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Abstract. Suppose q is a holomorphic quadratic differential on a compact Riemann
surface of genus g > 2 . Then q defines a metric, flat except at the zeroes. A saddle
connection is a geodesic joining two zeroes with no zeroes in its interior. This paper
shows the asymptotic growth rate of the number of saddles of length at most T is
at most quadratic in T. An application is given to billiards.

0. Introduction
Let X be a closed Riemann surface of genus g > l and q = q(z)dz2 a nonzero
holomorphic quadratic differential on X such that \ x \q\ = 1. A trajectory is an arc
along which arg q(z) dz2 is constant. The trajectory is regular if it does not contain
zeroes of q and singular if the two endpoints of the arc are zeroes and there are no
zeroes in the interior of the arc. Singular trajectories are also called saddle connec-
tions. If there is a closed regular trajectory there is a parallel family of freely
homotopic trajectories of equal \q1/2 dz\ length sweeping out an annulus. On the
boundary of the annulus are saddle connections. A geodesic for the metric \q'/2 dz\
is made up of pieces of trajectories that make an angle of at least IT at a zero.
Between any two points there is a unique geodesic in every homotopy class.

This paper is concerned with the asymptotics of the number of parallel families
of closed regular trajectories and the number of saddle connections. Specifically,
let N,(T) denote the number of families of length s T and N2(T) the number of
saddle connections of length ^ T. Since the boundary of the annulus contains a
saddle connection of smaller length, clearly N , ( T ) < N2(T).

THEOREM 1. lim —L^—< lim 2
 2 <oo.

r-»oc T T-.00 T

Remark 1. This result is perhaps surprising in that the growth rate does not depend
on the genus. For example, for any metric the growth rate of homotopy classes of
simple curves of length < T is T68"6 ([R] Lemma 2.4). However the geodesic for
|<j'/2||dz| in a homotopy class is often made of many pieces of saddle connections
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152 H. Masur

so the number of saddle connections of length < T is less than the number of
geodesies, in fact grows at most quadratically. The question of lower bounds will
be investigated in a later paper.

Remark 2. For g = 1 there are of course no singular trajectories. Suppose X is C
modulo z-*z+l and z-*z + i. Then a trajectory of q = dz2 is closed if the tangent
of the argument is a rational, p/q, and the length is (p2 + q2)i/2. Then N,(T) is the
set of integer lattice points (p, q) inside a disc of radius T; p, q relatively prime. It
is easy to see that Nt(T) grows quadratically with T.

We give an application to the study of billiards. Let A be a connected polygon
in the plane. A broken line formed by line segments [x0, x,], [x,, x 2 ] , . . . , [xn_,, xn]
will be called a generalized diagonal of A if it lies inside A except for the points x,.
The points x0, xn are vertices, x , , . . . , xn_, lie on the sides and for i = 1,...,« — 1
the segments [xi_l,x,'] and [x,, x1+1] form the same angle with the side of A on
which x, lies. The number of generalized diagonals is always infinite.

Katok [K] raised the question of the asymptotic count of generalized diagonals.
Let DT(A) be the number of length <7". He proved

— logPr(A)
hm = 0.
r-.ee T

Let G be the group generated by reflection in lines through the origin parallel to
the sides. If G is finite A is said to be a rational billiard table.

Dr(A)
THEOREM 2. Hm —-—2—<oo if A is rational.

It was shown by Boshernitzan [B] that Theorem 2 implies that the geodesic flow
on a rational billiard table is uniquely ergodic in almost every direction, a result
first proved in [K-M-S].

It is easy to see that classical integrable billiards such as a rectangle, equilateral
triangle satisfy the quadratic estimate DT(A) ~ cT2. This was generalized by Gutkin
[G] to a broader class of 'almost integrable' billiards.

Finally let PT{A) be the number of parallel families of periodic orbits of length
< T for a rational billiard. Since PT(A)^DT(A) we have

PT(A)
COROLLARY. lim——— <oo.

Theorem 2 is a direct consequence of Theorem 1 once it is understood how a
billiard flow on a rational polygon gives rise to trajectories of a quadratic differential
on a closed Riemann surface. A generalized diagonal gives rise to a saddle connec-
tion. This is described in detail in [K-M-S].

The idea behind Theorem 1 is as follows. We will fix certain constants e > 0,
0 < a < 1 and C > 1 and consider saddle connections /? whose length is in the interval
[071, «]. It is enough to show there are 0(«2) such /3. For each /3 we will choose the
argument so that argq(z) dz2 is v along /3; that is, /8 is a vertical trajectory. We
then contract the length of f) to e via a Teichmiiller map which contracts along
vertical trajectories and expands along horizontal trajectories. On this image

https://doi.org/10.1017/S0143385700005459 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005459


Trajectories of a quadratic differential 153

Riemann surface under the Teichmiiller map, if every saddle connection crossing
/3 has length >Cs we will say y3 is e-isolated and e-wide on the domain surface.
A simple calculation, Proposition 2.1, shows there is a lower bound of at least
constant divided by n2 between the arguments of crossing e-wide saddle connections
and thus 0(n2) such saddle connections, where the bound depends only on
constants.

For example, suppose we have a parallel family of closed trajectories of length
T on a torus. When the length is contracted to e, any closed curve crossing has
length > l / e since the family fills out the surface and the area is one. For suitably
chosen C, e this is >Ce.

On a surface of higher genus the analogous statement may be false since the area
of a parallel family may be much less than one; it may fill up only a small part of
the surface. For any such /30 we will associate a sequence Y,,..., Yp of surfaces
where p is bounded in terms of the genus. Each Y, will have a boundary of saddle
connections and a distinguished saddle connection /3, on it. Each pt will be in the
interior of Yi+X for i = 0, . . . ,p — 1.

After a suitable Teichmiiller map the saddle connections on the boundary of Y,
can simultaneously be made short while /8P itself is e-wide. This allows us to use
Proposition 2.1 to count the number of )3P that occur and since (3P is an element of
a system of curves that simultaneously become short, we will be able (Proposition
2.5) to count the number of boundaries of Yp, hence the number of Yp that
occur.

Next we will compute (Theorem 4.1) for a given surface with boundary the number
of saddle connections in the interior of a given length. This will allow us for each
Yp to compute the number of /3P_, that occur and again by Propoisition 2.5 the
number of Yp^t for given Yp. The product of this with the number of Yp gives the
total number of Yp_,. We then proceed inductively to find the number of /30 that
define any sequence. The technical difficulties of this paper stem from defining such
sequences and more specifically considering not just a single saddle connection but
systems of saddle connections. Accordingly § 1 contains preliminary definitions and
constructions necessary for the construction of the Y,. § 2 contains the computations
for e-wide saddle connections, § 3 the above mentioned construction of the Y, and
§ 4 the computations that are the proofs of the main theorems.

I am grateful to referees for numerous helpful suggestions.

1. Preliminaries
This section is devoted to definitions and various constructions needed later in the
proof of Theorem 4.1 and the main theorem. For the reader unfamiliar with quadratic
differentials we refer to [S] as a basic reference and to [K-M-S] as well.

In the remainder of the paper, Y with subscripts will refer to a (variable)
compact Riemann surface of genus p and n > 0 boundary components satisfying
2p-2 + n<2g-2 and <p = <pdz2 will refer to a quadratic differential on Y with
\\<P II = Jy M = 1- We require the boundary d Y to be a union of saddle connections.
Y will often contain a distinguished saddle connection a, possibly in its interior.
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For any saddle connection p of <p define h(/3) = \p |Re <pxn dz\ and
v(/3) = $ \lm <p1/2 dz\. They are referred to as the horizontal and vertical lengths,
respectively. The length \0 \ip\U2\dz\ = \p\ = (h2(P)+v2(P))U2.

Two saddle connections are disjoint if they intersect at most at one or two common
zeroes. Otherwise they cross. A basic fact used throughout this paper is that there are
at most C, = Ci(p, n) disjoint singular trajectories independent of the metric. A
system F = (-y,, . . . , yp) will always refer to a collection of disjoint trajectories and
|r| = max|y,|, i)(F) = max v(yt).

The basic tool in this paper is the Teichmuller map. For t e R let/ , : Y-* Y, denote
the Teichmuller map determined by <p with maximal dilatation K = e'. Denote by
<p, the unit norm terminal quadratic differential on Y,. We denote by \p\,, v,{P),
h,(P) the corresponding length functions on Y,. They are given by:

Let <ps = e'V- Then he,(P), vej{p) and |)8|9i, will denote the effect on /3 of first
multiplying by e'8 and then applying a Teichmuller map. If 8 is understood we will
drop that subscript. The absence of a / variable refers to t = 0. Denote by 6P the
angle for which hSfj(p) = Q. We call Op the vertical angle for p. Lengths of course
are not invariant under <p -»<p, but areas are.

We next define the cross product of two saddle connections. Define

|j8,xj82|= f Re^>1/2dz I lm<pU2dz-\ Re <p1/2 dz \ lm<p1/2dz

Note that the absolute value does not depend on choice of branch of <f>'/2 along /3,
nor does it depend on the orientation of /3,. Notice also |/3, x /32| is invariant under
both <p-*(pe and <p-*<p,.

A notion basic for counting saddle connections on a surface with boundary is
the following.

Definition. Let D > 0. We say /3, and /32 are D-close if |/3, x y32| =£ D. If Y is a system
of curves, ^ is D-close to F if j8 is D-close to each y e F.

LEMMA 1.1. Suppose a is D, -close to /3 and (3 is D2-close to y. Further suppose
|a|==Af,|0| and \y\< M2\ji\. Then a is MtD2 + M2D^-close to y.

Proof. Since cross products and lengths, \ \, are invariant under rotations <p -> tpe,
assume h((3) = 0, v(p) = \p\. Then h{a)<Dj\p\, h{y)<D2/\p\. This implies

The next lemma says that if p is close to a, and y and p can simultaneously be
made short then y is close to a.

LEMMA 1.2. Suppose p is D-close to a and | )8 |> |a | /M, . Further suppose for some
t>0, M2 and y, E / 2 < v,(P)^ \p\,^ e and |y | ,<M 2 e. Then there is a
D' = D'(M,,e,M2, D) such that y and a are D'-close.

Proof. Since t>0 and | / 3 | , s e we have h(P)<e. Then

v\a)

M2 -s2.
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Thus v(a)<Mt(v(P) + e) so u,(a)< M1(u,(y3) + e)<2M,e. Then /i,(0)t>,(a)<
2M,e2. Since closeness is preserved under <p-*<p, and /3 and a are D-close,

2. Thus

We conclude that

)+(M 2 e)(2M i e ) .

Suppose F, and F2 are two systems with mutually disjoint saddle connections.

Definition. A system F separates F, from F2 if every arc intersecting both F! and F2

intersects F. F is allowed to contain saddle connections of F, but no saddle connection
of F crosses a saddle connection of F,. A system F properly separates if F ^ F, and
if F, is a single saddle connection /3, /3 & F.

Definition. Y M - separates F, from F2 if it separates and |F| < |F2|/M.

We will use this notion often when F, and F2 are saddle connections /3 and a. (3
is not M-separated from a if there is no F separating {} from a with |F |< |a | /M.

We will often need to combine two systems to form a new one.

PROPOSITION 1.3. Suppose F, and F2 are each systems dividing Y into two or more
components. There is a system F called the combination o/F, and F2 with the properties
that

(i) if a is Drclose to F, then a is CX(DX + D2)-close to F.

(ii) Irlscflr.l+I^l),
(iii) if a is disjoint from Tx and F2 it is disjoint from F and F separates a from

each Ff.

Proof. Denote by * juxtaposition of two arcs. Consider a component U of the
complement of F, u F2 and (1 a component of the boundary of U. Cl consists of a
union of subarcs of saddle connections of F,. First we include in F any arc of fl
that is an entire saddle connection. Now suppose yt e fi is a proper subarc of a
saddle connection of F,, with one endpoint a nonzero endpoint of a proper subarc
-y2e Q of a saddle connection in F2. Replace y, * y2 by the geodesic y in U in the
same homotopy class joining the endpoints of y, * y2. Now consider y to be in fl
instead of y, * y2 thereby reducing U. y is a union of saddle connections and subarcs
of trajectories.

Notice if a, a saddle connection, is disjoint from y, and y2 it is disjoint from y.
Moreover any arc from a to yx in U must cross y. If y is a simple closed regular
trajectory, replace y in U by the geodesies of saddle connections in the homotopy
class on the boundary of the annulus. Again if a is disjoint from y, and y2 it is
disjoint from y and any arc in U to y, crosses y. If y is not a closed trajectory,
include all saddle connections of y in F. If there is an arc cr of y which is not a
saddle connection, an endpoint of cr is a nonzero endpoint of an arc y[€il of F,
or y^efi of F2. Replace cr * y', (respectively cr * y2) by the geodesic y' in the
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homotopy class joining the endpoints. We continue in this manner of replacing a
juxtaposition of arcs with geodesies y' until one of three possibilities occurs,

(i) y' is a saddle connection which we then include in F.
(ii) y' is a closed regular trajectory. Include in F the geodesic of saddle connec-

tions homotopic to y', in U.
(iii) n reduces to a triangle and none of the arcs are saddle connections. In that

case eliminate all such arcs.
This process is repeated for each subarc for each -y, of fl not previously eliminated

and then for each boundary component O of each complementary U to form F.
We have seen that if a is disjoint from F, it is disjoint from F. We next show F
separates a from F, . Suppose a is an arc from a to F, missing F and hitting a and
F, only at its endpoints. If a is in U and er stays in U except for its endpoints then
we have seen cr must intersect F. Thus cr must leave U a first time crossing a subarc
y2 of F2. It must therefore intersect a curve y homotopic to 7i * ^ yi e F, . If y
itself is not in F then cr must cross a curve homotopic to y * y\ or y * y'2 where
y\ e F, since by assumption cr does not cross y\ as it leaves U for the first time at
y2. Continuing, this argument shows cr intersects a yeF proving (iii).

Now if y is constructed out of pieces y i ^ F , and y 2 eF 2 then | a x y | <
\a x y,| + \a x y2\. Now for each saddle (3 e F, written as

a juxtaposition of pieces of /3, \a x y81 = Z!J= i l a x 7*1- Since there are at most C,
saddle connections in F,, for any y e F , \a x y |< Ct(D^ + D2) proving (i).

Further each y constructed out of yt and y2 satisfied | y | s j-y11 -<-1-y2j. Since F, and
F2 consist of at most Cx saddle connections each, we have each y e F satisfies
IrlsCdF.I + lFjl), proving (ii).
Remark. If all components of the complement of F, u F2 are simply connected and
contain no saddle connections, then F = 0 . This possibility will not occur in this
paper.

COROLLARY 1.4. Suppose F,, i = l ftp^d are dividing systems |F,| s M and a
is disjoint from each. Then there is a system F, which combines the F,; F separates a
from each F,; F and a are disjoint and |F|< (2C,)C'M.

Proof. Take the combination of F, and F2, the combination of that with F3 and so
forth.

Our next objective is Proposition 1.6, a construction which will be used in Theorem
4.1 to reduce a general counting problem to counting only saddle connections that
are D-close to each other, D a universal number depending only on the genus not
on the quadratic differential. We begin with

LEMMA 1.5. Suppose /?, and fi2 bound two sides of a triangle with no vertices in the
interior. Then |/3,X;62|<2.

Proof. |/J, x /32| is the area of a parallelogram which is twice that of the triangle. The
triangle has at most area one.
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Now an arbitrary pair of saddle connections may not form two sides of a triangle
and therefore may not be 2-close. In fact there is no universal D such that any two
saddle connections are D-close. The aim here is to prove.

PROPOSITION 1.6. Assume fi and a are disjoint saddle connections on Y and fi is not
M-separated from a. Then there are D, M, depending on Cx, M and a sequence

of disjoint saddle connections such that /?, is D-close to /Si+1 and is not Mx-separated
from it i = 0,..., n — 1.

We first prove

PROPOSITION 1.7. Suppose fi is a saddle connection, il0 is a system such that either
/3eft0

 or they are disjoint. Further assume for some M, |/3|>|fto|/M. Then for any
M'> 1 there is a D = D{M, M', C,) such that if $ is not D-close to Qo there is a £l'o
properly separating fi from O0-fi such that |/3|>M'|f2i| and fi D-close to Cl'o.

Proof. If fi is D = 2-close to ft0 we have nothing to show. Suppose not. The proof
will consist of adding and eliminating disjoint saddle connections at most C\ times.
The constant D produced may increase by a fixed multiplicative constant each time.
The final constant will not depend on \fi\ or |fto|, only on M, M' and C,. We will
refer to all such constants by D even as then change.

We begin by considering triangles with fi as one edge whose other edges are
either disjoint from Clo-fi or coincide with saddle connections in flo-fi. Any such
edge is 2-close to )3 by Lemma 1.5.

If we can separate fi from £l0 — fi by F, by adding 1 or 2 such triangles whose
longest side y, distinct from fi satisfies |y3Js: |-y,|A<f' we are done. Thus assume for
any such separating F,, |y,|>|/3|/M'. Since |j8|>|no|/M we have |y,|>|no|/MM'.
Suppose inductively we have constructed fi = Fo, T , , . . . , I \ , M, = Mt{M, M'), and
Di,i = Q,...,k such that

(i) r i+, properly separates Tt from f l 0 - fi.
(ii) |rI.-r;_1|<M'|r,+1-r,|.
(iii) the longest curve -yiel^-IV, is D, close to r i + ,-F,-.

We have given the construction for k = 1. Suppose yk is 2-close to Qo-IV Then
by Lemma 1.1, applied with a = yk_x, fi = yk, y&£lo-Yk, and (ii), (iii), and (iv)
above we have that %_, is D= Dk^lMk_l + 2M'-close to flo~IV

Then since O 0 -I \_ , £ (n o - r f c )u (F k -F t_i) , and yk_, is D-close to both fto-Tk
and rk— F/< _, it is D-close to ft0 ~ I \ -1 • Repeating this argument with the hypothesis
yk-t D-close to fio-r*., replacing yk D = 2-close to flo-F/<, we find eventually
that fi D-close to fto-/3 to begin with.

Thus we may assume yk is not 2-close to n o - F k . From F^ we wish to either
construct a new sequence fi = F o , . . . , F, satisfying (i)-(iv) and such that F, properly
separates Fk from flo-fi or to simply find the fl'o that we desired. To do that we
add a triangle with yk as one side arriving at Fk+, separating F& from Q,0-fi with
yk 2-close to rk+l-Tk.
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If now |y)( |^M' |r f c + 1-r f c ! then (ii) and (iv) are satisfied as well as (i) and (iii)
for the sequence T0,...,rk, Tk+l.

If, on the other hand, | 7 ( c | ^M' | r k + , - r ^ | , then again by applying Lemma 1.1,
with a = yk-x, (3 = yk, y e F ^ , - F ^ , , the assumption \yk\> M'\Tk+i -Tk\ and (ii),
(iii), give

yk_, D = DM' + 2M'-close to r ^ + . - r ^ , .

If now !%_,!< M'\Tk+i -r f c_, | , then applying Lemma 1.1 again using a = yt_2,
(3 = yk-x and y e r k + 1 - I V , we find yk_2 D-close to Fk + 1 - r * _ , . Since r k + 2 - r t _ , <=
( r k + i - r f c - , ) u ( r k _ , - r * _ 2 ) , y*_2 is D-ciose to r f c + 2-r f c_ , . if |rfc+2-rk_2|==
\yk-2\/M' then y/<_3 D-close to Tk+1 — Ffc_2. Either we can continue in this manner
for all k; we have )3 is D-close to I \ + 1 and we have found the fti = Fk + 1 that we
desired, or there is a F; such that

In that case we will have constructed a sequence Fo, F , , . . . , r , , Tk+l relabelled
Fo, • • •, F, satisfying (i)-(iv). Thus either there is an fto or we have found a new
sequence. If the latter, there must be a maximal Fp constructed after at most C\
steps; namely a sequence F o , . . . , Fp satisfying (i)-(iv) such that there is no sequence
F o , . . . , F, satisfying (i)-(iv) such that F, separates Fp from ilo-/3. We will use this
maximal sequence to find fl'o.

Now if yp is 2-close to n o - F p , then just as in the first paragraph of the proof,
Lemma 1.1 (ii), (iii) and (iv) show /3 D-close to fl0 to begin. Thus we may assume
yp is not 2-close to flo~rp. Then construct Fp + 1 separating Fp from fi0 just as we
constructed rk+1 from Tk. We must have \rp+l-Tp\^\yp\/M'= \rp-rp.,\/M' for
otherwise just as in the third paragraph F O , . . . , F P + , would be a new sequence
satisfying (i)-(iv) contradicting the maximality of Fp. Then by (ii), (iii), (iv) and
Lemma 1.1, yp_, D-close to Fp + 1 - F p _ , . Again | F p + 1 - r p ^ , | < |yp_,|/M'for otherwise
F o , . . . , r p _ , , r p + 1 would satisfy (i)-(iv), contradicting Fp maximal. This implies
yp_2 D-close to Fp + 1 — Fr_2- Continuing, we find that /3 is D-close to r p + , and we

ietni=rp+1. •
Proof of Proposition 1.6. We let M' = (2C,)2C'. Since /3 is not M-separated from a
we have | )8 |>|a | /M. We assume j8 is not D = D(M, M', C,)-close to a, D given
by Proposition 1.7. We will construct a sequence of disjoint systems
P = fl0, H , , . . . , iln = a such that for t > 1, ft, separates ft,^, from a and for each
w.e f t . - f t , - , there is a w,_,eft, , - f t , such that w;_, is D-close to wf and not
M,-separated from w^.

We begin by constructing ft,. By Proposition 1.7 there is a F] properly separating
/3 from a such that

| j3 |>M' | r , | and 0 D-close to F, .

We may assume there is no F properly separating j8 from y, with the same properties.
If F is any system property separating /3 from F, and |/3| > |F|/M then /3 is D-close

to F. For if not, then again by Proposition 1.7, /3 could be properly separated from
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T by F such that | / j | > M'|r' | and /3 D-close to F'. But then F' also properly separates
/? from F, and this contradicts the choice of F,. Thus if there is some F properly
separating p from F, with | r |<2C, | r , |< |/3|, replace F, with F and p is still D-close
to T. If there is a further F' properly separating p from Y with |F'|<2C2|F|<|/3|
then we replace Y with Y'. We can do this at most C, times. By the choice of M'
we eventually find ft, properly separating P from F, such that

(i) |/3|>(M'/(2C,)c')|ft,|
(ii) p D-close to ft,

(iii) there is no F properly separating p from n , with |F|<2C,|ft,|.
We claim this implies

(iv) p is not C,-separated by F' from any w,efl , .
For if there were such an w,, we could combine F' and ft, using Proposition 1.3

to find F separating ft from F, such that

Then P£Y so F properly separates P from ft,, a contradiction. Since each weft,
satisfies |w|< \p\ and each is D-close to p, Lemma 1.1 applied with a = w, y = w'eft,
gives

(v) w', weft, are D + D = 2D-close to each other.
Since ft, separates p from a, by assumption,

(vi) |ft, |>|o|/M.
We also claim

(vii) Some weft, is not MM'-separated from a. For if all weft, were so
separated, we could combine at most C, such separating F, using Corollary
1.4, to find F, M-separating ft, from a. But this F also separates p from a
contradicting (vi).

Suppose the longest saddle w, eft, is D-close to a. Then by Lemma 1.1 applied
to any weft , , w,, and a and (v) above we have for all weft , ,

w D' = 2DM + D-close to a.

Choose by (vii) some w not M, = MM'-separated from a. Then by (ii) p is D-close
to (o and by (iv) is not C,-separated from it. Our desired sequence is P, w, a.

Suppose on the other hand this longest w, is not D-close to a. We wish to construct
ft2. Choose ft2 to have the same properties (i)-(iv) with respect to w, and a that
ft, had with respect to p and a. In particular it properly separates w, from a.

Case I. If ft2 separates all of ft,, not just w,, from a, let ft2 = ft2. Since w, is D-close
to ft2, by Lemma 1.1 and (v) each weft, is D + 2D = 3D-close to ft2.

Case II. If ft2 does not separate all of ft, from a, let ft2 be the combination of ft,
and ft2. Since w, is 2D-close to ft, and D-close to ft2 it is 3C,D-close to ft2 by
Proposition 1.3(i). Moreover |ft2|< C,(|ftl| + |ft2|)<2C,|ft,|. These two facts again
with Lemma 1.1 show each w e ft, is 2D2C, +3DC, = 7DC,-close to ft2. Moreover
it is clear any two w e ft2 are D'-close to each other for some D' just as all weft,
are 2D-close to each other. Let V be the component of the complement of ft2 that
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contains a. Finally, let

n2=n'2'nv.
In either case we have constructed ft2 such that each weft, is D close to ft2 for
some D. We need to show for each w2 e ft2 - f t , there i s awef l , not M,- separated
from it for some M,, M, universal.

In the first case where ft2 = ft2 we have by construction property (iv): namely w,
is not C,-separated from w2.

The second case is more complicated. One subcase is already taken care of. If
w2e ft2-ft, is already a saddle connection of ft2, then just as above, w, cannot be
C, separated from it. Therefore assume w2 is not a saddle connection of ft2. The
reason this case is more difficult is that since w2 is formed from pieces of ft, and
ft2 it may be much longer than ft2. Thus a F separating w, from it may also be
longer than ft2 so the combination of F and ft2 does not give a contradiction to (iv).

Now o>2 is homotopic to a finite alternating sequence <r = • • • <o * a>' • • • of arcs
a) of ft, and a>' of ft2- Together u>2 and a bound a region Z which is either simply
connected or an annulus. Now suppose each weft, which has a subarc appearing
in cr is M,-separated from a>2 by some F. Then it is easy to see u>2 is homotopic to
a union of subarcs of F n Z and subarcs of the w'nZ. Now u>2 is a geodesic and
thus shorter than this union. Thus

W s I \io'nZ\+ I |ynZ|<C,( | f t 2 | + |w2|/M,).

For M, >2C, this implies

|w2|<2C,|ft2|.

Next suppose some F' 2C,-separates w, from <a2. Then the above inequality gives
|F'|<|ft2|. We can't have F' separating w, from ft2 for this would contradict the
definition of ft2. Nor can F' intersect the component of the complement of ft2

containing to,. For then the combination F of F' and ft2 would separate w, from
ft2 and still satisfy

|F|<2C,|ft2|,

still a contradiction. Thus in fact ft2 must properly separate w, from F'. Since F'
separates w, from w2 it must also separate ft2 from w2. Otherwise a path from ft2

to «2 missing F' could be connected to a path joining ft2 to «, giving a path from
w, to w2 missing F'.

Then since F' separates ft2 from w2, F ' n Z separates ( l ^nZ from w2 in •£ Recall
previously we have subarcs of F n Z together with subarcs of ft2 n Z homotopic to
to2. Now we must have a union of subarcs of F n Z and subarcs of F' n Z homotopic
t o <o2.

But the sum of lengths of subarcs of F n Z < C,|F| and sum of length of subarcs
of F' n Z < C, |F'|. Since co2 is a geodesic
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For M, > 2C, this is a contradiction. We have shown for each <w2 e ft2 there is some
weft, not M,-separated from it. We now repeat the argument with ft2 in place of
fti, if necessary find ft3. After at most C, steps we have our desired sequence of
ft,-. •

The next construction associates to every short saddle connection a complex with
boundary that is 'isolated' in a certain sense. This construction will be used to deal
with the problem of saddle connections that are not e-wide.

We first fix two additional constants for the rest of the paper. Others will be fixed
as we go along. Fix C > 1 and 0< cr< 1. We require

C>max I—, 2C,-

Also in the rest of the paper M with subscripts will also refer to absolute constants
depending only on the above constants.

Definition. An e' subcomplex is a triangulation of a subset of Y such that the vertices
are zeroes of (p and the edges are saddle connections of length at most e' and the
faces are triangles without zeroes in their interior. We assume if three edges of a
subcomplex bound a triangle, it is included in the subcomplex. A subcomplex has
an interior if it contains a face.

Definition. A boundary edge is an edge which bounds less than two triangles in the
complex.

LEMMA 1.8. The maximal area of an e' complex is

A { e ) ^ C { .
6

If A(e') < 1, an e' complex has a boundary edge.

Proof The maximal area of a triangle whose sides are length < t ' is e'231/2/4. There
are at most 2C,/3 triangles in a complex.

Definition, fi is (M, e')-isolated if |/3|<Me' and if any y crossing /3 satisfies
|y|2Cmax(|/B|fe')-

Definition. A system F is (M, e')-isolated if |F|< Me' and for every y crossing F,
|y|>r C max (|F|, e'). Notice that isolated saddle connections cannot cross since
C > 1. We now have the following basic construction.

LEMMA 1.9. [K-M-S]. Suppose X is a connected complex and the boundary F is not
(1, e') isolated. Then there is a connected e'+Ce' complex. X, => X with more edges
and triangles.

We need a slightly more general construction. Let F be a system of saddle
connections and U a complementary component.

Definition. An e-extension of the pair (F, U) consists of a complex X, <= U with
nonempty interior such that the boundary F' satisfies

(i) \r\ "
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(ii) area Xi<A(e(C + l)d) where d is the number of edges needed to triangu-
late U.

LEMMA 1.10. Suppose X is an e complex with boundary F as in Lemma 1.9. Then for
some component of the complement U ofX, (X, — X) n U is an e-extension of (F, U).

Proof. Since X, is a (C + l)e complex, area (X, - X ) < A((C + l)e). For some
complementary U, (X, - X ) n £/ has nonempty interior and its boundary has length
<(C + l)e.

The main construction now is the following:

PROPOSITION 1.11. There are constants C2, C3, M such that for any 5 > 0 there is an
e > 0 such that for all systems Fo dividing the surface into one or two components, if
e, = |ro|=£ e and Fo is not (1, |F0|) isolated, then for each complementary component
U which has area >5 there is a domain U^U with boundary F, such that

(a) F! separates Fo from £/,,
(b) roer,,
(c) area Ux>g(e,8) = (8/M)-f(e) where lim_o/(£) = 0,
(d) |F,|<C2ei<C2£,
(e) F, is (C2, £,)-isolated,
(f) (F,, Ux) cannot be C2et-extended,
(g) there is no F C3-separating Y0from Yx,
(h) F, is minimal with respect to (a)-(f) in the sense that there is no F 'c 0properly

separating T0from F, also satisfying (a)-(g).

Remark. By Lemma 1.10, (e) follows from (f) but we include it for emphasis. The
constants C2, C3 will be fixed for the rest of the paper.

Proof. Let £, = |F0|. By assumption, Fo is crossed by saddles of length <Ce,. By
Lemmas 1.9 and 1.10 there is an £,-extension X, of (Fo, U). Area X , < ( C + 1)C'£,.
For £ sufficiently small X, is a proper subset of U. U - X, has at most C, components.
Thus there is a component V, of t / - X , with area V, > ( 5 ^ ( C + l)Cl£,)/C,.
Moreover the boundary F1 of V, satisfies | r , | < (C + l)c"fe,. /

Let e2 = (C, + l)C |e1. Again for e sufficiently small, if (F1, V,) can be e2-extended
to X2, then X2 is a proper subset of V, and some component V2 of V, - X2 has area

area y , - ( C + l)c '£2

"
The boundary F2 of V2 satisfies |F2|< ( C + 1)C 'E2 . Since there are at most p < C ,
steps in this process, there are constants M, C2 and a function/(E) such that there
must be l / , c [ / with boundary F, such that area

I/, *£-/(*,).
|F , | s C2E, and such that (F,, I/,) cannot be C2£,-extended. Thus by construction
(a), (b) are satisfied as well as (c), (d), (f). As remarked before, (e) is satisfied by
Lemma 1.10. Let X(F0) = X, u X2 u • • • u Xp the complex constructed. Since some
(F|, LA) exists that satisfies (a)-(f) we can always find a minimal one. Now we
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claim for some C3, (g) is satisfied as well. Suppose F C3-separates Fo from F,. Let
e' = |F|< |F,|/C3. Let Vc U be the component of the complement of F containing
U, so area V a area £/,.

If C3 is sufficiently large, e' < e,. If (F, V) cannot be e'-extended we have already
contradicted F, minimal. If (F, V) can be e'-extended then the process described
above for (Fo, U) applied instead to (F, V) will lead to F*, V*c y and X*(T) such
that (F*, V*) cannot be C2e'-extended, where again for C3 sufficiently large,

area V*>-£-/(*'), |F*|< C2e'< C2e,.

Now we claim F* must separate F from F,. To prove the claim, notice first F*
cannot intersect F, since Fi is C2el-isolated. Thus F! and F* are disjoint. Nor can
F* intersect £7, for then X*(F)n t / , # 0 and (F,, [/,) could be C2e,-extended to
X*(F) n t/,, a contradiction. Thus F* must separate F from F,, hence also Fo from
F,, proving the claim. But then (F,, £/,) is not minimal and we have a contradiction,
proving the Proposition.

Now we will choose e which will be fixed for the rest of the paper. For each e let

be the function given in Proposition l.ll(c). Given 50 = 5let 8 , , . . . , <5Ci be the values
of the C, iterates of g evaluated at So = \. Since lime^0/(e) = 0, e can be chosen so
5 , , . . . , SC[ are bounded below away from zero. Choose e sufficiently small so that
for each Sh the value of 4C2e is such that Proposition 1.11 holds.

Now let C4 = 2C3(2C,)C'. The constant C4 will be fixed for the rest of the paper.

COROLLARY 1.12. Suppose F o , F, are as in Proposition 1.11. Then there is a

not C^-separatedfrom Tx.

Proof. If every y0 in Fo were C4-separated from F,, we could combine all separating
F using Corollary 1.4 to find F separating all of Fo from F,. Such a F gives

|F|< ( 2 0 ^ , 1 / C4<|F,|/C3,

a contradiction to the conclusion of Proposition 1.11.

2. The number of isolated saddle connections
In this section we will compute the number of systems of saddle connections that
simultaneously become isolated within a certain minimal period of time. In particular
this will include the set of saddle connections mentioned in the introduction. Recall
now we have fixed e, C2. We will refer to (C2, e) isolated system simply as isolated.
We will also simply write /3 is e'-isolated to refer to fi as (1, e')-isolated.

Definition. A system F on Y is e-wide if either
(i) |F|<4C2e and F is isolated, or

(ii) |F|>4C2£ and for some (6, t) | F | s e and is isolated with respect to <pe, on
Yej and t;«,,(F)>e/C3.
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Remark. This last condition in (ii) is essential for Propositions 2.1 and 2.2. The
point is the following. A saddle connection may become short after a certain time
if the vertical length becomes small and the horizontal length remains small. It may
then remain small for a later time if the horizontal length remains small since the
vertical length continues to decrease. The condition of vej(T) says that up to a factor
C3 the time t is as small as possible to make |r| < e.

Example. Suppose F is a system that is the boundary of an annulus of width > Ce2/|F|
swept out by closed trajectories of length |r|. Let 6 — 0r be the angle so vSr(y) = \y\
for y G F and let e'12 = |r |/e. Then |F|fl, = e. Any curve crossing F crosses the annulus.
The annulus has width a Ce with respect to <pe>, so F is isolated at time / and thus
e-wide on the base surface.

Example. If the width <Ce2/|F|, F may not be e-wide for any (0, t).
We now define several sets of saddle connections. Let

S(n) = {saddle connections on X of length <n}

SE{n) = {j3e S(n):/3 is e-wide}.

Note. Theorem 1 is equivalent to showing card SCT(n) is 0(n2).

Now suppose a is a saddle connection on Y. We need to count saddle connections
disjoint from a. Let

T(n, a) = {saddle connections ft disjoint from a : |/?|< n\a\}.

T(n, a, M) = {/3 e T{n, a ) : /3 is not M-separated from a}.

Te{n, a, D) = {/3e T(n, a):/3 is D-close to a and e-wide}.

T(n, a, M, D) = {/3 e T(n, a,M)-.p is D-close to a}.

Our main result about these latter sets is

THEOREM 4.1. card T{n, a, M) is 0(«(log n)k) for some k, and bound 0 depending
on M, Ci but not n or \a\.

Remark. The importance of this result, proved in § 4, is that the cardinality depends
only on the ratio n, of the length of /? to the length of a, and is less than quadratic
in that ratio.

We first give the computations for e-wide saddle connections.

PROPOSITION 2.1. cardSf(n) is 0(w2).

PROPOSITION 2.2. card Tr(n, a, D) is 0(M).

Remark. The bounds depend on C,, e and in Proposition 2.2 on D as well but not
on | a | or n or on the quadratic differential in either case.

The propositions are based on two simple computations which we state as lemmas.
The first says that if |/3|a,, is small, 6 is near the vertical angle dp. The second says
that if two saddle connections are isolated at a certain time and they cross, their
vertical angles can not be too close to each other. For the lemmas assume

|/3|>4C2e and |/3|«,,< e'< C2e.

LEMMA 2.3. \8- ^ | /2<2e 'e^
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Proof. We have

. \e-ep\ he(p) e"/2y,()6) e-'/2e'

However since /ie<(0)s £> a n d r > 0 » Mj8)<e'<|j8|/4. Thus t;e(/3)>3|/3|/4 and we
have

^ | ^ | e - ' / 2 ^ e - ' ^ e ( i 8 ) ^ e ' s o e - ^ S ^ (2.2)

From (2.1) and (2.2),

Thus

which together with (2.1) gives the result.

LEMMA 2.4. Further assume y is another saddle connection which crosses (3 and
\p\>\y\. Further assume /3 is e'-isolated with respect to <pBl. Then

Proof. Since y crosses^? and )8 is e'-isolated, |-y|e, &Ce'. Now

()-"2\\-"2\fi\U''

by (2.2) and the definition of C. Therefore hej(y)>^Ce' which implies he(y)>
\C e"'/2e' and therefore

\9-»\ |fr-<M M r ) C e ^ V

•
^ s i n = , . a , . .

2 2 |y| 2 |y|

Proof of Proposition 2.1. Isolated curves with respect to a given metric can not cross
and there are at most C, disjoint saddle connections. Thus we may assume all /3
satisfy |/31 >4C2e and are e-wide. Now suppose /?, ye S(r(«), they cross and |/3|>|-y|.
Let (0,0 be such that |/3|<e and is isolated with respect to <pe,, and
veAP)-£/C3- B v Lemma 2.4,

|g-fly | Ce- ' / 2e
2 ^ 2 | r | •

Since Lemma 2.3 gives |0-0/3|<4e~'/2£/|)3| and C> 16,

Ce" ' / 2

Now

This gives

\ \ \ \ \ \ (2.3)
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for M depending only on C, C3, e, a. Since both /6, y have lengths in the interval
[an, n], \d0 - 0 7 | > M ' / H 2 for some M'. Since there are at most C, saddle connections
that do not cross, this inequality shows there are 0(n2) saddle connections in
5»nSf(n).

Proof of Proposition 2.2. Again we may assume |/3| > 4C2e. By rotation we can assume
8a = 0. Then /3 D-close to a means

sin (2.4)

We first show there are 0(1) @ such that |/3| < |a|, the bound independent of |a|.
Suppose two such /3, cross and |j8i|s|/32|. We may assume | ^ , - ^ J < TT/2. Let L
be such that |a|>L|/8,|. Then (2.4) gives

• lOftlsin——
D

By (2.3) we have

M

since /3,, /32 are e-wide. Then for L sufficiently large, depending only on D and M
we have

Uf3,

2
• toj\

2 /

which is impossible. Thus for some L there are at most C, saddle connections
£ with |j3|<|a|/L. Now for crossing )3, with |a|>|/3,|>|a|/.L, (2.3) shows
|0/3i~ ̂ ftl — ^ ' / l a | 2 f°r some L'. For \a\ sufficiently large depending only on D, L
(2.4) shows dp. is restricted to an interval of width {2D/\a\2)L about 0a =0. Since
l̂ p, ~ 0p2\ — L'/\a\2, there can only be 0(1) such /?,. For \a\ smaller than this fixed
number, again \0Pl- 6p2\^L'/\a\2 shows there are 0(1) /3.

Next consider crossing /3, that satisfy |a|<o-n|a|<|j3j|s n\a\. Now (2.3) gives
|^ L -0 f c |>M/«2 |a | 2 for some M. If \<rn\a\2<D there are only 0(n) such ft. Thus
we can assume 5<7/i|a|2a D. Then (2.4) gives

sin
to/3,. D D l

- < - so
a ran

ID
\a\2an

Thus the dp. are restricted to an angle of width 0(l//i|a|2) about 0. Since they are
M/n2\a\2 apart there are at most 0(n) in the interval [an, «]. This proves the
proposition.

Recall we need to consider disjoint systems of curves that simultaneously
become short. We will need to know the number of such systems that contain a
given saddle connection. In what follows F = (y , , . . . , yp) will be a system such that
o-'i+1m< |y,|<cr''m (respectively

m\ |< |y,|s cr''m|a|

https://doi.org/10.1017/S0143385700005459 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005459


Trajectories of a quadratic differential 167

We will assume their lengths are in decreasing order with 0= /] =£ /2— • ' " — 'P- We
will also assume t satisfies

3 crn .,-. 2/1
< e s —

4 e e

(respectively | a -« | a |<e r / 2 s2e~ 'n | a | ) for some n > m. Next let

t / = t / ( m , / , , . . . , / p ) = {r = ( y , , . . . , y p ) :

for some (6, t), t in the given range, r e , is isolated with respect to <pe,.} Let

Ut = Uj(m, /,, n) = {yi:yi is an element of a p-tuple in U(m, / , , . . . , /p, n).}
PROPOSITION 2.5. Card U = O{cr~'*) card Ut where the bound does not depend on n,
m, /,, \a\.

Proof. We prove this for o-'i+xm<\yi\<o-'lm; the case with \a\ is identical. Let y,
belong to a /?-tuple with associated (8, t). By (2.1) with e '= |%|<>?, ^ C2e

^£i^i^£!£. ' (2.5)
l\ 32 |-y,| 3 cr/i \lj\

If y) crosses y,, then y, isolated at time t means e'/2/ifl(yj) > j C max (Ce, Ce') which
implies

C e max (Ce, Ce')
sin , ,, • (2-6)

2 2n |yj|
Now since y, and yj cross they cannot belong to the same p-tuple. Moreover if

o-''+'m < \y'j\ < a'im as well, then 2.5, 2.6 and the fact that C > 16/a means the angles
8 about 8y and 8Vj are disjoint. In particular for some Mx depending only on C,
e, C2 and a,

\8y.-8y]\>MJnmo-'>. (2.7)

Now for j> i, a~'' > <r~''. Thus (2.5) and (2.7) mean that the 8y. are further apart
than the size of the interval of angles 6 about 8y.. The fact that the intervals of 8
about y, and yj are disjoint means for a given % there are 0(1) y} such that y,, y,
belong to the same p-tuple. For j = i - 1 the lower bound (2.7) and the upper bound
(2.5) on the size of the interval of 8 about 6y_ show there are at most 0(a-''-1~'l)yi-l

for each y,. Continuing, we find there are 0(a-''-2~''-')y,--2 for each pair y,_i, yt; that
is 0(cr''-z~1') triples. We continue in this manner and since / i=0, there are O(cr~'')
p-tuples ( y , , . . . , yp) for each yh proving the proposition.

To motivate the next proposition we recall the plan. For each /? which is not
e-wide we will associate a new Riemann surface Y on which (1 will have length e.
On Y we will find a subcomplex with isolated boundary with /? in its interior.
Consider this subcomplex simply as a topological surface with boundary without
its metric structure. Other /? may determine the same topological surface considered
as a subcomplex of a different Riemann surface with a different metric. We wish
to consider one single image Riemann surface with a quadratic differential for the
purposes of computing the total number of /3 determining that topological surface
(Theorem 4.1). A saddle connection /J which has length e with respect to one metric
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of course need not have length e with respect to another. The following computes
the length of a curve with respect to an image metric when it is short with respect
to another, provided both metrics make some other curve short.

LEMMA 2.6. Suppose /?,, /32 are saddle connections that satisfy 4C2e <an^ |/8,| s n
(respectively 4 C 2 e < o - n | a | < | / 3 ; | < n\a\) and (0,, ff) satisfy 1/3,1,,.,. < e and ue.,,(/3i)>

e / C 3 . Suppose further y is disjoint from each, \y\ > 4 C 2 e and \y\$i,. = e( s C2e. Further
suppose £ 2 > e,. Then for some M depending on e, a but not on |/3,|, |y| or e,

| jB ,U, > ? ^ Af | j8, |

Irk," M '
Proof. Exactly as in Lemma 2.3

, 2 , ,
2 1 " " " - \y\ ~ \y\ •

By the conditions on ue.,,(/3,) and the fact that the |/3,| are bounded in terms of each
other, the times /,, t2 are also. By (2.8)

. |0 , -0 2 | J f l , - 0 2 l ^M'e 2 e~ ' / 2

for some M'. Thus
| |

~ — i ie2 2 \y\

On the other hand,

2^(0,) _ 21/8,1

Together this gives |/3,|e2,,2/|y|fl2,,2< M|/J,|/|y|. D

3. Complexes with isolated boundaries
The idea in this section is as follows. We start with @ on X or on V and in that
case disjoint from a saddle connection a on Y. We suppose /? is not e-wide. We
rotate so /3 is vertical and contract the length to e using the Teichmuller map. By
Proposition 1.11 we build an isolated separting system T disjoint from )3. We would
like to count, using Propositions 2.1 (or Proposition 2.2) and 2.5, the number of F
that occur in this process. However the vertical length of F may be <e /C 3 at this
time so F may not be e-wide. Thus Propositions 2.1 and 2.5 will not apply. If that
is the case we go 'back' in time until the vertical length of F is essentially s and
then ask if it is still isolated. If so F contains an e-wide saddle connection y on X
(respectively Y — a). We will be able to count the number of such y using Proposi-
tions 2.1 or 2.2 and then use Proposition 2.5 to count the F that contain y.

If F is not isolated, again using Proposition 1.11 we build a further F' disjoint
from F and continue. By Proposition 1.11 this construction must end after C, steps
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with some e-wide F. The following Proposition makes this precise. We are going
to state it more generally with Fo, a system, instead of fi simply a saddle connection.
The condition is there should be some 0, t such | r | e , is short. This is clearly satisfied
for )8 a saddle connection with 0-6^. For systems that are not singletons there is
also the added condition that at a later time the system is isolated. The added
generality of considering systems is needed in the proof of the Theorem. Again | |
without subscripts refers to lengths on the base surface X (respectively X — a). Also
the angle 6 will be suppressed as a subscript.

PROPOSITION 3.1. Suppose Fo is either a saddle connection or a system of disjoint
saddles that separates the surface into two components. Suppose either |F0| < 4C2e or
for some (d,t), t>0, e / 2 < u9,,(F0)< |F0|e,, ̂  e. Assume further in the second case,
that if Fo is not a singleton, there is a s2?t such that \To\0yS < e and (F0)Ss cannot be
e-extended. Then there is a number M independent of |F0|, a sequence Fo, F , , . . . , Fp,
p^Ct, of mutually disjoint systems on X, {respectively Y — a), a sequence of times
f, > t2 S: • • • > tp > tp+1 > 0 such that

(0) / / Fo is e-wide, p = 0, f, = 0,

(0 |r,.|>|ry+I|/M,
(ii) for eachjszl, F, divides X (respectively Y-a) into components U} and Vj

where C/̂ -g Uj+l and F o c V,,
(iii) for j> 1, e '= |F,|,y <4C 2 e and F, is (1, e')-isolated with respect to the metric

defined by tp,.,
(iv) if |F0|<4C2e and is not e-wide then p = 1, tx = t2 = 0; e ' s | F , | <4C2£ and F,

is (1, e')-isolated,
(v) if neither (0) or (iv) holds, then tx = t>Q and for 1 sj < p, v^Tj) < e/ C} and

tj+i<tj.

(a) If in addition |F ; |<4C2e thenp=j+\, tp+l = tp = O and e'= \rp\<4C2
2e

and Fp is (1, e')-isolated.
(b) If on the other hand |F,| > 4C2e, then e/2 < D,J+,(F7) < |F,|,/+] ^ e so tj+x > 0.

(vi) / / (v)(a) does not hold then either v,p(Tp)> e/C3 and tp+i = tp or
v,p(rp)<e/C3. In that case either |Fp |<4C2e and tp+x = 0 or \Tp\>4C2eand
e / 2 < t),r+,(Fp)< |Fp|//>+1 < e. In all cases Tp is e-wide.

(vii) For each 0sj<p-\ there is a saddle connection y /GFJ-r j + 1 such that
(a) |r;l,J+1s=|r,+,-r,|/c4
(b) there is no F C5 = SC4-separating yjfrom TJ+i at time (,-+,.
(c) ucJ+1(r_,)s|/i,.+i(yj.) i / f , + 1>o.

Remarks. We will use either (iv), (v)(a), or (vi) and Propositions 2.1 or 2.2, and
Proposition 2.5 to calculate the number of Fp that occur, (vii) is designed so that
with Theorem 4.1 for each TJ+i we can compute the number of y, and therefore by
Proposition 2.5 and (iii) the number of Fj that occur. In particular (vii)(c) is necessary
to control the length of y} on X.

Proof. To simplify notation let e=4C 2 e . Fo has a complementary component U
with area 2 i If Fo is already e-wide there is no construction; (0) holds. If |F 0 | ^e
and is not e-wide form the system F, and complementary component Ux provided
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by Proposition 1.11. Area L/, srg(|). Weset/? = 1, f, = f2 = 0in this case. Now (i)-(iv)
are automatically satisfied by construction. (vii)(a) and (b) follow from Corollary
1.12. We are done in this case. If |F0| > e let / = f,. On the surface Xh (respectively
Yu-a) we have e/2<vu{Y0)<\Y0\h<E and Fo not isolated. Let (F,, Ux) denote
the system with complementary component given by Proposition 1.11; Area £/, > g (5)
and |r,|ri < C2e. If i>,,(Fi) > e/C3 we set p = 1; f, = f2 and the construction ends. Now
we have to check (ii) and (vii). Here (i), (iii), (vi) are satisfied by definition and
(iv) and (v) are vacuous. To see (ii), the fact that |ro|,, &M|F,|f, for some M and
the fact that at time tx the ratio of vertical to horizontal length of Fo is bounded
away from zero means the inequality between IF^ and |F,|,L persists up to another
universal factor at an earlier time t = 0.

Checking (vii)(c) is more complicated if Fo is not a singleton saddle connection.
The point is the y'o provided by Corollary 1.12 is not necessarily the saddle connection
y0 that satisfies e / 2 s D,1(y0)< |F0|,,s e. We argue therefore as follows. If there is
no F C5-separating y0 from F,, then y0 satisfies (vii). If there is such a F then
|r,| r i>C5|r|( l .Then |yo|,1^|rI|,1/C4>(C5/C4)|r|(l. At the later time s > / , we claim
|r | ja | r o | s . To prove the claim assume otherwise and consider the combination F'
of F and Fo at time s. Then

the last inequality by the definition of C. Also F' separates Fo from F,. Now we
consider the region X' bounded by F' and Fo inside the complex X, bounded by
Fo and Yx. At time tit X, has area ^A(C2e) and since area is preserved under the
Teichmiiller flow, this is true at time s as well. Therefore X2 has area <A(C2e) and
since

X2 is a C2e-extension of Fo at time s, a contradiction to the assumption proving
the claim. Thus as time goes from f, to s, \y'0\ decreases from ^8|F|(l to a number
<|F 0 | S s |r|s. If the ratio in length of two saddle connections goes from at least eight
to less than one in positive time, the first cannot be nearly horizontal. A definite
estimate gives (vii)(c). We have found y'o and we are done in this case.

If t),,(F1)<e/C3 and |F, |<e set /2 = 0. If F, is isolated at J2 = 0 (on X or Y-a)
set p = 1. Again the construction ends and (i)-(vii) are satisfied just as in the last
case. If Fi is not isolated we find F2 given by Proposition 1.11. The existence is
guaranteed by the fact that area £/, > 5, = g(|). Then we set p = 2 and f3 = 0. Now
(vii)(c) is satisfied at t2 = 0 because just as in the argument above there is a later
time, namely ?,, where F, cannot be C2e-extended.

What remains is the case i;,1(F1)<e/C3 and | r , |> e. Choose y^ so v,l(y,) = u,,(Fi).
Find t2< fi so v,2(y^) = e/y/l. That is, go back in time, increasing the vertical length
of 7! until it is e/y/2. Now

«r1(ri)<e/C3 implies e(''"'2)/2> C3/V2.

Also | r , | >e and h,t(Yt)sC2e imply f2>0. For any yeY,, h,t(y)<C2e and

https://doi.org/10.1017/S0143385700005459 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005459


Trajectories of a quadratic differential 171

e<',-'2)/2> C3/V2 imply h,2(y)< eV5/4 and therefore

If F, is isolated at t = t2, we set p = 1, the construction ends; (i)-(vii) are satisfied
as before. If not, construct (F2, U2) by Proposition 1.11. £/2c U,, area l/2£:S2 =
g ^ ) . Once again (i)-(vii) are satisfied by the same arguments. We continue this
process. After p s C , steps it must stop. Since SC[ > 0 it must end with some (Fp, Up)
for which there is no Fp+1. This means either v,p(rp) > e/C3 and it is isolated, or if
not, either |Fp|s4C2e and Fp is isolated at tp+] = 0 or for some tp+l<tp, E / 2 S
*VH(FP) < |r|p+i s e and Fp is isolated there. For if it were not isolated at these three
possibilities we could build a further Fp+1. •

Suppose now the following situation occurs as in the conclusion to Proposition
3.1. There is a saddle connection T, a pair (0, t) = (0(T), t(r)) and constants M,,
M2 independent of T such that

(i) |T| e , ,<e'se , ! ) , ( T ) > E 7 C 3 .

(ii) there is a system F disjoint from r such that |F|e, < M, |T | 9 , .
(iii) T is not M2-separated from F at time t.
Under these circumstances we will say F is e'-associated to T. Let B L (F) = {T:F

is e-associated to T, ( J L < | T | < L , and |F|s4C2e}. Let eo = maxTeBL(r) |F | 9 ( T ) , ( T ) , the
maximum taken on for some r0 and (0O, to) = (do(To), to(TO)). By Lemma 2.6, for
any T € B L ( F ) ,

By assumption T is not M2-separated from F on the surface yS(T)>((T) but it may be
so separated on Y6aJo. We will wish to compute card BL{Y) in Theorem 4.1 making
the computations on the surface Ye<hh where the separating hypothesis is necessary
for that theorem.

The purpose of the following lemma is to show there are a bounded number of
T, e BL(F) and a number M3 such that for each T there is a T, such that r is not
M3-separated on Ye(Tl)i,{Ti).

LEMMA 3.2. There are sets B-, <= B{Y), i < C,, and M3 = M3(M1, M2) such that
(i) BL(F)=(/,B1,
(ii) for each i there is a T, £ B, and (0h tt) = (0,(T,), /(T,)) such that for all r e B,,

irUllsOMr|j
(iii) r e B, is not M3-separated from F on Y) = Ye ,..

iVoo/ Let B 0 = { T € B L ( F ) : T is not (2C,)C|M2-separated from F on Yo=Yflo,o}.
Suppose Bo 5* BL(F). By taking at most C, combinations of various F' that do
(2 C,)c'Af2-separate various r e BL(F) from F and using Corollary 1.4 we find a F'
that M2-separates every T G B L ( F ) - B 0 from F on Yo. Let U' the component of
Yo —F' containing such T and V the complementary component. Now consider
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maxreBL(r)_B0|r|e,. Suppose the maximum is taken on by T, at (0,, I,) with corre-
sponding YV By assumption |F'|9l>(i>|r|9|,,,/M2 since T, is not M2-separated
from T on Y,. Now let B, ={re B L ( F ) - B 0 : T is not (2C,)C'M2-separated from
F on YJ. Again (ii) is satisfied for re Bt by Lemma 2.6. Again it is possible
BL(r)-B0-Bi # 0 . That is, there is a T£ BOU B, which is (2C,)c'M2-separated by
F" from F on Y,. Such a F" must intersect U' for otherwise T, itself would be so
separated. As before taking at most C, combinations of such F" and then the
combination of the resulting system with F' we find F" separating all r e
B L (F) -B! -B 2 from F. Now F"c U'. Let U" be the complementary component
containing all such T.

We repeat the maximizing procedure to find a new T2 and a new B2. Since the
U" are decreasing, the process ends after at most C, steps and

BL(T) = \jBi. D

4. Proof of the theorems
We collect our results in this section and prove both the preliminary Theorem 4.1
and the main theorem.

THEOREM 4.1. There exists k = k{e,M,Cx) such that card T(m, a, M) is

O(ffi(log m)k).
We will adopt the following terminology. Suppose ft, F are disjoint systems; by

card {ft | F} will refer to the number of ft disjoint from F for a given F.

Proof of Theorem 4.1. We start by remarking that | /? |>|a| /M since /3 is not
M-separated from a.

The proof is by induction on the number, r s d , of disjoint segments that can
be added to Y — a. At each stage of the induction the exponent k can increase by
a fixed amount. Since the induction is of length < C, the final exponent will still
be bounded. At each stage we will denote this exponent as k even as it changes.

If r = 1 then either Y is simply connected or is an annulus. If Y is simply connected
it is either a quadrilateral and a is on the boundary or has five sides and a crosses
the domain. In either case card T(m, a) = 2.

If Y is an annulus, a crosses from one boundary to the other. Then a, an edge
of the boundary of Y, and /3 bound a triangle so /? and a are 2-close. If |/3|<4C2e
it is isolated in Y—a since there can be no e complex disjoint from a containing
/3. Similarly if |/3|>4C2e it is e-wide. Thus card T(m, a) = card TE{m, a, 2) = 0(m)
by Proposition 2.2.

Now suppose the theorem is true whenever fewer than r0 curves can be added
and r0 trajectories can be added to Y-a. This is the induction hypothesis in place
for the rest of the proof. There are several cases to consider.

Case I. |j8|<4C2e. Form the complex containing 0 with isolated boundary F, with
longest curve yx. There are 0(1) such F, since it is isolated on Y. If F, does not
separate 6 from a then fi and a are contained in a smaller complex Y — F, to which
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fewer than r0 curves can be added. For each such F, apply the induction hypothesis.
If F, does separate, then by assumption |y,| = |F,|2:|a|/M Consider the complex
Z containing /? bounded by F] where the quadratic differential is renormalized so
that Z has unit area. Fewer than r0 trajectories can be added. We apply the induction
hypothesis to /3 and -y,. Since | y, |/1 a | > M ~' and there are 0( 1) such F, we are done.
There are 0(wi(log m)k) such /3.

Case II. |/?|>4C2e. Consider the sequence F , , . . . , Fp and times tt,..., tp+x con-
structed in Proposition 3.1.

Recall either Fp is e-wide or isolated on Y-a. Recall also |r,|,.+l>|F1+l|,.+1/M
for some constant M. The first possibility is |Fp|<4C2e. The cardinality of such Fp

is 0(1) since Fp is isolated. Then whether or not Fp separates /? from a we argue
exactly as in the previous two paragraphs when considering |/3|^4C2e. Thus we
may assume |FP|>4C2£.

We now make the additional assumption, to be removed later, that @ is D-close
to a. Then by Lemma 1.2 and induction each F, is D'-close to a for D' depending
on D.

If |Fp|<|a| then by Proposition 2.2 and Proposition 2.5 there are 0(1) such Fp.
Again whether or not Fp divides we apply the induction hypothesis to (3 and Y — Fp.
Again note if Fp does divide, |Fp|>|a|/M. Thus we may assume |Fp|>|a|. Now let
V(m, a) be the set of systems F such that

(a) F is either a saddle connection or divides Y-a into two components,
(b) |F|sm|a|,
(c) F is D'-close to a, a universal D',
(d) if |F| > 4C2

2e there is some t > 0 such that e/2 < u,(F) < |F|, < e and if F is not
a singleton, some f'> / such that |F | , s C\e and F, cannot be C2e-extended.
if 4C2e < |F| < 4C2e then either F is isolated or there is some t as above, and
if F is not a singleton, some t' as above.

if |F|s4C2e and F is not a singleton, there is some ('>0 as above.
(e) for each F determining a sequence r = F , , . . . , r p by Proposition 1.11,

|rPN«|.
Claim, card V(m, a) = 0(m(log m)k).

To prove the claim, for any Foe V(m, a) consider the sequence F o , . . . , Fp con-
structed in Proposition 3.1. The proof is by induction on the length of the sequence.
Let y( be the longest curve on F,. If p = 0, Fo is already isolated at time t. Then
card{y0} is 0(m) by Proposition 2.1 and Card{F0} is 0(m) by Proposition 2.5.

The induction hypothesis is card{Foe V(m)} is 0(m(log m)k) for the set of FO

that determine sequences F o , . . . , F,, j < p -1 of length </>. Now suppose Fo deter-
mines a sequence F o , . . . , Fp of length p+\. Then o-'l+1m|a|< iF^so-'imlal where
M, < /, < M2 log wi, the last inequality by the assumption on |FP| and Proposition
3.1(i).

Now F, G V(a''m, a) by Proposition 3.1. Now F, determines a sequence F , , . . . , Fp

of length p. By the induction hypothesis

card {F,} = 0(o-''m(log (o-'<m))k).

https://doi.org/10.1017/S0143385700005459 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005459


174 H. Masur

By Proposition 3.1(vii) there is a yoeFo such that y'o is not C5-separated from F,
at time f,. If <i>0, vh(y'o) > ̂ hh(y'o) as well. This implies for f ,>0

\y'0\ 2 e'-/2i>,(yo)s M e'-/2|yi|,, > M e'>/2|F,|,/C5

>Me''/2(/l,,(r1)+u,,(r1))^M|r1|

for a set of different constants M. If f, = 0, |yo| & M|F,| by Proposition 1.11 directly.
Thus a-^o+1m|a|<|yo|scr^/ri|Q:| where M4<./0< M3/,. Moreover if t,>0, ur|(yj,)>
\hh(y'o) implies vu(y'0)s: \y'0\tJC3. We are now in a position to apply first Lemma
3.2 and then the induction hypothesis on the number of curves.

First by Lemma 3.2 there are s < Ct pairs (0,, f,-) such that for each such yi there
is a (0j, f,-) such that

and y'o is not M7-separated from F, on Yen,t. Renormalize each such Y9h,. to have
unit area. Fewer than r0 saddle connections can be added to Y6h,.. By the induction
hypothesis on the number of curves,

Now by Proposition 2.5,

card {Fo|r,} = 0(cr-4)0(o-4>-'')(/1)
fc = Oto--'-/?).

To find card {Fo} we multiply this quantity by card {F^ and sum over the possible
lengths for F, and y'o. That is,

M2 log m M. log /.

card{F0}= I Z 0(cT-l'lk
l)(T''m(\ogal'm)k

= 0(m(logw)k)(differentA:).

This proves the claim.
To calculate {/3} we proceed in much the same way. For each /? con-

sider the sequence /3 = F 0 , . . . , Fp determined by Proposition 3.1. We have
<x'l+1m|a|< | F , | ^ o-''w|a| where m , < / | < M2 log m andF] e V(a'lm, a). By the claim

To calculate card{/3|F,} we proceed in exactly the same way. On the surface
bounded by F, containing /? renormalize so the area is 1. By Lemma 3.2 and
Proposition 3.1 there are s < C, pairs (&j, tt) such that for each /3 there is an (0j5 tj)
such that

and f$ is not M6-separated from F, with respect to <Pf)lJr Fewer than r0 curves can
be added to the subcomplex bounded by F, . Thus

card {/? |F,} = 0(o--'-(log o-"'-)*) = 0(o--'-/f).
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Thus
M2 log m

card{/3}= £ 0(o-~'<lka1'm(log a''m)k) = 0(m(log m)k)

for a different fc. This completes the proof under the assumption /? is D-close to a.
To complete the proof of Theorem 4.1 we need to consider /? not D-close to a.

For any such /3 we apply Proposition 1.6 to find a sequence /? = / 3 0 , . . . , /?„ = a, n <
C,, with the property that /3, is not M,-separated from /3I+1 and is D-close to it.

The proof is now by induction on n. If n = 1, /} is D-close to a for which we
have the result. Assume the result is true for sequences of length n < no+1. Then
Pi,- • • ,Pno=a ls a sequence of length «0. Suppose cr/+1m|a |s|j8i|s<7'm|a|.

Since |/3,-| > |/?1+,|/M, for each i, we have |0,| > |a | /M2 for some M2. Thus M4< /<
M3 log ra for universal M3, M4. By the induction hypothesis on the length of the
sequence,

card {/?,} = 0(o-'m(log <r'm)k)

and since /30 D-close to /3, and not M,-separated from it

since we have proved the theorem in that case. Thus
M3 log tn

card {/30} = card {/V/3.} card {£,} = I 0(<r~~'lVw(log <r'm)k) = O(m(log m)fc.

The proof is complete.

Proof of Theorem 1. The number of saddle connections on X of length s4C2e is
finite. Thus we may assume |^|s:4C2e. Similarly in what follows we need only
consider systems >4C2e in length. Motivated by Proposition 3.1, for any m and
just as in the proof of Theorem 4.1 let V(m) be the set of systems Y such that

(a) F is either a saddle connection or divides X surface into two components,
(b) 4 C 2 £ s | r | < m ,
(c) for some (6, t) e/2 < «„,,(D =£ |r|9>, s e,
(d) for some t'> t, if T is not a singleton, | r | e , s C2e and cannot be C2e-extended.

Claim, card V(m) = Q(m2). To prove the claim, for any Foe V(m) consider the
sequence Fo, F , , . . . , Fp constructed in Proposition 3.1. The proof is by induction
on the length of this sequence.

Let y, be the longest curve on F,. If p = 0, y0 is already isolated at time /. Then
card{y0} is 0(m2) by Proposition 2.1 and card {Fo} is 0(m2) by Proposition 2.5.

The induction hypothesis is now: card {Foe V(m)} is 0(m2) for the set of Fo that
determine sequences F o , . . . , rh y ' < p - l . Now suppose Foe V(m) by Proposition
3.1 defines a sequence F o , . . . , Fp of length p + \. Then o-'l+1m<|Fi|<0-''m where
M2 < /, < M, log m.

Now either |F,|<4C2e or |F,|>4C2e in which case F, e V(a''m) and F, defines
a sequence F , , . . . , Yp of length p. In the first case card {F,} is 0(1). In the second
the induction hypothesis applies to give

,} = 0(o-2''m2).
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By Proposition 3.1 there is a yo^ro not C5-separated from F, at time t = t{ and
satisfying vh(y0)>jhh(y0). Suppose

< a'°m.

As in the proof of Theorem 4.1 we have 0=£ / 0 ^ M3/,. We conclude by Lemma 3.2
that there are s < C,, pairs (0,, f,-) such that for any -y0 there is a pair (0,, tt) such that

= 0(0-'°-'').

On the surface Ye.,. renormalize the complex with boundary F, so it has area 1.
Then by Theorem 4.1,

card {yo|F1} = 0(£r'»-'•(/,-W)

and so

card {F0|r,} = O(cr'»"''(/i -/o)fco-^'0) = 0(o-"''(/i - io)'
<)

by Proposition 2.5. Thus
M.logm M,/.

cardV(m)= £ £ card {F0|r,} card {F,}
/, = M2 /0=0

M,logm M3/,

( M.logm \

m2 I crl'lk )=0{m2)
/, = M 2 /

since Y.7=M2
 a'lk converges for fixed k, M2. This proves the claim.

Finally we compute card Sa(n). Card S^(n) is 0(«2) so we may assume /J e S^n)
is not e-wide. We may assume |j8|a4C2e. For each /3 we form the sequence
i 8 = r o , r , , . . . , r p given by Proposition 3.1. Then F 1 GV(O- ' ' « ) where M 2 s / , <
M, log n. By the claim, card V(cr'<n) is 0(o-2''n2). Then by Lemma 3.2 and Theorem
4.1 just as in the proof of the claim,

card{0|F,} is 0(<r~'<)lk.

Then card {)3} is I , ^ ' ^ " <r~l'lk0(^2l'n2) which is 0(n2) since I ^ = I a'<lk<co. Q
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