of the varieties E in E(0, ft). Observe that the factor 
Ar(M) appearing in Lemma 1.3 of [4] has been incorporated into the 
function hE. 

The morphism IT of [4] maps E onto the closure 6E of a unipotent orbit 
0E in G. Departing from the notation of [4], we let E be the inverse 
image of &E in E. The set &E(F) is a stable orbit &st and thus a finite union 
of conjugacy classes. 

For a given /}, the sum over 6 

E\yE\ (5.i) K(inv(r, yG)) 2 o(\)\xf-1 fmp> hE\Vi 

is equal to 

(5.2) 2 Uf(ri)\v\)DHTl 

It was observed to us by Thomas Hales that, when we are concerned with 
a particular 0, we may as well suppose that / vanishes on all unipotent 
orbits 0' with de, i^ de other than 0 itself. This has two advantages at 
present, when we are dealing with forms of SX(3) and a subregular 0. First 
of all, the blow-up otherwise entailed by Lemma 4.5 of [4] is unnecessary. 
Secondly, if fi = dG + 1 and E G (£(0, p) then, by Lemmas 4.7 and 4.8 of 
[4], necessarily 0 Q 0E. Hence in (5.1) the integrals may be taken over 

A A 

E{0, /?) = U E E 6 M £ . 

Moreover 0E is smooth and, as we shall see, E(0, ft) —» 0E is flat, so that 
(5.1) is equal to 

(5.3) 2 0(A)lAk(inv(7; yG) ) j ^ f(n)[jW) hn\rn\ j , 

where En(0, f$) is the inverse image of n in E(0, ft). 
To prove Lemma 4.1 it is enough to show that 

for the pertinent T and K; to prove Lemma 4.2 it is enough to show that 

(5.5) 2 W k ( i n v ( r , yc) ) j>En(ei) K\vn\ = aHX) | j>Q(F) ] - ^ j 5 . 
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a being a constant that depends on the endoscopie data, and perhaps 
on n and 0, but not on the particular T under consideration. Moreover, 
yG = exp XX and a is a root of //der. 

The remainder of the note is devoted to the explicit description of hn, vn, 
and the varieties En(6, 2), based, of course, on the construction of [4], 
and to the calculation of the principal-value integrals. Observe that if 
fi(E) = 2 then, in the notation of [4], E is one of E\, E'{, or E6. 

6. The fibres. If G is SL(3) then there is no supplementary blow-up, and 
the divisor E6 does not appear; if G is SU(3) the divisors E\, E'{ have no 
rational points and thus may be discarded. Therefore it is convenient 
to treat the two cases separately, beginning with SL(3). 

Associated to a subregular n over F in SL(3) are a distinguished point 
and a distinguished line in P . The point P is the range of n — 1 and the 
line / its null space. On the other hand, a Borel subgroup B of SL(3) is 
determined by a point ^ o n a line m in P2, and n e B if and only if/) G W 
or q e /. Let Mn be the join at p = I of the variety P ; of points on / with 
the variety 1^ of lines through /?, so that Mn is the union of two projective 
lines crossing normally at p = /, and parameterizes the Borel subgroups 
containing n. 

There is a set-theoretical mapping of En = En(2), the inverse image of n 
in E[ U E'2, to Mn. To a point in En there is associated a star and the Borel 
subgroup B = B(W+) in this star lies in Mn. To investigate En(2) over the 
inverse image of a neighborhood of B, we choose B0 to be defined by/? G / 
and B^ to be opposite to B. Then the inverse image is contained in 

G X S^B^, B0) X N^. 

We may choose Xa>, Xa„ so that 

n = exp wQ[Xa,, Xa»]. 

Observe that w0 ¥= 0. 
If, as in Section 4 of [4], we take x, y, V as coordinates on S^B^, BQ) 

then the coordinates z-, z"figuring in the diagram on p. 489 of [4] can be 
calculated in terms of x, y, V. The results can be summarized in a similar 
diagram. 

yV 

(6.1) 

X 
w2 ^ Wo 

V - 1 Wy 
w4 

w5 

i n - v\v Vx 
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Thus there is a coordinate xr attached to each of six rays r. The extended 
Weyl group, viz, the Weyl group together with outer automorphisms, acts 
by replacing xr by 

€(w)xw- i r 

An element o of the Galois group acts by replacing xr by 

e(oT)o(xa-\r). 

Here e(<o) is the determinant of co, and e(oT) the determinant of oT. Thus 
the varieties S"(#oo> BoX ^(Ax» B0), RiB^ B0) are all defined over F. 

On the open set Y^iB^, B0) of Section 4 of [4] we have 

(6.2) uU = b(\)yVw9 vU = c(X)xFw. 

If 

«' = exp uXar exp vXa" exp w[Xa,, Xa„] 

and if 

then m ~ B' = BQ°° is the image in Afw and w = w0. The coordinates w, v 
serve as coordinates of n^ or as coordinates on Mn. We conclude from 
Equation 6.2 and Equation 4.6 of [4] that En —> Mw is a morphism, and 
that it is smooth off V = 0. 

The condition F = 0 is more invariantly defined as the condition that 
the point in Sx is defined by a point of type B3 (see Lemmas 3.13, 3.14 of 
[4] ). Since the Bj are cyclically permuted by the Galois group, no such 
point has coordinates in F and En —> Mn is smooth at every point of En(F). 
Moreover, as we shall see in the next section, K\ ¥" K!2. Consequently 

<6-3> i^2^ = k\kkMYl 

Here v" is any non-vanishing form on the base and km, v'm are determined 
by restriction and division. 

The conditions for rationality are deduced from the diagram and the 
equation following (3.4) of [4]. For the F-valued points in Fm, 
the coordinate V is neither 0, 1, nor oo and the map that sends a point to 
(—1, V, 1 — V) or simply to V identifies Fm(F) with the P1 associated 
to elements of trace zero in the cyclic cubic extension K associated to the 
torus T. 

Passing to S£/(3) we observe first that if n e G(F) is subregular then 
there is a unique Borel subgroup B0 over F containing it. If B^ is defined 
over F and opposed to B0 then En = En(2) is contained in 

G X S^B^ B0) X Nc 
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The only pertinent divisor E is now E6; it is obtained by a blow-up along 
the intersection of E\ and E'{. Hence it fibres over this intersection 
with fibre P1. The fibre En is contained in n X S^B^, B0) X 1 and the 
projection on S^B^, B0) of its intersection In with E\ n E'{ is (see Sec­
tion 3 of [4] ) 

S'(*oo> *o XTU) - 0 ^ RiB^, B0). 

Let p be the element of the Galois group such that 

pT: (x, y, z) - > ( - z , -y, -x) 

as given by Lemma 3.4. Thus a condition for rationality is that 

(6.4) p(V - 1) • (V - 1) = 1 

so that V — 1 = p(R)R~ . The map that sends a point with coordinate 
F to 

(6.5) * ( - l , V, 1 - V) 

identifies In(F) with the P1 defined by elements of trace zero. 
In the case of Corollary 3.3 (a), the element p does not exist, and the 

condition for rationality to be imposed on V is that V G F. In the case of 
Corollary 3.3 (b), the number R can be taken to be fixed by the element 
a with 

oT: (x, y, z) -> -(x,y, z), 

and the coordinate V lies in K0, the fixed field of a. 
It is easy to see that 

x denoting a point of In, and Fx the fibre over x. Observe that at a point of 
In where V is not 0, 1, nor oo we may use as coordinate z = xly. The 
condition for rationality is somewhat elaborate to describe. 

Think of the chambers, Wi9 0 ^ / ^ 5, as oriented in the counter­
clockwise direction for / even and in the clockwise direction for / odd. 
Every element of the extended Weyl group takes W0 either to a Wt or to 
a —Wi9 the chamber Wt with the opposite orientation. We assign to a 
chamber a function q>(Wt) of V as follows: 

< P T O = 1 ; v(Wl) = ^ ; <f{W2) = V~\\ - V)~\ 

W) = (V - l)2; 

<P(^4) = -V(\ - VY1; rtWs) = V(\ - Vyl; 

«p(-Wf) = v{W{)-\ 
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The positive chamber is W0 = W+. The condition for rationality of a point 
in In with coordinate V is that 

(6.7) p(<p(oTW) )<p(pTW) = <p(pToTW) Vp, a, W. 

The condition for rationality of a point on the fibre over a rational base 
point is that 

(6.8) o(z) = <p(oTW+)z€° Va. 

Here ea is 1 if a fixes E and — 1 if it does not. The field E is the quadratic 
field over which the hermitian form giving the group is defined. 

7. The forms. It is sufficient to calculate them where V is finite and not 
0 nor 1. Beginning with the form vn, we make use of Lemmas 2.8 and 2.12 
of [4]. We may suppose that the form A ^ appearing in Lemma 2.8 is 
coT A du A dv A dw. Then the form <o° on Y° used to define FK(y, f) is the 
product of d\ A du A dv A dw with the restriction of Aw- to N^. 

The form on N^ need not be investigated further. To describe the first 
factor in other coordinates we need to calculate the jacobians: 

9(A, w, v, w) 9(X, w, v, w) 9(À, w, v, w) 

8(w, v, V, w) 8(x, y, V, w) d(z, y, V, w) 

This is a straightforward matter. If G = G* is so defined that we may take 
B* to be the group of upper-triangular matrices and T* to be the group of 
triangular matrices, then the diagram (2.0) of [4] identifies the tangent 
space to the curve C with a line 

[a 0 01 
o p 0 

[0 0 YJ 
We choose a, /?, y so that X is also a natural coordinate on the line; then 

b = b(0) = a — /?, c = c(0) = /? — y, d = d(0) = a — y. By assumption, 
none of these numbers is zero. The three determinants are the product of a 
factor of the form 1 + E(X), E(0) = 0, with 

w(« ~ V) A j/i 3 A 3T/2 3 
— ~— AxyV w Azy V w . 

(« - pw - yW2w 
Here 

(a - jB)CB - y)(a - y) (« - 0 ( 0 - y)(« - Y) 
y< = -

( (a - y) - V{fi - y) )4 (74 

Thus the form y'm that appears in (6.3) may be taken to be (see Section 1 
of [4] ) 

(7.1) - ( « - /})(/? - y)(a - y ) ^ = (a - /?)(« - y)% 
U U 
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for the form v appearing on p. 469 of [4] is the product of this with wv l 

(at the divisor u = 0) or wu~ (at the divisor v = 0) and the invariant form 
on N^. 

It is convenient to choose (a0, /?0, y0) = (a0, a(a0), o2(a0) ) of trace zero 
and linearly independent of (c, — d, b), and to set 

u,= d~cV. 
Yo + ;80K 

Then Ul takes rational values at rational points, and (7.1) becomes 

(7.2) -(a - /?)(/? - y)(Y - 8)(cy0 + dfiA. 
u\ 

On the divisor E6 the prescription of Section 1 of [4] leads to the 
form 

(7.3) (a - fiUfi - Y)(Y - « ) ^ • j 

on the fibre, the form on the base being the product of wdw with the 
invariant form on N^. Thus we have the form (7.2) on In and the form 
dz/z on the fibre Fx. If the endoscopic group is a torus, we may once again 
use the coordinate U}. At a rational point, 

Ux G E and I/, = UX{UX - l ) " 1 , 

the bar denoting conjugation over F. 
It is also convenient to replace z by 

v - r 
for then the condition for rationality becomes zx G E9 zx = Z 

8. The functions. The functions hn are essentially the functions on mK of 
Section 2 of [4] and are to be calculated as in Section 5 of that note; or 
rather as in Section 5.4 and Section 5.5 of [6]. Since we have multiplied 
by DH(yH), the function mk(e(-) ), of [4] becomes the function A(-) of [6]. 
We calculate with A(-), obtaining thereby not the functions hn of (5.4) and 
(5.5) but the functions 

/c(inv(T, y)hn9 

without for the moment the factor Ar(M). Since we are close to the 
identity A(-) may be taken to be 

(8.1) A7(yH, TT(') )A /7(T//, TT(-) )A1(Yi/, TT(-) ). 

On putting the first and third factors together as in Section 5.5 of [6] we 
obtain the value of sT on the cocycle 
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(8.2) f„ = n -an 

i,a lz(o, a)\ 

We choose, as in Section 1, 

aa = a(y) 1/2 a(y) -1/2 

so that the second factor of (8.1) becomes 1. (Notice that the symbols a, y 
have two conflicting meanings.) 

We begin with SL(3), and the endoscopic groups given by anisotropic 
tori. Then TT is cyclic of order three, and we take the generator given 
by 

a: (a, /?, y) -> (/?, y, a). 

It is enough to calculate the cocycle (8.2) on this generator. We write a = 
o)"o)', and find that the roots appearing in (8.2) are a" and a!" = a! -f a". 
The factors z(a, a) are calculated in terms of the coordinates in (6.1). 
Thus 

f„ = 
-aAy - 1 ) — a- :«"' 

In terms of the coordinates u, v this is 

So 
-aa„(V - \)Vwc(X)] 

vU 

-aa,„wb(\) 

uU 

Since X is close to 0, we may replace c(X) by c(0) = c and Z>(A) by b(0) = /?. 
Moreover, on a fibre over a point of C close to the identity, we may re­
place aaf, aar,, aa>» by \b, Ac, and \d respectively, so that fCT becomes 

T<" l)w 

Let K be the splitting field of T. The standard identification 

(8.3) F*/NmK/FK* ~ H\T) 

is obtained by choosing for a given k e F* a triple e, / , g in AT* with 
efg = k and then taking the cocycle whose value at o is 

°te) 
(8.4) J__ 

a(e) 

<f) 
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Of course, T is identified with the group of diagonal matrices of deter­
minant 1. The contributions of w, v, w to fa may be factored out as a 
cocycle of this type with e = v, f = uv, g = 1, for u, v, w lie in F*. 

The identification (8.3) allows us to identify K with a character of F*, 
necessarily non-trivial. The contribution of w, v, w to A() is then 

K(UV ) = K(U)K(V) 

Thus K\ = K~ , iC|' = /c. In particular, /Cj T̂  K". 
The remaining contribution to fff is more disagreeable. Fortunately, we 

need not calculate it, for it is independent of w, v, w, as is the form (7.2). 
Thus the inner integral appearing in (6.3) becomes 

£ km(v'm) = CK2(V) 

for» = K _ I , 

4 (̂";> = CK-\U) 

for 0 = K. The constant c does not depend on n. Then the integral over the 
base becomes, apart from this constant, 

M i * 2 ( V ) ^ = k l i K - 2 ( M ) ^ l = 0. 
Jr | v | Jr \u\ 

(These simple principal values are calculated in Lemma l.C of [5].) 
We observe in passing that when we are dealing with stable orbital 

integrals, the cocycle is no longer pertinent because K = 1. Then the fibre 
integrals become essentially 

%] it/,l2 " °-

However, the formula (6.3) is no longer valid, for K\ = K'2 = 1. Now the 
calculation must be made as in the appendix. The total contribution of 
the term (A.3) is 0, but the total contribution of the terms (A.2) is given by 
an integral of the form (A.4). 

Lemma 4.1 is now proven for groups of type SL(3). We turn to SU(3) 
beginning with endoscopic groups that are tori. The following lemma is 
easy and simplifies the calculations. 

LEMMA 8.1. If G is SU(3) and H is an anisotropic torus, then the 
restriction map 

H\Gdl(K/F\ T(K) ) -> H\Gsi(K/E), T(K) ) 

is injective. 
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The field E appearing here is the quadratic extension of F associated to 
G. To prove the lemma, one observes that the order of H~l(Gal(K/'F), 
X(T) ) clearly divides three, and then appeals to Tate-Nakayama theory. 

This lemma allows us to calculate the value of K on the cocycle (8.2) as 
before, except that u and v are no longer the appropriate coordinates. They 
are to be replaced by zl9 y. Thus if a is chosen in the same way, then 

So 
— a„ 

zxy yV 

When X is close to 0, we may replace aa„ by \ c , aan, by \d, and express X 
with the help of (4.3) of [4] to obtain 

f'\-dzx(V - \)ywf" 
(8.5) S„ = 

-cV(V - \)yw 

U 

If p is such that pT: a\ a", a'" 
conditions for y are: 

U 

a"', a\ a!" then the rationality 

0(y) = yV; p(y) = Zy 0T P(yR *) = Z^R \ 

Since ~zx = p(zx) = z j - 1 , we can find r G E* such that p(r) = zxr. Let 
y = y^Rr. If K0 is the fixed field of p then y0 e K0 and 

o(y0) = y0rRo(rR)-'V = y0Ro(RylV. 

Choose one such y0. Then all others are of the form ty0, t e F. It is t rather 
than y that is the local coordinate defining E6. 

The contribution of / to (8.5) is of the form (8.3) with e ' , / = / ' 
g = 1. Thus K6 = 1 and the 0 appearing in (6.6) are of order two. 

The inner integral of (6.6) is taken over the projective line with 
coordinate zx and rationality condition Ix = z j - 1 . The dependence of 
(8.5) on zx is through zx and r, and 

Ztf 

V"2 

is of the form (8.4) with e = zxr, f = zlr
1
9 g = \y efg = z\r

3. 
K is the extension K = K0E of F, and there is a diagram 

,K 

Ka 

The character K may be regarded as a non-trivial character on the group of 
order three, 
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E*/NmK/EK*9 

and 

z , ^ K ( z ^ 3 ) = /c(z,)"' 

as a character on 

{z, e £*|z, = z f 1 } = £ ] . 

Since 

A = Z j / V C F - l)£/_1w 

the procedure of Section 1 of [4] leads to an inner integral in (6.6) that 
is the product of a function on the base and 

(8.6) ie^y^iz,)-^. 

This is the integral of 0(r2zx)K(z{)~x over the group Ex with respect to the 
Haar measure. To formulate the result of the procedure this way it has 
been necessary to extend 0 from Fx to Ex. 

Observe that 0(r^z{) is independent of the choice of r, and that it is a 
character on E of order two. Thus to show that (8.6) vanishes we need 
only verify that K is not trivial on Ex. By Lemma 3.4 the field E is the 
maximal abelian subfield of the Galois extension K. Thus, by local class-
field theory 

NmK/FK* = NmE/FE*. 

Moreover, 

[£*; NmK/EK*] = 3. 

Consequently 

[El: El n NmK/EK*] = 3, 

and K is not trivial on Ex. 
It remains to treat the case that H is cuspidal but not a torus. We may 

suppose that ± a " ' are the roots that take the value 1 on s. Only aniso­
tropic tori are to be considered. According to Corollary 3.3 there are two 
possibilities. Let o now be the element such that 

oT\ (x9 y, z) -> -(x, y, z). 

In case (b) let K0 be the fixed field of a. 

LEMMA 8.2. The restriction map 

H\Gsi(K/F)9 T(K) ) -> H\GH\(K/K01 T(K) ) 

is injective. 
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Let pT: (x, y, z) —» — (z, y, x). Then under the restriction map 

(8.7) H~\Gal(K/F\ X*{T) ) -* H~l(G<i\(K/K0l X*(T) ) 

the element /x = (1, — 1, 0) in X*(T) is sent to 

/x + PJLI = (1, 0, - 1 ) . 

The group on the left of (8.7) is of order two and is generated by the class 
of /x, the group on the right is of order four and the class of (1, 0, — 1) is 
not zero. 

In case (a) the field K0 is F and Hl(G2i(K/K0), T(K) ) consists of all 

(8.8) / 

with e,f9 g G Kg, efg = 1, e, / , g modulo NmK/KK*. 
Consider the number 

— bw 

Since o(b) = — 6, o(c) = — c, a(J) = —d and a(w) = — w, it belongs to 
K0 in case (b) and to F in case (c). Moreover in case (b), e(w) = — w 
and 

Thus in both cases we may take 

— bw 
R 

The two rationality conditions are: 

The third is 

RV G F; z. 

cO) = JiV» 
1 - V 

and in case (b), 

p(y) = x = zy = zx{V - \)y. 
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Thus 

-o(yR-1) = p(yR-1) = zxyR~x. 

Choose r ¥= 0 such that 

o(r) = p(r) = zxr 

and a ¥= 0 such that 

p(#) = a = — a(#). 

Then 

j> = a/ri?, 

and / e F i s the correct local coordinate at y = 0. Notice that aid e F, 
indeed, that tf can be taken equal to d. 

Since a r has changed, the formula (8.5) for the value of the cocycle (8.2) 
at a has to be modified. It becomes 

u 1(1 - V)y\ 
r-fla„,(i - v) 

Vx 

For X close to 0, this may be replaced by 

(8.9) 
\bzxVyw\ 

U 

i « ' r - d(\ - V)yw 

U 

czxywV(V - 1) 

U 

1 0 0 
0 - 1 0 

o 0 1 

The characters on H (Gsi(KIK0), T(K) ) are given by choosing two 
characters ij l5 TJ2 °f 

K$/NmK/KK* 

and then sending the class given by e, / , g to Tj1(e)i72(g). It is the character 
K defined by s (or its extension, in case (b) ) that is of concern. Since 

s = 

and the Tate-Nakayama isomorphism sends (/, m, n) to the class of (8.8) 
with 

e = hl, f=hm, g = h\ h G ^0*, h € NmmK*, 

the character K corresponds to rjj = T]2 ̂  1 in case (a). In case (b) the 
injection (8.7) is such that we must have j]x ^ i)2 in order that K not be 
trivial, for the class of (/, m, n) = (1,0, — 1) is in the image of (8.7). 

Since the contribution of / to (8.9) is of the form (8.8) with e = t2, 
f = 1, g = t~2, the character /c6 = 1, and the 6 that appear in (6.6) are 
quadratic. The contribution of zx is through zx and r and is given by 
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- zx? = ro(r), / = 1, g = e - l 

Thus the inner integral of (6.6) is, as before, essentially the integral over 
the group El of the character 

6(r2zx) = 8(ro(r) ). 

If this is not to be 0, then 6 must be 1 or the character TJ associated to the 
quadratic extension E/F. Suppose henceforth that this is so. Then we may 
replace the inner integral in (6.6) by 1. 

For the integral over the base it is convenient to introduce the 
variable 

K, = -bw 

V -

bcw-
U 

RV. 

According to (7.3) the pertinent form to take on the base is still (7.1). In 
terms of Vx it becomes w~~xdVx. The factor w _ 1 may be incorporated into 
the integral over the unipotent orbit, and therefore ignored, although it 
will in fact be cancelled in the next section. Moreover, 

, V 
A = XV— W 

u 
l . - l l zl(atrRyb"lc~lVl(V ~ 1) 

so that the function to be integrated is the product of 

(8.10) 0~\a2R2(V - l ) ^ " 1 * " 1 ) . 

with the value of K on the cocycle given by 

(8.11) 
-aRK i<*'r 

Lc(l - V)\ L 

adR(\ - V)VA 

bcV 

*'"\aRV, 

When expressing (8.11) in the form (8.8) the factors R2 and Vx may be 
dropped, as may — a2 = ao(a) or — c2 = co(c) and — b2. This yields 

d-v 
b 

\ f=~Av- i), 
b 

g = 
c 

~d 1 - V 

Consider first the case that 8 is 17. Then we obtain in case (a) 

(8.12) j) i){Vx)\dVx\. 

To treat the case (b), we observe that 

T,,T)2 = TJ o NmK/F, 

and that 
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V\(e)r]2(g) = i\x(eyr\2(e) = T\\—Jy(NmKo/FVl 
(d2\ 

JiWfclS) = V\(e)7]2{e) = i 

because 

bp(b) = ôc, rfp(</) = d2. 

Moreover 

M * V ^ F - i) = ( ^ - i)i*v - i) = i 

and 

M " J V F ^ = (F/<F " VRfR\v - ») e (^*)2*2(^ - i). 

Thus we again obtain (8.12). It is one of the simple principal-value 
integrals calculated in Lemma l.C of [5] and equals 0. Hence we may take 
0=1. 

Until now, we have been able to ignore the factor Ar(M) of Lemma 1.3 
of [4] that is to be incorporated into hE. However, to obtain the correct 
expression for (5.5), the integral (8.12) has to be multiplied by Ar(M). 
Since a6 = 2 and the principal part of (1 — t2)~~l at t = 1 is (1 — t)~x/2, 
the procedure of [4] yields 

Ar(M) = 1. 

9. Final calculations. To put the left side of (5.5) in a form that can be 
compared directly with the right, we first observe that (8.12) is also 0 when 
i] is replaced by 1. Thus we may add a constant times 

\tmm 2 

to our integral representation of (5.5). This yields |X| times 

(9.1) \bcd\ MM™ 
7 J W \v\ 

2-

The \w\ that appears in the change of variables has cancelled the factor 
| w | - 1 from the previous section. The integral is, however, to be taken 
over 

(9.2) {(z„ V): z, G E\ -(V - 1) e NmE/FE {(*i, V): 

in case (a), and over 

(9.3) { (z„ V): z, e E\ a(V) = V, P(V - 1) = (V - 1) ', 

-2 bcd~lVp(V) G NmE/FE*} 
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in case (b). Thus we have implicitly extended, but in a rather simple way, 
the notion of principal value. Since \\d\ is the factor \a(X) | occurring 
on the right side of (5.5) we suppress the \d\ and show that what remains 
is a constant times 

(9.4) 
1 dxdy 
JQ(F) l~ _ ,.l2-

\x - y\ 

The symbols JC, y are now free of any earlier meaning and refer solely to 
coordinates on Q. Choose 8 e E*, 8 <£ F* and set 

x - 8 y- 8 
x = -, y = -. 

x — 8 y — 8 
Then the rationality conditions on x\ yf are 

(9.5) 
a(x') = y'~\ a ( / ) = JC'""1 

p(x') = x'-\ p ( / ) = y l 

In case (a), the second condition is replaced by x\ y' G E. 
Choose /x G E and consider the morphism 

(9.6) zx = iix'y', WX=-(V - \) = - ; . 
b y 

It is not defined at x' = y' = 0 or x' = y' = oo. So we blow up these two 
points. Since they are not rational this has no effect on (9.4). The mor­
phism is a double covering ramified along the two curves introduced by 
the blow-up. A simple calculation shows that the form 

dx'dy' 

{x' - yf 

is the pull-back of 

1 , dzx dV 
— -DC L—n-

2 zx U2 

It is evident that the rationality conditions on x\ y' imply that 

z, G £, zx = zx\ o(V - 1) = V - 1, 

and that p(V - 1) = (V - 1 ) _ 1 in case (b). In case (a), V G E. 
In case (a) 

x 

y 
= x'x'. 

Thus we can solve (9.6) for x\ y if and only if the condition (9.2) is 
satisfied and 
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zx G {/juc75c/|jc'3c/ = Wx). 

Hence if we let JU, run over a set of representatives for the cosets of (E])2 in 
E , the equations (9.5) have exactly two solutions. (Points with Wx = 0 
or oo are exceptional.) We conclude that (9.1) is equal to \2\N times (9.4) if 
IN = [J?1:^1)2]. 

The conditions on V in (9.3) are: 

a(V) = V; Wx = cVp(cVyl; cd~xV e NmK/KK*. 

If 

cd~lV = to(t\ t e K* 

and if we set 

x' = utp(ty\ / = o(x')~\ 

then the second set of conditions in (9.5) amounts to 

p(u) = u~\ 

and the equations (9.6) become 

zx = [xuo(uy] top(t)p(tylo(t) ~l; o(u) = u~]. 

If we again let /x run over a set of representatives for the cosets of (E])2 in 
E this equation has a solution unique in ju and in u up to a sign for a given 
ZX <E El. 

Conversely, if we can solve the equations (9.6) subject to (9.5) then \x is 
uniquely determined and 

Wx = ep(eylo(e)op(eyl. 

It follows that V G K0 and that (V - \)p(V ~ 1) = 1, so that 

Wx = cVp(cVy] 

and cVe~]o(eyl is fixed by p. Since it is also fixed by a, it lies in 
NmK/KK$ and so does cV. We conclude once again that (9.1) is equal to 
\2\N times (9.4). 

Appendix I. Although it would be out of place to elaborate on the 
formal properties of the principal values of [4], there is one calculation 
that will be useful. Before describing it, we observe that in the defini­
tion of A(x) in Section 1 of [4], the coefficients c should be divided by 

Suppose that in a coordinate patch U defined by 

we have: 
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X = a/AoVii^ <° = w $ V1M2 A dH f = YKOCMOM/M/^)-

Suppose also that b0 ¥= 2a0 or that Ka° # K0. We take Dr = Dr(K, 2) and 
calculate 

in the sense of Section 1 of [4], using the notation of [5] for a principal 
value. 

It is the sum of two terms. The first is obtained by setting 

co' = W(JIQ9 0, 0, ju3, . . . )(x~^b
0°'2a°~ldii0 A <//A3 A . . . 

/ ' = ( ln^la^lXyiCoOio)»"0 0^)*"1^)) 

and taking 

<A-2> ('-^knufM-
The second is obtained by setting: 

co" = \ixii2d[ix A J/x2; 

/ " = /Y|W||a|-2| t t)|
6»-2a»- ,Ko(j«o)K"flo(Mo)K" ,(«) 

X |4u0 A Jju3 . . .|; 

and then taking 

the data for this integral being defined by X", co", / " . 
This is of course an easy calculation, for in the present circumstances 

the only c- that is not 0 is c2 and c2 = 1. Then 

Ax(y) =\ - y 

and the decomposition of (A.l) into the sum of (A.2) and (A.3) is given 
by 

1 — m — Mx — M2 — a0m(ii0) 

= ( - m - a0rn(ti0)) + (1 - Mx - M2). 

In the text, the integral to which the term (A.2) leads is 

(A.4) £ l n | * - f l * 
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in which £ lies in a cubic extension of F. If, for example, the extension is 
ramified then, with no loss of generality, we may suppose that the order 
of £ is r + n with r equal to 1/3 or 2/3. Then the integral is calculated 
to be 

-rq 
-n~\ Q 

1 IV q 

In the context of Section 8, this is to be compared with Section 10 of [8]. 
Finally we note two more corrections to [4]. The exponent n' should be 

removed from the middle term of (3.4) and "non-zero" in Lemma 3.13 (ii) 
should be "zero." 

Appendix II. Although not necessary for proving the existence of the 
transfer it is sometimes useful [9] to know the value of the constant ap­
pearing in Lemma 4.2. Of course, the constant only has a meaning after 
the measure defining the integral over the class 0 has been fixed. 

If, to be explicit, we take G to be the group attached to the hermitian 
matrix 

[0 0 1] 
0 1 0 
[l 0 oJ 

and the quadratic extension E, then every subregular conjugacy class over 
F has a representative of the form 

n(w) 

with w 4- w = 0, the bar denoting conjugation of E over F. It is easy to 
see that n(w) and n(aw), a e F*, are conjugate over F if and only if 
a G NmE/FE*. 

We take N^ to be the group of lower-triangular unipotent matrices in G. 
Then 

[1 0 H>| 

0 1 0 
[o 0 lj 

(n009n(w))->n00 n(w)nc ATooCF), w G E*9 w + w = 0, 

yields a parameterization of a dense open subset of the manifold of 
F-valued points on the variety of subregular unipotent elements. If, as in 
Section 7, we take the measure dn^ on N^F) to be that associated to 
Aw-, then 

/ / ( « o o V ^ O M ^ d r t o 

defines a G-invariant integration on the manifold of subregular unipotent 
elements over F and thus on each G-orbit in it. We take 
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f(nooln(W)noo)\W\ \dw\ l ^oo l -

It is best to observe that the absolute value on E is to be taken to be an 
extension of the normalized absolute value on F. 

The form vn, n = n(w), appearing in (5.5) is then that given by (7.3). 
Thus, according to the discussion at the end of Section 7, the end of 
Section 8, and Section 9, the constant a appearing in (5.5) and therefore in 
Lemma 4.2 is \2\N. 

LEMMA. For any local field of characteristic zero, \2\N = 1. 

Since 

N =l--[E]:(E]f] 

the lemma is clear for a field with odd residual characteristic, for then 
N = 1. If the residual characteristic is even, let 2r be the number of 
elements in the residue field, and let 2 = <o where co is a uniformizing 
parameter. 

Let EJ, j ^ 2, be 

{1 -f awJ~~x\a integral}. 

Since (1 + aœ^) = 1 + 2aœ^ -f a2Zo2j, the index 

[Ej: EJ + l(EJ n 0E1)2)] 

is equal to 1 for j odd and different from 2k H- 1 and for all j greater than 
2k -h 1. If y is even and j = 2k it is 2r, and it is 2 for j = 2k -\- 1. The 
lemma follows. 

REFERENCES 

1. T. Hales, The subregular germ of orbital integrals, preprint. 
2. Shalika germs on GSp(4), preprint. 
3. R. P. Langlands, Les débuts d'une formule des traces stable, Publ. Math. Univ. Paris 13 

(1983). 
4 Orbital integrals on forms of SX(3), /. Amer. Jour. Math. 705 (1983), 465-506. 
5. R. P. Langlands and D. Shelstad, On principal values on p-adic manifolds, in Lect. Notes 

in Math. 1041, 250-279. 
6. On the definition of transfer factors, Math. Ann. 278 (1987), 219-271. 
7. Descent for transfer factors, to appear. 
8. J. Repka, Shalika's germs for p-adic GL(n), II: the subregular term, Pac. Jour. Math. 113 

(1984). 

https://doi.org/10.4153/CJM-1989-022-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-022-0


ORBITAL INTEGRALS 507 

9. J. D. Rogawski, Automorphic representations of unitary groups in three variables, Ann. of 
Math. Studies, to appear. 

10. D. Shelstad, A formula for regular unipotent germs, to appear in Astérisque. 

Institute for Advanced Study, 
Princeton, New Jersey; 
University of Utah, 
Salt Lake City, Utah 

https://doi.org/10.4153/CJM-1989-022-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-022-0

