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Introduction

There are various reasons for using statistics, but
perhaps the most important is that the biological
sciences are empirical sciences. There is always an
element of variability that can only be dealt with by
applying statistics. Essentially, statistics is a way to
summarize the variability of data so that we can
confidently say whether there is a difference among
treatments or among regression parameters and tell
others about the variability of the results. To that
end, we must use the most appropriate statistics
to get a ‘“‘correct” picture of the experimental
variability, and the best way of doing that is to
report the size of the parameters or the means and
their associated standard errors or confidence
intervals. Simply declaring that the yields were 1
or 2 ton ha ' does not mean anything without
associated standard errors for those yields. Another
driving force is that no journal will accept
publications without the data having been subjected
to some kind of statistical analysis.

Weed science deals with controlling and manag-
ing unwanted plants in crops and other habitats.
Thus, most of the research in weed science is about
how to control plants mechanically, chemically, or
by other means. The research questions encompass
the array of complexity from simple site-of-action
studies in a highly controlled environment to
complex field and regional studies of vegetation
management; from basic chemistry and genetics at
the cellular level to whole-plant physiology studies;
and community-level field studies, in which few
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Analysm of covariance, analysis of variance, linear regressions, logistic regressions,

environmental factors can be managed, let alone
managing the behavior of plant stands.

Because weed science is such a broad discipline,
there are a variety of statistical methods researchers
can choose, ranging from simple # tests to advanced
multivariate statistics. It would be nearly impossible
to discuss all the statistical methods used in our
discipline in an article of a reasonable length. We
hope this article can whet your interest in the use of
proper statistics with weed science data. We are fully
aware that we have offered only a preview of the
numerous methods available, and we concentrate
on the two largest groups of statistical methods
employed in weed science research: ANOVA and
regression techniques.

Although traditional ANOVA and linear regres-
sion share a common mathematical background, the
clear difference between regression and ANOVA is
quite evident based on the experimental design;
regression deals with quantitative, explanatory
variables, whereas ANOVA deals with categorical
factors. One of the more underused statistical
methods is the combination of ANOVA and
regression, called analysis of covariance (ANCOVA).

Because the relationship between crop produc-
tion and weed density is often quantified as the
number of plants per unit area or as the relative
cover, the relationship between crop yield and weed
infestation calls for regression analysis. Likewise,
herbicide studies often use a range of doses with a
goal of determining the effect on weed control or
crop yield and, therefore, should also be analyzed
with regression analysis. Herbicides are designed to
kill plants, and their selectivity is a matter of a
complex suite of more-or-less interconnected phe-
nomena related to the plant, the chemical and
physical properties of the herbicide, and of course,
the herbicide dose. ANOVA is central to many
applications in agricultural research; indeed, agri-
cultural examples are still used in most statistics
textbooks to illustrate the utility of ANOVA.
ANOVA has been, and will continue to be, an
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important method in weed science. However,
ANOVA is not well suited to many weed science
research questions, like unambiguously defining
herbicide selectivity or crop yield loss in response to
weed infestation. ANOVA is limited to separate
factors and categories, such as unquantifiable
control methods, e.g., weeds being exposed to some
predefined management strategies, chemically, me-
chanically, or biologically.

Many other statistical methods are descriptive.
Several of those descriptive statistics are multivariate
statistics, such as principal component analysis,
factor analysis, and correspondence analysis. These
multivariate methods are useful in summarizing
numerous response variables, for example, weed
surveys and weed flora competition. In a way, many
of these methods can be classified as hypothesis-
generating methods, which only in rare instances
can be used as hypothesis-testing methods. Many
scientists and statisticians are well aware of the
problems with testing normality of residuals and the
assumptions of linearity in two- or three-dimen-
sional space; those problems are exacerbated as
additional dimensions are added.

The weed science literature has many examples of
experiments that should have been analyzed with
regression models but were instead analyzed with
ANOVA, which is a statistical method for estab-
lishing whether there are any differences overall
using the global F test: If the F test is significant,
there are significant differences between some of the
treatments. However, post hoc pairwise comparisons
will be needed to sort out which differences are
significantly different from zero. If, however, the
significance is between responses affected by
densities of weeds or doses of herbicides, the sheer
differences of means can only be compared with
other experiments with the very same weed densities
or herbicide doses. If we do the experiment at
different places or years, we might get completely
different results, mainly because the dose in one
location may not be the same effective rate at other
locations. This fact is caused by the variability of
responses in biology and is not a problem specific to
weed science.

This article will not deal with the theoretical
aspects of statistics or describe various alternative
methods that can be used. There is an ample supply
of articles along those lines (Cousens 1988; Onofri
et al. 2010), but few on learning by example.

Based on the current status for use of statistics in
weed science semsu lato, we have structured this
article to fit our view on data analyses and their
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importance in the discipline of weed science. All
examples are reproducible using the R scripts
provided in the Supplemental Appendix.

We only consider parametric methods because
they enable quantification of effects through
parameter estimates, which, we believe, is essential
for evaluating any experiment and because they
allow inclusion of additional information through
additional explanatory variables. This is not easy to
do with nonparametric methods (Stroup 2014).

Experimental Design and Statistical Analysis. To
answer a research question in weed science you
must, in most cases, be able to show data supporting
your claim. To collect empirical evidence, various
experimental designs are the cornerstones in
agricultural research. Although the statistical meth-
od is a critical component of that process, no
particular statistical method is the driving force of
the experimental design; the process should be in
the opposite direction. A clear research question
should be developed, an experimental design should
then be chosen that allows the research question to
be tested, and that experimental design will then
dictate the proper statistical analysis method or
methods. Statistics should not be separated from
the scientific inquiry process; rather, it should be
included and considered in the initial stages of
planning.

In addition to being designed in such a way that
the research question of interest can be answered,
usually through falsification of a null hypothesis,
experiments have to be planned carefully to ensure
that results reflect a general systematic feature or
trend, that is, that they will be reproducible in the
future, in similar experiments carried out under
similar conditions. This often implies replicating
the experiment at least twice, e.g., in two different
growing seasons or at two different locations.

Well-designed experiments and replication over
space or time may be well-known rules among
weed researchers, it is much less common or well
understood that the subsequent statistical analyses
should be aligned with the experimental design used
to generate those data. Often, but not always, the
more complex the experimental design, the more
complex is the corresponding statistical model. For
example, you cannot analyze data from a random-
ized complete-block design without including a
block factor in the statistical model considered.
Simplifying the statistical analysis by some kind of
preprocessing (e.g., taking averages) or subsetting of
the data is a# best a waste of data (and money/time
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spent on collecting data) by making some conclu-
sions unavailable and ar worst results in misleading
or noninformative conclusions driven more by
the manipulations than by the data themselves. In
many cases, data-reduction results in unreliable
estimates of variability: smaller standard errors,
smaller confidence intervals, and therefore, a greater
likelihood of finding differences where none actually
exist (type I error). With few exceptions, the statistical
model should be based on the original raw data. If
applicable, any data reduction should take place as
part of (be motivated strongly by) the subsequent
statistical analysis; rarely, will that be the case with

ANOVA.

Visualization

Whatever the design of an experiment, before
statistical analysis, it is informative to do a graphical
presentation of the data. Visualization of data is
helpful to get a first impression of the quality of the
data, but is particularly useful in the regression
context to make sure that the relationships that are
going to be analyzed support the initial idea of a
linear or a nonlinear relationship. The choice of
graphs could be based on the initial idea of the
experiment and can just be ordinary plots with or
without associated statistics, such as boxplot and bar
plots. In the nonlinear case, it is important to see
whether the intended nonlinear relationship initially
considered is appropriate. The same applies to the
response range and the predictor range in regressions.

Regression Analysis

Without doubt, the most important method of
summarizing research in weed science sensu lato
is to use regression analyses: We use rates of
herbicide, intensities, or depth for physical control,
and we score the degree of weed infestation on
yield loss. Figure 1 illustrates some of the impor-
tant regression relationships in relation to weed
science: three nonlinear regression curves and the
linear regression line (x denotes the predictor; y is
the response).

One important feature of regression analysis is
that the values of the predictor as such are not of
interest because they only serve as a means of
estimating the regression line or curve. However,
what is important is to try to ensure a reasonable
spread in the x values to ensure that the line or curve
can be determined from the data. Moreover, you do
not need to have the same predictor values (x) in
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each treatment group to be able to compare them
because it is not the mean response level at any
given x that is of interest. Instead, the parameter of

interest is the rate of change or some other quantity
that is an intrinsic part of the regression line or

nonlinear regression curve being estimated (Kniss et
al. 2011; Ritz and Streibig 2005, 2008).

Linear Regression. Figure 2 illustrates two indi-
vidually fitted regression lines showing the effect of
herbicide rate on crop yield in two experiments.
The slopes of these regression lines indicate how
much the crop yield changes per unit increase in
herbicide rate.

It is apparent from Figure 2 that the herbicide
rates are not all the same for the two experiments.
From a practical point of view, you can design
experiments with different herbicide rates and still
be able to compare slopes and intercepts. These
comparisons of the rates of change would not be
possible using ANOVA.

If one wishes to compare the slopes of the two
regression lines to substantiate that one unit of
herbicide rate results in the same increase in yield in
the two experiments, one can compare the differ-
ence between slopes in view of the corresponding
standard error of the difference. In this particular
instance, the difference between the slopes is 2.43 —
1.64 = 0.79, and the corresponding standard error

of the difference is v/0.3124+0.172=0.35. Obvi-
ously, there is small difference in the slopes of the
two lines. From a weed-control point of view, this
means that the herbicides do not give the same yield
increase, when adding one unit of herbicide in both
experiments. We leave it to the reader to calculate the
difference in the intercept and its associated standard
error and carry out the subsequent statistical inference.
Doing regression analysis always implies the assump-
tion that the relationship is linear. The best way to
check that is so is to make graphs, such as in Figure 2,
assessing the agreement between observed data points
and the fitted regression line. Figure 2 confirms that
the assumption of linearity holds (keep in mind that
all model-checking procedures aim to establish that
the statistical model used provides an adequate
description; we are not looking for an exact match).
The data from a herbicide-efficacy experiment
with common duckweed (Lemna minor L.) and a
mixture of glyphosate and metsulfuron is illustrated
in Figure 3 (Cedergreen et al. 2007). The linear
relationship seems appropriate within a narrow dose
range (Figure 3a). There is no systematic pattern
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Figure 1.

in the distribution of the residuals around the
horizontal line of zero (Figure 3b). A residual is the
observed response value minus the predicted
response value from the fitted-regression model.
Residuals should be randomly scattered around the
x-axis. Because we have replicates of herbicide doses,
we can make a test for lack of fit, which compares
the residual sums of squares from the regression
analysis with the residual sums of squares of the
more-general one-way ANOVA model, where the
herbicide rates are treated as categorical variables
and not as continuous variables. The test for lack of
fit of the regressions in Figure 3 is shown in
Table 1, indicating that the data (Figure 3a) can be
described properly by the regression. However,
when the range of rates is extended, the test for lack
of fit becomes highly significant (Table 1; Figures 3c
and 3d). Consequently, we must reject the hypothesis
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Michaelis-Menten

100

80 i

B4 ¢

20 4!

I 1 1 [ | I
60 80 100

Linear

100 9

i o

40 A ..-l--

T | T | T |
0 20 40 &0 80 100

X

of linear relationships in Figure 3c. The test for lack
of fit, however, can only be used if there are replicates
(in Figure 3, there are two replications per herbicide
rate).

When simple linear regression involves only a
single predictor, the analyses are straightforward. In
principle, the same considerations are applicable to
the case of multiple linear regression involving two
or more predictor variables. For these models, it is
imperative to use residual plots to ensure that the
model is describing the variation in data adequately.
It may be possible to display the fitted regression
plane in three dimensions, but for more than two
predictors it is not possible. For a multiple linear
regression with two predictors, the interpretation of
the parameters is as follows: The regression slope for
the first predictor, x, expresses predicted changes of
y per unit x when the other predictor, z, is fixed, and
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Figure 2. Two regression lines for crop yield in response to the
herbicide rate from two independent experiments with the same
herbicide. The slope of the continuous line is 1.79 (= 0.31), and
the broken line is 2.23 (£ 0.43). The intercepts are 5.4 (£ 0.9)
and 13.5 (% 1.4) (artificial data).

vice versa with the predictor z. The tricky point here
is that we have to ensure that the two predictors
affect the response independent of each other; that
is, that there is no (or at least negligible) collinearity.

A field experiment with barley in response to
increasing tribenuron-methyl and nitrogen rates was
analyzed by a multiple linear regression analyses.
The research question was to find out whether
the herbicide interacted with the nitrogen supply
(Figure 4).

The regression intercept of 4.2 t ha™' was the
yield without nitrogen or herbicide. An increment
of one unit of nitrogen at any ﬁxed herbicide dose
increased the yield by 0.03 t ha™ ', and the increase
in one unit of herbicide at any ﬁxed nitrogen level
increased the yield by 0.18 t ha™'

Polynomials. Sometimes linear regression falls short
of describing the relationship in the data. In such
cases, polynomials may be considered as a last resort
because they can flexibly capture any curvilinear
trend; it is simply a matter of choosing a sufficiently
high order. The dose-response data in Figure 5
cannot be satisfactorily described by either a second-
order polynomial (y = Intercept + ax + bx*) or a
th1rd order polynomial (y = Intercept + ax + bx”* +
ox”) (Streibig 1983). Usually, you have to be careful
with augmenting the degree of polynomials. A

general rule is to never go beyond a third-degree
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polynomial. When using a polynomial, make sure
that interpolations between measurements make
sense; sometimes, high-order polynomials produce a
strange behaviors within the data, between predictor
values, for instance. Even a second-order polyno-
mial can produce illogical predictions, as seen in
Figure 5. Another problem with polynomials is that
you cannot always easily extract biological meaning
from the model parameters, as compared with a
linear regression. Inverse polynomials were some-
times preferred over ordinary polynomials for
describing data in weed science (Nelder 1966),
but they have become less common because
personal computing power allows nonlinear regres-
sion models to be used.

Figure 5a shows that neither a second-order nor a
third-order polynomial is very good to describe the
data between observations, and interpolation of
predicted fresh weights becomes negative at some
point. Note also that, when using polynomial
regression models, the residuals plots may look all
right, but interpolation may still be a problem
because that interpolation is usually carried out for
data that were not used to fit the model. The
behavior of the assumed regression model between
observations must be biologically meaningful.
Another way to fit the curve is to use log(Fresh
wt) as the response in a second-order polynomial
regression model. In Figure 5b, that fit is obviously
much better for predicting fresh weight within the
Oxytril interval, but extrapolation beyond the dose
range is not advisable.

Nonlinear Regression. Figure 1 illustrates three
nonlinear regression models: exponential, Michae-
lis-Menten, and the sigmoid curves. There is a
Babylonian confusion of nonlinear regression
models, but generally, there are few of interest and
in current use, and those few are indispensable for
weed scientists.

Exponential Curves. An exponential function could
take the following form:

y=ce” 1]

Where c¢ is the initial response y when x is zero,
and k is the rate constant. For the logarithm of y,
the functions turn into straight-line relationships:
log(y) = log(c) + kx.

Depending on the sign of the rate parameter 4,
the curve either increases or decreases, characterizing
the growth of plants (positive 4) or degradation
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Figure 3. The relative growth rate of common duckweed in a standardized medium, according to standard guidelines from the
Organisation for Economic Co-operation and Development for toxicity tests, in response to a mixture of glyphosate and metsulfuron.
Data are satisfactorily described by the linear model (intercept = 1.60 * 0.05; slope = —0.007 * 0.001), and the distribution of
residuals was not a systematic distribution around the horizontal line of zero in 4. By extending the dose range, the linear model felt
short of describing the data within an acceptable limit, and the residual plot first shows an underestimate and then overestimates the

data. (Cedergreen et al. 2007).

(negative k) of compounds in living organism or
in the environment. The parameter # denotes the
relative rate of change, which is an important
biological parameter and can be compared among

Table 1.

experiments. It is used to estimate the half-life of a

degrading compound in soil, plants, and animals.
The exponential growth curve in Figure 1 does

not have an upper limit; the lower limit ¢ at x equals

The test for lack of fit. The ANOVA model is the most-general model and does not assume cither a linear or nonlinear

relationship between the relative growth rate and the herbicide dose. The linear regression does assume a linear relationship, and if the

lack of fit is significant, then the relationship is not linear.”

Regressionb Regression®
Combined residuals df Sum of squares df Sum of squares
Regression Residual 8 0.092 14 0.61
ANOVA Residual 5 0.064 8 0.09
Lack of fit 3 P = 0.56 (NS) 6 P = 0.006**

* Abbreviations: df, degrees of freedom; NS, not significant.
® The data for this regression comes from Figure 3a.

¢ The data for this regression comes from Figure 3c.

* P = 0.01.
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was 0.03 (= 0.002), and the slope for the herbicide was 0.18 (= 0.04). The results are shown by fixing the N in the right-hand graph.
A model with the interaction between N and the herbicides did not show any significant lack of fit (P = 0.55) (KAB Davidsen,

unpublished data).

zero. That means that extrapolation beyond the
range of the predictor for plant growth is
unwarranted, exactly the same way it was for the
extrapolation in Figure 5.

The decay of herbicides can usually be described
by an exponential decay curve (as in Equation 1),
but with a negative 4. The result of such a fit is
shown in Figure 6. Of particular interest for the
degradation of herbicides is the half-life (#;/,). The
half-life refers to the time when y is halved, relative
to the level of the initial concentration ¢. It means

that 0.5 = ¢ * and hence x = [log(0.5)]/— k.

Michaelis-Menten Models. The Michaelis-Menten
function is commonly used in enzymology and
biochemistry. In weed science, it is better known as
the inverse hyperbolic curve, which describes the yield
loss of a crop as a function of the weed infestation in
terms of the density or leaf cover (Cousens 1985).
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The Michaelis-Menten function comes in many
disguises, but basically, Equation 2 describes a
relationship where the response y starts out of the
origin (0, 0) and increases until an upper limit 4 is
reached; x is the independent variable, and e is the x
value where y is halfway between zero and the upper
limit 4:

y=(dx)/(x+e) 2]

If e is small, the initial slope of the curve will be
steep and vice versa. Figure 7 illustrates the fit of the
growth rate as a function of nitrogen.

Equation 2 is commonly linearized, which is a
relic from the era of low-speed computers, as shown
in Equation 3:

(1/y)=(1/d) +(e/d) x (1/x) 3]

As was the case with the exponential, we have to
derive the parameters and their associated standard
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transformed (Streibig 1983).

errors. The nonlinear and linear fits are seen in
Figure 7.

There is some discrepancy between the parameter
estimates for the original Equation 2 and the
linearized Equation 3. By comparing the rate of
nitrogen uptake in response to the nitrogen
concentration in a hydroponic solution (Cedergreen
and Madsen 2002), the curve on the original scale
and the one after linearization show that the latter
did not catch the upper limit very well (Figure 8).
That probably reflects the discrepancy between the
concentration of nitrogen necessary to yield 50%
uptake (e) of 17 = 3 for Equation 2 and an ¢ = 26,
as derived from Equation 3.

The model is used in weed—crop competition
studies and in yield—loss descriptions with a well-
known parameterization:

y=Ie/[1+ (e /d) 4]

Where d denotes the maximum yield loss as a
percentage of the yield in the weed-free environ-
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ment y, and [ is the initial slope of the straight-line
part of the curve close to 0,0.

The function of Equation 4 is to describe the
yield loss as a percentage of the yield in weed-free
plot. However, weed-free environments are difficult
to find in practice, so, depending on the distribu-
tion of actual yields in response to weed density, an
estimated weed-free yield can be obtained by using
the following reparameterization of Equation 4:

y=Yo(1—{l/100[1 + (Ix/d)]}) [5]

where ¥, denotes the predicted yield for the weed-
free environment. An example of this reparameter-
ization is shown in Figure 9 (Streibig et al. 1989).

A recent literature review found that herbicide-
absorption studies in the weed science literature have
been analyzed using a variety of disparate (and
sometimes inappropriate) methods, making compar-
isons between studies difficult (Kniss et al. 2011).
After reanalysis of many herbicide-absorption stud-
ies, another parameterization of the Michaelis-

Ritz et al.: Statistics in weed science o
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Figure 6. The decay curve for degradation of a herbicide in the soil from Equation 1. The initial concentration was 108 (% 5), 6 =
—0.08 (= 0.000), and the #1/, was 8.7 d. The curve is fitted with the nonlinear function in R, which means that a fairly accurate guess
on the initial parameters must be estimated (in the Appendix, the R code it is shown as an example of how to approach this problem).
For the linear fit, ¢ = exp(4.55) = 94.6 and the #;/, was 10 d. Please note the calculation of the standard errors is rather involved when
using the linearization. (a) In the fit, we can use a so-called delta method to calculate the standard errors (see the R code for Figure 6) .

Menten model was proposed to standardize the
analysis of herbicide-absorption studies. The model
is a simple modification of Equation 2, where a
constant was added to the denominator, which
provides a more meaningful parameter estimate in
the herbicide-absorption context (Equation 6):

y=dx/(0.11 X o9 +x) 6]

where 4 is the maximum asymptote or maximum
expected herbicide absorption, and #y is the time
required for 90% of maximum absorption to occur.
R code (R Foundation for Statistical Computing,
Wien, Austria) for this model is provided in the
original article (Kniss et al. 2011).

Sigmoid Curves. Sigmoid curves are widely used in
toxicology, ecotoxicology, pharmacology, and pesticide
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science, particularly the log-logistic model (Equation 7)
introduced to many weed scientists by Seefeldt et al.
(1995) and Streibig et al. (1993) (Figure 1). In a way,
sigmoid curves can be considered an extension of the
exponential model and the Michaelis-Menten model
considered above. In practice

c)/(1+ exp{b[log(x) —
=c+ {(d—c)/ [l + (x/EDSO)b} }

where ¢ is the lower limit of y, d the upper limit, £Ds,
is the x that yields response y halfway between 4 and c.
Finally, & is the relative slope. A thorough description
of the nonlinear models mentioned above is given
elsewhere (Ritz 2010). The models in Equation 7 are
similar and are only defined for doses greater than zero.

y=c+[(d— log(£Dso)]})]

[7]
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Figure 7. Uptake of nitrogen as a function of the initial concentration of nitrogen in the growth medium for common duckweed
(Cedergreen and Madsen 2002). (a) The parameters for Equation 2) are 4 = 126 (* 7), and e = 17 (£ 3). (b) For the linearization
using Equation 3, the derived parameters are 4 = 1/0.0067 = 149, and e = 148 X 0.175 = 26. As mentioned in Figure 6, the
standard errors are rather difficult to obtain from these linearized curves.

The log-logistic model has been extensively used
to describe herbicide effects, but it is also
appropriate for germination curves and numerous
other biological phenomena. In contrast to polyno-
mial linear regression, the parameters of the log-
logistic curves have biological meaning that can be
used to compare independent experiments.

The log-logistic model (Equation 7) is symmetric
around its inflexion point, which is at the EDsp.
Sometimes symmetry does not apply, as explained
by Ritz (2010), and there are asymmetric alterna-
tives, where the point of infection is not halfway
between the upper and lower limit; in such cases,
the £Dsq must be derived from the curve after the
fitting process.

The parameters in Figure 10 (using same data as
in Figure 5) have biological meaning, and the £Ds
provides the potency of the herbicide. The relative
slope & is more intangible, but it can be useful when
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comparing several response curves. Our experience
is that if the relative slope & is larger than 7 for
biomass responses, it would be a good idea to check
the fit. Large, however, in this context, is rather
vague if you do not associate it with standard errors.
The lower limit of —6.5 (with a huge standard error
of 32) in Figure 10 is not realistic because fresh
weight cannot be negative. In such cases, it would
be more reasonable to use a three-parameter log-
logistic curve where the lower limit is zero:

y=d/(1+ exp{bllog(x) — log(£Dso)]})  [8]

By doing this, we get the same EDsq (15.6 £ 2.22)
as we did with Equation 7, but sometimes, if the
lower limit in the four-parameter model is negative,
the EDsq and its associated standard error may
change dramatically.

EDs has an important role in toxicology and is
the most-precise parameter for comparing potencies
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Figure 8. The continuous line is the regression fit from

Equation 2; the broken line is derived from the parameters in
Equation 3. The upper limit is much higher than the original
one, and that has implication for the concentration yielding half-
uptake rate (see text) (Cedergreen and Madsen 2002).

of toxic compounds. In weed science, however, we
are not often interested in the E£Ds(, but instead, in
the £D;q to assess crop tolerance, which is also an
important parameter in toxicology, and in the £Dqy,
to assess weed control. These £D levels can be found
after fitting (Ritz 2010). For the three-parameter

Wheat (Tha™")
P
L
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0 100 200 300 400 500 600
Weed (Density m™")

Figure 9. For a fit using Equation 5, the intercept is 2.0
(= 0.5), the upper limit of the yield loss percentage 4 is 89
(% 5.6) at infinite weed density, and the initial slope 7 is 0.03
(% 0.02). Different symbols denotes different fields (Streibig
et al. 1989).
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Figure 10. The four-parameter dose—response curve (continu-
ous line) fitted to the data from Figure 5. The upper limit 4 is
766 (£ 35), the lower limit ¢ is —6.4 (= 32), the slope around
EDsy b is 1.31 (= 0.21), and EDsg is 15.6 (= 2.22). The dose
axis is on a logarithmic scale to illustrate that the curve is
symmetric around £Dsy.

log-logistic curve (Equation 8) the EDoq is 79
(£ 13). If the illogical negative lower limit ¢ of
—6.5 is kept, the £Dgq would have been 82 (* 206),
which is not a dramatic difference in this particular
instance.

Dose—Response and  Selectivity. Herbicides are de-
signed to kill plants and their selectivity is a matter
of dose. In herbicide research and development, the
selectivity is often measured by the various potency
estimates of the compound in various species.
Often, we wish to compare various herbicides on
the same plant species or the same herbicides on
different plant species. That means we have to
compare dose—response curves. Herbicide action
and their selectivity in already emerged crops is a
matter of a complex suite of more-or-less intercon-
nected phenomena related to the plant, the
chemical, and physical properties of the herbicides.
The principles in toxicology and pharmacology do
apply to herbicide research by classifying toxicity
according to some standardized methods with
sigmoid dose—response models. After World War
II, there were several articles on how to assess the
toxicity of herbicides in plants (Blackman et al.
1951; Woodford 1950), and now, some of those
models are being applied easily, thanks to the
seamless fitting of nonlinear response curves with

high-speed computers.
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Figure 11. Four—parameter dose—response curves fOl‘ two

herbicides and white mustard (Sinapis alba 1.) (Christensen
et al. 2003).

A bioassay with one plant species and two
herbicides—bentazon and glyphosate—is illustrated
in Figure 11 and in Table 2 (Christensen et al.
2003). Comparison of the two regressions can be
performed by comparing the EDs, values, which
can be summarized in one figure as the relative
potency (R = [EDSO(bem‘azon)/EDio(glyp/mmte)]) be-
tween the two herbicides, which is 2.12 (£ 0.27).
The relative potency denotes the biological ex-
change rate between the compounds, meaning we
need 2.12 times more glyphosate to get the same
effect as we do with bentazon. The 95% confidence
interval is between 1.6 and 2.7. As mentioned
earlier, we might be more interested in the relative
potency at EDo,, which is 3.1 and with the 95%
confidence interval lying between 1.3 and 4.9. Note
the relative potency is 7ot independent of the
response level because the slopes are different from

Table 2. Regression parameters for the log-logistic fit for white
mustard biomass (see Figure 11).*

Parameters Estimate SE
Relative slope, glyphosate 2.72 0.75
Relative slope, bentazon 5.13 1.13
Lower limit, glyphosate 0.89 0.19
Lower limit, bentazon 0.68 0.10
Upper limit, glyphosate 3.88 0.11
Upper limit, bentazon 3.81 0.11
EDsy, glyphosate 62.09 6.01
EDs, bentazon 29.27 2.24

* Abbreviations: SE, standard error; EDs, 50% effective dose.
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Figure 12. The vertical and horizontal reading of the dose—
response curves for two herbicides sprayed on the same species.
(a) The vertical reading used ANOVA. (b) The horizontal
reading is based on regression analyses. A vertical reading of the
means can only be compared at the same doses. That restriction
does not apply to regressions because the curves can be
compared, even though the dose ranges differ among the

herbicides (from Streibig 1988).

each other, as are the upper and lower limits
(Table 2).

In some rare instances the dose-response curves
have common upper and lower limits and the same
relative slopes, and then the curves are similar in all
parameters, except for their relative displacement
along the dose axis, expressed as the relative
potency, which is independent of response level as
seen in Figure 12 (Ritz et al. 2006; Streibig 1988).
With relative potencies, we compare the biological
exchange rate between two herbicides, an important
biological characteristic that can be used to develop
new herbicides or new formulations of herbicides, as
well as the importance of the relative potency in
assessing the joint action of herbicide mixtures
(Streibig and Jensen 2000). In whole-plant assays,
the assumption of similar curves is rarely met
because of several unknown factors. In test tube site-
of-action studies and other well-defined simple-
enzyme systems, the likelihood of similar curves
with herbicides with similar sites of action is
probable. Biologically, in site-of-action studies,
similar curves are a necessary but insufficient
condition for unambiguously determining similar
action at the target site (Streibig 1984).

Figure 12 illustrates the principle of vertical and
horizontal assessment of the effect of herbicides. The
vertical assessment is used to compare effects at preset
doses with an ANOVA (discussed further later).
Comparing the two methods of analysis, the vertical
assessment is much more dependent on the dose; at
small doses, there are almost no differences between
the effects of the two herbicides at either high nor
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Table 3. Summary of ANOVA table of a factorial experiment
of the effect on weed biomass in oat and barley crops, with and
without fertilizer. The block effect could be deleted because it
was not significant; however, it could also be analyzed with a
mixed model as described in the mixed-model section of text.

Factors df Probability (> F)
Nitrogen, kg 1 0.001**
Crop, type 1 < 0.001***
Nitrogen X crop 1 0.01*
Block 2 0.09
Residuals 6

*P = 0.05.

** P = 0.001.

P = 0.001.

small doses. With horizontal assessments, there is no
interest in the particular preset dose, which could be
different for each curve, but rather, on preset response
levels: £Dyg, EDsg, or EDqgg. As already mentioned,
when we use regressions, we can compare predicted
response levels among bioassays with different dose
ranges.

Analysis of Variance

When treatments cannot be described by contin-
uous predictors, regression analysis cannot be used;
ANOVAs must be used to test differences among
means. The following example is from a small field
experiment with two crops, barley (Hordeum vulgare
L.) and oat (Avena sativa L.), and two fertilizer
levels, 0 and 100 kg N ha™ ', and the objective was
to determine how the crops and N affected weed
biomass. The experimental design was a randomized
complete block, and the ANOVA results are shown
in Table 3. Obviously, the main effects of nitrogen
and type of crop were significant as was the
interaction between the type of crop and nitrogen;
the block effect was not significant. The significant
interaction makes the main effect irrelevant because,
to understand the interaction, we have to look at all
the combinations of treatments, namely, the simple
effects (Figure 13).

Technically, when we have an interaction, we can
combine the interaction effects by merging together
the two factors, type of crop and nitrogen level, into
one-factor combinations and perform a one-way
ANOVA. In this instance, the result is that all factor
combinations are significantly different from each
other, except the weed biomass for barley, with or
without nitrogen. The calculations for the estimated
differences and adjusted P values are shown in
Table 4. The adjusted P values are an important
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Figure 13. An interaction plot shows the differences between
weed biomass in barley and oat are dependent on the nitrogen
level. With no nitrogen, the differences between the two crops
are significantly smaller than at 100 kg nitrogen, and that
difference is significant according to the data in Table 4. The
only nonsignificant difference is between barley at 0 and 100 kg
nitrogen.

detail because considering more than a single P
value simultaneously, as is commonly practiced,
inflates the risk of false-positive findings; that is, the
family-wise error rate becomes larger than 5%.
There are a number of procedures for adjusting P
values. The commonly used procedure is the
Bonferroni adjustment where all P values considered
are inflated through multiplication by the number
of P values considered, which is a conservative
procedure, and the P values may be inflated too
much because the correlations between the tests are
not incorporated. We recommend using a less-
conservative approach: the flexible, single-step
procedure, proposed by Hothorn et al. (2008),
because it incorporates the correlation between tests
when calculating the adjusted P values; it is
applicable for arbitrary ANOVA and regression
(mixed-effects) models.

Neglecting the interaction and only reporting the
main effect of nitrogen and type of crop will forfeit
important information about the difference in the
behavior of the weed infestation in the two crops at
various nitrogen levels. Interactions make interpre-
tation of results difficult and require detailed
examinations of simple effects that are a combina-
tion of effects. In the next example, there are no
interactions between light and stress level on
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Table 4. Estimated differences in weed biomass, and 7 test of differences between all simple effects and adjusted P values. Note that

weed biomass was not affected in barley at any nitrogen (N) level.

Simple effects Difference Probability (> |4)
Oat (no nitrogen) — barley (no nitrogen) = 0 0.80 < 0.001***
Barley (100 kg N ha !y — barley (no nitrogen) = 0 0.10 0.740

Oat (100 kg N ha™ ') — barley (no nitrogen) = 0 1.30 < 0.001***
Barley (100 kg N ha™!) — oat (no nitrogen) = 0 —0.70 < 0.001***
Oat (100 kg N ha™ ") — oat (no nitrogen) = 0 0.51 0.003**
Oat (100 kg N ha™") — barley (100 kg N ha™") = 0 1.21 < 0.001%

** P = 0.05.
¥ P = 0.001.

soybean [Glycine max (L.) Merr.]; therefore, the
lines in Figure 14 are parallel, and it is safe to report
only the main effects (Samuels et al. 2004).

In weed science literature, ANOVAs are probably
the most used statistical analyses because they are
integral parts of the analyzing field experiments in
agriculture. In this section, we have only worked
with two main effects. If more than two main effects
are analyzed, the interpretation of multiway inter-
actions becomes much more involved.

In contrast to regression, where we describe
relationships, ANOVAs only test the differences of
means. However, regression and ANOVA are tied
together, and comparison between the results of an
ANOVA and the results of a regression is used to

test for lack of fit, as mentioned earlier.

Analysis of Covariance. In an ANOVA, the

interest lies in the differences of the means, and in

o 2
2 Light
—2— Moderate
-4+- Low
2
o™
@ 2
S
g 8 -
O o™
r
ks
| =
o 1
@ o *
£ | ~
& ~.
~
~
~
~
-
~
~
~
& - L
o™~ -~
~
-~
~
~
-~
™ -
1
Control Slress
StressLevel

Figure 14. An experiment studying the combination of light
and stress on the growth of soybeans. The two lines are parallel,
which means there is no interaction (Samuels et al. 2004).

https://doi.org/10.1614/WS-D-13-00159.1 Published online by Cambridge University Press

regression analysis, the interest lies in the rate of
change, slope, or perhaps some other parameters of
biological interest, e.g., asymptotes and ED, (e.g.,
EDs) levels in the nonlinear case. The ANCOVA
combines the two approaches and can give strong
and elegant tests for differences of means, intercepts,
and slopes. A mechanical weed control experiment
(Rasmussen et al. 2008) in Figure 15 illustrates the
result of the intensity of harrowing, either along or
across the direction of sowing (factors), and the
cover of green leaves left after the harrowing
(continuous predictor). To make the relationship
between leaf and intensity of harrowing linear, we
must use a logarithm transformation of the cover of

Q =& Across
—&— Along

-1.5 1

log(Leaf)

Intensity

Figure 15. Graphic representation of the analysis of covariance
of harrowing along or across the direction of sowing and the
intensity of harrowing (number of tines with which the plot was
harrowed). The slope for harrowing across the plot is —0.36
(% 0.01), whereas the slope for harrowing along the plot is
—0.27 (% 0.01). The slopes are significantly different from each
other, whereas log(leaf’) at zero intensity is —1.56 (= 0.04) and
—1.83(%= 0.05) for the along plot and the across plot,
respectively (Rasmussen et al. 2008).
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green leaves. This design calls for an ANCOVA to
test whether the two regression slopes are different.

First, we perform an ordinary ANOVA, where
intensity is defined as a factor. This is the most
general model and the one we use to test whether we
can assume linearity of logarithm of the green cover
on harrowing intensity in the ANCOVA model
(Figure 15). The slopes are different, because the
test-for-lack-of-fit and the test yields an insignificant
result (P = 0.7). Therefore, we can tentatively
assume that the linear regression describes the
systematic variation in data satisfactorily. In the
second step, we assume the slopes of the two
harrowing directions, in response to intensity, are
similar. This test is highly significant (P < 0.001).
Consequently, the best model to describe data is the
one in which the regression slopes are different for
the two lines (Figure 15). The two regressions lines
are not similar, and in Figure 15, the individual
slopes must be reported. If there were no interac-
tion, we would only need to report one regression
slope. The results in Figure 15 illustrate a logarith-
mic-transformed leaf cover on harrowing intensity,
similar to the one shown in Figure 6.

Currently, ANCOVA is generally used for linear
models, but the concept extends also to nonlinear
models. The data in Figure 11 and Table 2 can also
be run like an ANCOVA, for example, by testing
whether the upper and lower limits could be the same
for both curves. A sequential test shows that the
upper and lower limit of the regressions curves in
Figure 11 are probably the same for both curves. The
next and final step could be to test whether the slopes
of the two curves were the same. We get a significant
result (P < 0.0001) by comparing the model with
the same upper and lower limits against the one with
the same slope for the two curves. Consequently, we
cannot assume the curves to be similar.

Analysis of Independent Experiments

To make sure that the results of an experiment do
not just depend on mere chance, we must always
repeat our experiments, particularly if we wish to
publish. Most journals require that experiments be
independently replicated at least twice. That does
not necessarily mean that the experiment should
use exactly the same predictor values, e.g., density
of weeds or crops or herbicide rates. By using
regression, it is possible to change the predictor
values, perhaps from results from previous experi-
ments, and improve the range of the predictors to
acquire better estimates. Therefore, regression is the
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most versatile method to summarize experiments
with quantitative predictors. The best way to
summarize replicated experiments is to use mixed-
model versions of linear regression, ANOVA, and
ANCOVA, or, with some loss in power, to show
results from each experiment individually.

With an ANOVA, there is no such flexibility
because we implicitly state that it is the mean of a
specific treatment of interest or, more specifically,
the difference between treatments (Table 4). This is
understandable when working with different spe-
cies, cultivation methods, etc., but it puts heavy
restrictions on the ANOVA. Today, the handling of
series of ANOVA experiments with the same design
and treatments is done by mixed models.

Linear Mixed Models. When performing an
ANOVA in a randomized complete-block design,
everything, except the intentional (fixed) treat-
ment(s), reflects random variation. We consider
the selection of the blocks to take place by random,
in the sense that we cannot tell in advance whether
or not the next block will exhibit a low, high, or
more-moderate response level. We can describe the
random effect as effects that cannot be controlled
and, therefore, cannot be explained by the treatment
structure of the experiment. Consequently, we are
not inherently interested in these block effects, but
in an adequate analysis, we need to acknowledge the
variation that they reflect, variation introduced as
part of how the experiment was designed.

The following example is a field experiment that
was conducted at two sites over two yr for a total of
four experimental environments. The study included
two sugarbeet (Beta vulgaris L.) genetic backgrounds
(cultivar pair) and 12 different weed-control treat-
ments (Kniss et al. 2004). The study was a
randomized complete-block design, and therefore,
we have two sets of random effects (sites, and blocks
within environment) as well as two fixed effects
(cultivar and herbicide). Including block and
environment as random effects allows us to account
for the variability those factors contribute to the
results, but to focus our attention primarily on the
fixed effects, in which we are often most interested.

For the response variable, gross sucrose produc-
tion per hectare, there was no interaction between the
sugarbeet cultivar and the herbicide (Kniss et al.
2004). We can draw that conclusion by fitting the
mixed-effect model with and without the cultivar by
herbicide interaction term, and then conduct a test-
for-lack-of. A nonsignificant test indicates that
we can remove the interaction term and focus on
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the main effects of cultivar and herbicide. The
contribution of random effects (as well as interactions
between random effects and fixed effects) can also be
quantified in a similar fashion, by fitting a model
with and without the effects of interest and
conducting a lack-of-fit test. This may be valuable
if the researcher is interested in the effect of the
random effect on the response variable but has
chosen the levels at random (such as crop cultivars).
The structure of the original experiment lends itself
to several nonorthogonal contrasts to compare
glyphosate-resistant and conventional versions of
each cultivar, but, for simplicity, we focus here
simply on the main effect of herbicide treatment
(Table 5). Results of the contrasts can be found in
the original article (Kniss et al. 2004).

The original analysis (done in SAS software [SAS
Institute]) can be nearly replicated in R using the
Ime4 add-on package, and mean separation can be
conducted using the LSMeans add-on package. If
all pairwise comparisons are made and the P values
are not adjusted for multiple comparisons, many
differences between herbicide treatments are signif-
icant at o = 0.05 (Table 5). If Tukey’s method is
used to adjust the P values in the LSMeans function,
significant treatment differences are mostly limited
to comparisons with the nontreated control. The
glht function in the “multcomp” package (Hothorn
et al. 2008) also controls the type I error rate when
conducting multiple comparisons and provides
similar results to that of the LSMeans package.

When it comes to the mixed-model version of
linear regression analyses, the same principles as
outlined above apply. The complexity becomes
much greater when running nonlinear regressions
with upper and/or lower limits. Our experience is
that, for the time being, the best method for
comparing two nonlinear regression models is to
present each independent experiment (Mennan et al.
2012). There are ways of running mixed nonlinear
models, but they are not always easy to handle (Ritz
and Streibig 2008).

Model Diagnostics

To make sure that the prerequisites for the
statistical analysis are fulfilled, we have to address
the assumptions:

1. That the correct regression model (mean func-
tion) is used,

2. That the variance homogeneity is constant at any
response level,
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3. That measurement errors are normally distributed,
4. That measurement errors are mutually independent.

Substantial departure from these assumptions
could result in inaccurate estimates of parameters or
distorted standard errors or both. However, the first
assumption does not apply to ANOVA because
with  ANOVAs, we only model the means of
treatments; otherwise, the other three assumptions
do apply.

Model validation can be detected graphically, as
already shown in Figures 3, and by formal statistics,
such as the test for lack-of fit, mentioned earlier
(Table 1). Graphical presentation of the fit, using a
residual plot and a quantile—quantile (Q-Q) plot
will often suffice. Particularly in a regulatory
framework, such as for toxicity testing, formal
statistics tests are also considered (Van der Vliet and
Ritz 2013).

The correct regression model is often difficult to
determine. The wider the range of the independent
variables, the more likely it is that linearity will
disappear. Our experience is that the higher number
of an independent variable, the more difficult it may
be to make sure that the model is a genuine linear
or a log-logistic curve. Often, the choice of the
numbers of x’s is based on the tradition in the
laboratories, and sometimes, several sigmoid curves
will fit equally well, for example, the symmetric log-
logistic curves or the asymmetric Weibull functions
(Ritz 2010). Generally, models with easily under-
stood, biologically meaningful parameters should be
preferred.

The variance homogeneity is rarely met, when the
difference between the largest response and smallest
response differ by a factor 10. The data in Figure 11
are a good example: Minimum response is 0.5, and
the maximum response is 4.7. The residual plot in
Figure 16 clearly shows a funnel-type distribution
of residuals; at low predicted dry matter, the scatter
is small, and at high predicted dry matter, the
scatter is large.

Transformation to Ensure Variance Homogeneity.
The question is how much does the nonhomoge-
neous variance matter? Numerous reviews of
research articles in crop-protection literature show
that several authors routinely transform data, for
example, percentage data, using the arcsine square-
root transformation, and for count data authors use
the log transformation. When that is done in the
context of an ANOVA, it does not affect the

underlying basic model because only the means or
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Table 5. Summary of gross sucrose production in sugarbeet cultivars conducted over 2 yr and four locations with 12 different weed-
control treatments in a randomized complete-block design. There was no interaction between sugarbeet cultivars and type of herbicide.
For interpretation of the results, see the text; a full report can be found in Kniss et al. (2004).

b

Comparison® Estimate P value
LSMeans unadjusted for multiple comparisons
01_Handweeded.RR — 02_Nontreated 5,499 < 0.0001
01_Handweeded.RR — 05_Glyphosate3 —1,459 0.01764
02_Nontreated — 03_Glyphosatel —5,274 < 0.0001
02_Nontreated — 04_Glyphosate2 —6,508 < 0.0001
02_Nontreated — 05_Glyphosate3 —6,959 < 0.0001
02_Nontreated — 06_Handweeded —6,235 < 0.0001
02_Nontreated — 07_PreConv2 —5,465 < 0.0001
02_Nontreated — 08_Conv2 —4,802 < 0.0001
02_Nontreated — 09_PreMicro —5,862 < 0.0001
02_Nontreated — 10_Micro —4,695 < 0.0001
02_Nontreated — 11_PreConv3 —5,104 < 0.0001
02_Nontreated — 12_Conv3 —5,396 < 0.0001
03_Glyphosatel — 04_Glyphosate2 —1,233 0.04451
03_Glyphosatel — 05_Glyphosate3 —1,684 0.00621
04_Glyphosate2 — 07_PreConv2 1,042 0.08923
04_Glyphosate2 — 08_Conv2 1,705 0.00561
04_Glyphosate2 — 10_Micro 1,812 0.00327
04_Glyphosate2 — 11_PreConv3 1,404 0.02234
04_Glyphosate2 — 12_Conv3 1,111 0.07011
05_Glyphosate3 — 07_PreConv2 1,493 0.01515
05_Glyphosate3 — 08_Conv2 2,156 0.00048
05_Glyphosate3 — 09_PreMicro 1,096 0.07408
05_Glyphosate3 — 10_Micro 2,263 0.00025
05_Glyphosate3 — 11_PreConv3 1,854 0.00262
05_Glyphosate3 — 12_Conv3 1,562 0.0111
06_Handweeded — 08_Conv2 1,432 0.01977
06_Handweeded — 10_Micro 1,539 0.0123
LSMeans adjusted for multiple comparisons using the Tukey method
01_Handweeded.RR — 02_Nontreated 5,499 < 0.0001
02_Nontreated — 03_Glyphosatel —5,274 < 0.0001
02_Nontreated — 04_Glyphosate2 —6,508 < 0.0001
02_Nontreated — 05_Glyphosate3 —6,959 < 0.0001
02_Nontreated — 06_Handweeded —6,235 < 0.0001
02_Nontreated — 07_PreConv2 —5,465 < 0.0001
02_Nontreated — 08_Conv2 —4,802 < 0.0001
02_Nontreated — 09_PreMicro —5,862 < 0.0001
02_Nontreated — 10_Micro —4,695 < 0.0001
02_Nontreated — 11_PreConv3 —5,104 < 0.0001
02_Nontreated — 12_Conv3 -5,396 < 0.0001
05_Glyphosate3 — 08_Conv2 2,156 0.024
05_Glyphosate3 — 10_Micro 2,263 0.01324
GLHT adjusted for multiple comparisons using the Tukey method
02_Nontreated — 01_Handweeded.RR = 0 —5,903 < 0.01
03_Glyphosatel — 02_Nontreated = 0 5,241 < 0.01
04_Glyphosate2 — 02_Nontreated = 0 7,084 < 0.01
05_Glyphosate3 — 02_Nontreated = 0 7,652 < 0.01
06_Handweeded — 02_Nontreated = 0 6,385 < 0.01
07_PreConv2 — 02_Nontreated = 0 5,517 < 0.01
08_Conv2 — 02_Nontreated = 0 4,835 < 0.01
09_PreMicro — 02_Nontreated = 0 6,083 < 0.01
10_Micro — 02_Nontreated = 0 5,196 < 0.01
11_PreConv3 — 02_Nontreated = 0 5,236 < 0.01
12_Conv3 — 02_Nontreated = 0 5,226 < 0.01
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Table 5.

Continued.

* Abbreviations: Conv, conventional; GLHT, generalized linear hypothesis test; LSMeans, least-square means RR, glyphosate

resistant.

b Treatments: PRE, ethofumesate; conventional (conv2 at cotyledon and two to four true leaf; conv3, same as conv2 plus at four to
six true leaf), phenmedipham (0.19 kg ha™') + desmedipham (0.19 kg ha™') + triflusulfuron (0.02 kg ha™') + clopyralid
(0.10 kg ha™'); microrate, phenmedipham (0.048 kg ha™') + desmedipham (0.048 kg ha™') + triflusulfuron (0.005 kg ha ') +
clopyralid (0.025 kg ha™'); glyphosate, 0.84 ac ha™', numbers indicate number of times.

the transformed means matter. Regression analysis is
a different matter. One cannot assume a linear
relationship, and then, based on variance heteroge-
neity, make a log transformation of the dependent
variable. Transformation of the response can
dramatically change the whole regression relation-
ship. Figure 6 is a good example, an exponential
relationship changes to a linear one, just as it did in
Figure 15.

A general method for transforming regression
data is to use the most-general model, an ANOVA
and use a Box—Cox analysis to find out which power
exponent to use on both sides of the regression
(Streibig et al. 1993). The optimal Box—Cox
analysis strives to find an exponent that achieves
homogenous variance, but it requires that the
responses be greater than zero, or alternatively, the
response can be augmented initially by some
positive constant.

With the data from Figure 11 a transform-both-
sides Box—Cox analysis provides an estimated
exponent close to the logarithm (0.101). By using
that information and doing the transform-both-
sides regression, we get the following parameter
estimates for the E£Dsq of glyphosate, 62 (* 5.4),
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Figure 16. The residual plot for the white mustard regression
fit in Figure 11 and Table 1.
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and bentazon, 29 (£ 2.1); there are almost no
differences between the two fits, and the same result
applies to the other parameters. Usually, one gets
almost the same parameters, whether or not a
transformation of both sides of a Box—Cox
approach was used. The real difference lies in the
estimated standard errors, which may change. That
means that, when comparing parameters, the bias in
the standard error will affect subsequent tests and
conclusions when the variation is heterogeneous.
In some instances, the transformation of both
sides is crucial to determine the proper results. The
response curve in Figure 17 is steep, but there are
really no data to support the fitted continuous line
between the upper and lower limits. Furthermore,
the variation in the data is very heterogeneous
(Figure 17). The residual plot in Figure 18 shows
the funnel-like distribution of residuals, as also
shown in Figure 16. The Box—Cox analysis sug-
gested a transformation of both sides close to the
logarithm. The fit of the transform- both- sides was
almost the same as the upper and lower limits

70 °
Q
60
a a
50 H o
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0 100 1000
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Figure 17. The dose—response for the biomass of barley using

glyphosate. There is a huge variation in the biomass close to the
control, and very small variations at high doses of glyphosate do
matter. The continuous line is an ordinary fit, and the red
broken line is the fit after Box—Cox transformation (see Table 6).
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(Figure 17 and Table 6). The EDs and the relative
slope and their standard errors changed dramatical-
ly. Without the transform- both- sides, the EDs
was not different form zero, but with a regression
using transform- both- sides the standard error of
the EDsq is reduced dramatically (Table 6). Inter-
estingly, the relative slopes & are never different
form zero because there are almost no observations
to support it. This illustrates that a transformation
cannot remedy a poor distribution of responses or
doses. A regression with or without transform-

Table 6. Comparison of parameters of the fitting of the data in
Figure 17.%

Without Box—Cox With Box—Cox

Estimate SE Estimate SE
Slope 9.71 42.92 5.60 5.69
Lower limit 11.13 3.78 10.67 1.07
Upper limit 52.05 3.25 51.21 4.93
EDs, 286 210 260 60

* Abbreviations: SE, standard error; EDs, 50% effective dose.
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Residual plots with no transformation (a) and with transform-both sides (b).

both- sides often finds almost the same parameters,
provided the responses cover the whole response
range. However, the “correct” standard errors are
usually based on transform- both- sides. The
distribution of residuals in Figure 18 shows how
transform- both- sideschanges the funnel-like dis-
tribution to a more evenly distributed pattern
without any systematic trends.

Binomial Data

A binomial response is defined as a sum of a
series of independent experiments in which there are
2 outcomes: dead or alive, or germinating or not.
Basically, a binomial response means that each seed
or plant in an experiment is an experimental unit of
its own. Consequently, to analyze these kinds of data,
we need to know the total number of seeds or plants
and the number of germinating seeds or dead plants.

Logistic Regression. There is an ensuing discussion
about the use of dose—response curves on biomass
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Figure 19. The survival of plants at increasing doses of
glyphosate is shown. The curves are similar, except for their
relative displacement on the dose axis. The relative potency was

7.0 (£ 1.7).

or on survival, a discussion that is highly relevant
for curtailing the spread of resistance genes. In
herbicide-resistance studies, plants highly injured by
herbicide may produce seeds. From a practical point
of view, a dead weed will not multiply. Fortunately,
the analysis of the dose—responses for binomial data
is almost the same as for continuous data, except
that the total number of plants in the pot and the
number of dead plants in the pot are both required
for defining the response.

Often, binomial data are converted to percentage
of survival or mortality and analyzed as though the
data were continuous. Simulation studies have
shown that whatever the numbers of test plants
used, approximations will yield standard errors that
are too narrow. That has implication when
comparing say several LDs, values.

By assuming that the herbicide kills all plants at
high doses and no plants die at the untreated
control, we have a response span from 0 to 1. The
binomial distribution and a two- parameter log-
logistic curve can be used:

y=1/{1+exp[log(x) —log(LDso)]}  [9]

The parameter of interest is the LDs,. The
literature on this kind of experiments is compre-
hensive because these types of experiments are
instrumental to classifying chemical substances into
hazard groups. Sometimes, there will also be some
lethality in the control group, and Equation 9 will
have an upper limit 4 that is smaller than one, and
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we must use Equation 8 to estimate the survival/
mortality in the nontreated control. The logistic
regression based on Equation 9 will usually give
results that are similar to what a probit analysis
would produce, but the former seems to be the
preferred model nowadays because of the compu-
tational advantages and ease of interpretation
(Finney 1971).

In the experiment in Figure 19, two biotypes of a
weed species were exposed to glyphosate, and their
survival (the opposite of their lethality) was fitted
with Equation 9. The two regression curves look
like slope & is similar. Based on a test, that
assumption was not rejected. Therefore, the relative
potency between the curves, whatever the response
level, is 7.0 = 1.7, which means that sevenfold
more glyphosate must be used to obtain the same
survival level for biotype 298 as for biotype 1.

Germination. Measurement of germination is an
integral part of weed, seed, and crop science
research. Weed scientists are particularly interested
in the speed of germination: Does the weed or the
crop germinate with the same speed or not?
Experiments to investigate germination over time
can be classified into two approaches.

In the first approach, the germinated seeds in a petri
dish at a specific time are counted, and afterward, the
petri dish is discarded. That means that, at each
inspection time, a fresh petri dish was inspected. This
is probably the least-common method because it
requires a lot of space and is, therefore, rather costly.
That experimental design can be analyzed using well-
established models for binary/binomial data, such as
logistic regression or other generalized linear models,
mentioned in the section above.

The second approach is more common and less
costly. The petri dishes are inspected over time;
the same seeds are observed repeatedly for some
prespecified duration of the experiment. In other
words, what is observed is the waiting time until the
event of interest occurs, and the resulting data are
often referred to as event—time or time-to-event
data. Although we have not done a thorough
analysis of the literature on germination studies in
biological sciences, it would be close to the truth to
say that most germination experiments follow
inspection of the same petri dishes, but data are
analyzed with logistic regression. In doing so, the
standard errors are too narrow, for example, to 50%
germination time. An analysis of the two methods
on germination data of the same petri dishes is given
elsewhere (Ritz et al. 2013).
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Figure 20. Germination curves for nettlespurge at different

temperatures is fitted with an event—time model. The slope of the
germination curve at time 75q is proportional to & (with a
proportionality constant that depends on ). In this instance, the
two curves are identical, meaning that the only difference
between the slopes is the 750 (203 = 6.7 for ST3 and 445 * 7
for STG6). The interpretation of the parameters is the same as for
the other dose-response curves (upper limit = 0.50 = 0.07;

slope = —13 £ 2) (C Andreasen, unpublished data).

The analysis presented takes into account the
inspection intervals. The shorter the intervals, the
more precise will be our determination of germina-
tion time of a seed. The key result is that use of
appropriate statistical models is important to get a
better appreciation of the uncertainty that is present
in germination experiments.

Figure 20 illustrates the germination, in response
to time, of nettlespurge (Jatropha L. spp.), a
nondomesticated oil plant; the two curves represent
different germination temperatures. The analysis is
done with Equation 8 because the upper germina-
tion proportion is different from 1.

Concluding Remarks

Applied statistics is the collection, analysis, and
interpretation of statistical parameters in such a way
that others can see the quality of the data and the link
between the experimental design, the objective
(research questions) of the work, and the statistical
methods used. We have only unveiled a tiny part of
the possibilities and methods available for weed
scientists. We do hope we have whetted your interest
in the use of proper statistics on weed science data.
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