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Abstract

Necessary and sufficient conditions to characterise weakly r-preinvex functions on an invex set are
obtained and used to establish generalisations of the Hermite–Hadamard inequality for such functions.
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1. Introduction
The classical Hermite–Hadamard inequality for convex functions states that if the
function f : [a, b]→ R is convex, then

1
b − a

∫ b

a
f (t) dt ≤

f (a) + f (b)
2

.

In [5], Hanson introduced invex functions as a generalisation of convex functions.
Hanson’s result inspired subsequent work which established the role and applications
of invexity in nonlinear optimisation and related fields. In [4], Ben-Israel and Mond
introduced preinvex functions and showed that preinvexity implies invexity. The
properties of preinvex functions in optimisation, equilibrium problems and variational
inequalities were studied by Noor [8, 9] and Weir and Mond [12]. Antczak [1, 2]
introduced r-invex and r-preinvex functions and gave a new method for solving
nonlinear mathematical programming problems. Zhao et al. [14] characterised r-
preinvex functions. In [10], Noor gave Hermite–Hadamard inequalities for preinvex
and log-preinvex functions. Further, in [11], Ul-Haq and Iqbal established a Hermite–
Hadamard inequality for r-preinvex functions.

The main purpose of this paper is to generalise the Hermite–Hadamard inequality
to a relation between extended means of weakly r-preinvex functions on an invex set.
The main tool is a characterisation of weakly r-preinvex functions on an invex set. We
obtain new extended two-parameter mean inequalities for weakly r-preinvex functions
on an invex set, which improve the results given in [10, 11].

c© 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 $16.00

412

https://doi.org/10.1017/S0004972716001374 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716001374


[2] Extensions of the Hermite–Hadamard inequality 413

2. Preliminary definitions and results for weakly r-preinvex functions

We begin with some definitions relating to invex sets and preinvex functions.

Definition 2.1. Let K ⊂ Rn be a nonempty set, let η : K × K → Rn and let u ∈ K. Then
the set K is said to be invex at u with respect to η if

u + λη(v, u) ∈ K

for every v ∈ K and λ ∈ [0, 1]. K is said to be an invex set with respect to η if K is
invex at each u ∈ K with respect to the same function η.

Definition 2.1 says that there is a path starting from u which is contained in K. It
is not required that v should be an endpoint of the path. If we demand that v should
be an endpoint of the path for every pair u, v, then η(v, u) = v − u and invexity reduces
to convexity. Thus every convex set is also an invex set with respect to η(v, u) = v − u,
but the converse is not true (see [7, 8]).

In [3], Antczak introduced the following definition of an η-path on the basis of the
consideration of invex sets.

Definition 2.2. Let K ⊂ Rn be a nonempty invex set with respect to η and let u, v ∈ K.
For x ∈ K, the set Pux := {u + λη(v,u) : λ ∈ [0,1]} is the closed η-path joining the points
u and x = u + η(v, u) and P0

ux := {u + λη(v, u) : λ ∈ (0, 1)} is the open η-path joining the
points u and x = u + η(v, u).

We note that if η(v, u) = v − u, then the set Pux = Puv = {λv + (1 − λ)u : λ ∈ [0, 1]} is
the line segment with endpoints u and v.

In [4], Ben-Israel and Mond introduced the class of preinvex function with respect
to η in optimisation theory.

Definition 2.3. Let K ⊂ Rn be a nonempty invex set with respect to η. A function
f : K → R is said to be preinvex with respect to η if there is a vector-valued function
η : K × K → Rn such that

f (u + λη(v, u)) ≤ λ f (v) + (1 − λ) f (u)

for every u, v ∈ K and λ ∈ [0, 1].

Every convex function is a preinvex function with respect to η(v, u) = v − u, but the
converse may not always be true.

The detailed description of r-preinvex functions was given by Antczak in [1].

Definition 2.4. Let K ⊂ Rn be a nonempty invex set with respect to η. A function
f : K→ R+ is said to be r-preinvex with respect to η if there is a vector-valued function
η : K × K → Rn such that

f (u + λη(v, u)) ≤
{

(λ f (v)r + (1 − λ) f (u)r)1/r if r , 0,
f (v)λ f (u)1−λ if r = 0,

for every v, u ∈ K and λ ∈ [0, 1].
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Note that 0-preinvex functions are logarithmic preinvex and that 1-preinvex
functions are preinvex. It is obvious that if f is r-preinvex, then f r is a preinvex
function for positive r.

In [7], Mohan and Neogy showed that a differentiable invex function is also
preinvex under the following Condition C.

Condition 2.5 (Condition C). Let K ⊂ Rn be a nonempty invex set with respect to
η : K × K → Rn. We say that the function η satisfies Condition C if, for any u, v ∈ K
and λ ∈ [0, 1], the following two identities hold.

(i) η(u, u + λη(v, u)) = −λη(v, u).
(i) η(v, u + λη(v, u)) = (1 − λ)η(v, u).

Applying Condition C, we have the following lemma.

Lemma 2.6. Let K ⊂ Rn be a nonempty invex set with respect to η : K × K → Rn and
suppose that the function η satisfies Condition C. Then

(α − β)η(v, u) = η(u + αη(v, u), u + βη(v, u))

for every u, v ∈ K and α, β ∈ [0, 1].

Proof. The identity obviously holds when α = β. We will prove the case when α > β.
In this case, 0 < 1 − β ≤ 1 and 0 < (α − β)/(1 − β) ≤ 1, so, by (i) and (ii) of Condition C,

(α − β)η(v, u) =
α − β

1 − β
η(v, u + βη(v, u))

= η
(
u + βη(v, u) +

α − β

1 − β
η(v, u + βη(v, u)), u + βη(v, u)

)
.

Using (i) of Condition C again,

1
1 − β

η(v, u + βη(v, u)) = η(v, u).

These two results yield the desired identity immediately. The proof in the case when
α < β is similar. This completes the proof of the lemma. �

In [13], Yang et al. gave the following Condition D to discuss the characterisation
of prequasi-invex functions.

Condition 2.7 (Condition D). Let K ⊂ Rn be a nonempty invex set with respect to
η : K × K → Rn and let f : K → R be invex with respect to the same η. We say that the
function f satisfies Condition D if the inequality

f (u + η(v, u)) ≤ f (v)

holds for any u, v ∈ K.
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The integral power mean, Mp, of a positive function on [a, b] is given by

Mp( f ; a, b) =


( 1
b − a

∫ b

a
f p(t) dt

)1/p
if p , 0,

exp
( 1
b − a

∫ b

a
ln f (t) dt

)
if p = 0,

and the power mean, Mr(x, y; λ), of order r of positive numbers x, y is defined by

Mr(x, y; λ) =

{
(λxr + (1 − λ)yr)1/r if r , 0,
xλy1−λ if r = 0

(see [6]). In [6], Stolarsky introduced the mean values E(r, s; x, y), to generalise the
extended logarithmic mean Lp(x, y), and the alternative extended logarithmic mean
Fr(x, y). The mean E(r, s; x, y) is given by E(r, s; x, x) = x if x = y > 0 and, for distinct
numbers x, y,

E(r, s; x, y) =

( s
r

yr − xr

ys − xs

)1/(r−s)
, rs(r − s) , 0,

E(r, 0; x, y) = E(0, r; x, y) =

(1
r

yr − xr

ln y − ln x

)1/r
, r , 0,

E(r, r; x, y) = e−1/r
( xxr

yyr

)1/(xr−yr)
, r , 0,

E(0, 0; x, y) =
√

xy.

Clearly, for two positive real numbers x and y, E(p + 1, 1; x, y) = Lp(x, y) and
E(r + 1, r; x, y) = Fr(x, y).

In order to obtain our results, we introduce the following new definitions related to
power means.

Definition 2.8. Let K ⊂ Rn be a nonempty invex set with respect to η. A function
f : K → R is said to be weakly preinvex with respect to η if there is a vector-valued
function η : K × K → Rn such that

f (u + λη(v, u)) ≤ λ f (u + η(v, u)) + (1 − λ) f (u)

for every v, u ∈ K and λ ∈ [0, 1].

Definition 2.9. Let K ⊂ Rn be a nonempty invex set with respect to η. A function
f : K → R+ is said to be weakly r-preinvex with respect to η if there is a vector-valued
function η : K × K → Rn such that

f (u + λη(v, u)) ≤ Mr( f (u + η(v, u)), f (u); λ)

for every v, u ∈ K and λ ∈ [0, 1].
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We note that if f is a weakly r-preinvex function, then f r is weakly preinvex for
positive r and, if f is a weakly 0-preinvex function, then log ◦ f is weakly preinvex.
We also note that, in Definitions 2.8 and 2.9, if f further satisfies Condition D, then f
is a preinvex function and an r-preinvex function, respectively.

The extended two-parameter mean for a weakly r-preinvex function on an invex set
is defined as follows.

Definition 2.10. Let K ⊂ Rn be a nonempty invex set with respect to a vector-valued
function η : K × K → Rn and let f : K → R+ be integrable on the η-path Pux for
x = u + η(v, u), where v, u ∈ K and λ ∈ [0, 1]. Set x(λ) = u + λη(v, u). We define the
two-parameter mean of the function f (u + λη(v, u)) on [0, 1] with respect to λ by

Mp,q( f ; u, u + η(v, u))

=


( ∫ 1

0
f p(x(λ) dλ

/∫ 1

0
f q(x(λ) dλ

)1/(p−q)
if p , q,

exp
( ∫ 1

0
f q(x(λ) ln f (x(λ)) dλ

/∫ 1

0
f q(x(λ) dλ

)
if p = q.

In particular, when q = 0, Mp,0( f ; u,u + η(v,u)) = Mp( f ; u,u + η(v,u)) is the integral
power mean.

We need the following properties of weakly r-preinvex functions.

Proposition 2.11. Let K ⊂ Rn be a nonempty invex set with respect to η : K × K → Rn

and suppose that η satisfies Condition C. Let u ∈ K and f : Pux → R for every v ∈ K,
λ ∈ [0, 1] and x = u + η(v, u) ∈ K. Suppose that r ≥ 0. Then f is a weakly r-preinvex
function with respect to η if and only if f r is convex with respect to λ.

Proof. Let φ(λ) = f r(u + λη(v, u)) for u, v ∈ K, λ ∈ [0, 1], u + λη(v, u) ∈ K and r ≥ 0.
First, assume that f is a weakly r-preinvex function with respect to η and that η satisfies
Condition C. Obviously, f r is a weakly preinvex function with respect to the same η.
Now we will prove that φ(λ) is convex on [0, 1]. Since f r is weakly preinvex, given
α, β ∈ [0, 1] and for any λ ∈ [0, 1],

φ(β + λ(α − β)) = f r(u + (β + λ(α − β))η(v, u)
)

= f r(u + βη(v, u) + λ(α − β)η(v, u)
)

= f r(u + βη(v, u) + λ(η(u + αη(v, u), u + βη(v, u))
)

(by Lemma 2.6)
≤ λ f r(u + βη(v, u) + η(u + αη(v, u), u + βη(v, u))

)
+ (1 − λ) f r(u + βη(v, u)

)
= λ f r(u + αη(v, u)

)
+ (1 − λ) f r(u + βη(v, u)

)
(by Lemma 2.6)

for r > 0, and, similarly,

φ(β + λ(α − β))≤ f λ
(
u + βη(v, u) + η(u + αη(v, u), u + βη(v, u))

)
f 1−λ(u + βη(v, u)

)
= f λ

(
u + αη(v, u)

)
f 1−λ(u + βη(v, u)

)
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for r = 0. Therefore,

φ(β + λ(α − β)) ≤
{
λφ(α) + (1 − λ)φ(β) if r > 0,
φλ(α)φ1−λ(β) if r = 0.

Thus f r(u + λη(v, u)) is a convex function with respect to λ.
Second, assume that f r(u + λη(v, u)) is a convex function with respect to λ. We

will prove that f (u + λη(v, u)) is a weakly r-preinvex function with respect to η. Since
φ(λ) = f r(u + λη(v, u)) is convex with respect to λ,

φ(λ · 1 + (1 − λ) · 0) ≤
{
λφ(1) + (1 − λ)φ(0) if r > 0,
φλ(1)φ1−λ(0) if r = 0,

and then

f r(u + λη(v, u)) ≤
{
λ f r(u + η(v, u)) + (1 − λ) f r(u) if r > 0,
f λ(u + η(v, u)) f 1−λ(u) if r = 0.

Thus f is weakly r-preinvex with respect to η. This completes the proof. �

Proposition 2.12. In addition to the assumptions of Proposition 2.11, suppose that f
is continuous on Pux and is twice differentiable on P0

ux. Then f is a weakly r-preinvex
function with respect to η if and only if

r f r−2(u){(r − 1)[η(v, u)T∇ f (u)]2 + f (u)η(v, u)T∇2 f (u)η(v, u)} ≥ 0 for r > 0,
{η(v, u)T∇2 f (u)η(v, u) f (u) − [η(v, u)T∇ f (u)]2}/ f 2(u) ≥ 0 for r = 0.

Proof. Let φ(λ) = f r(u + λη(v, u)) for u, v ∈ K, λ ∈ [0, 1], u + λη(v, u) ∈ K and r ≥ 0.
Suppose that f is a weakly r-preinvex function with respect to η. Since f is continuous
and twice differentiable,

φ′(λ) =

{
r f r−1(u + λη(v, u))η(v, u)T∇ f (u + λη(v, u)) if r > 0,
η(v, u)T∇ f (u + λη(v, u))/ f (u + λη(v, u)) if r = 0,

and

φ′′(λ) =


r f r−2(u + λη(v, u)){(r − 1)[η(v, u)T∇ f (u + λη(v, u))]2

+ f (u + λη(v, u))η(v, u)T∇2 f (u + λη(v, u))η(v, u)} if r > 0,
{η(v, u)T∇2 f (u + λη(v, u))η(v, u) f (u + λη(v, u))

− [η(v, u)T∇ f (u + λη(v, u))]2}/ f 2(u + λη(v, u)) if r = 0.

Letting λ→ 0+ gives

φ′′(0+) =

{
r f r−2(u){(r − 1)[η(v, u)T∇ f (u)]2 + f (u)η(v, u)T∇2 f (u)η(v, u)} if r > 0,
{η(v, u)T∇2 f (u)η(v, u) f (u) − [η(v, u)T∇ f (u)]2}/ f 2(u) if r = 0.

By Proposition 2.11, for r ≥ 0, φ(λ) = f r(u + λη(v,u)) is a convex function with respect
to λ and then φ′′(λ) ≥ 0. This proves the necessity of the condition in the proposition.

https://doi.org/10.1017/S0004972716001374 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716001374


418 D.-Y. Hwang and S. S. Dragomir [7]

Conversely, assume that, for every u, v ∈ K,

r f r−2(u){(r − 1)[η(v, u)T∇ f (u)]2 + f (u)η(v, u)T∇2 f (u)η(v, u)} ≥ 0 for r > 0,
{η(v, u)T∇2 f (u)η(v, u) f (u) − [η(v, u)T∇ f (u)]2}/ f 2(u) ≥ 0 for r = 0.

For every u, v ∈ K, λ in [0, 1] and u + λη(v, u) ∈ K,

r f r−2(u + λη(v, u)){(r − 1)[η(v, u + λη(v, u))T∇ f (u + λη(v, u))]2

+ f (u + λη(v, u))η(v, u + λη(v, u))T∇2 f (u + λη(v, u))η(v, u + λη(v, u))} ≥ 0

for r > 0, and

{η(v, u + λη(v, u))T∇2 f (u + λη(v, u))η(v, u + λη(v, u)) f (u + λη(v, u + λη(v, u)))
− [η(v, u + λη(v, u))T∇ f (u + λη(v, u))]2}/ f 2(u + λη(v, u)) ≥ 0

for r = 0. By Condition C(ii),

r f r−2(u + λη(v, u)){(r − 1)[(1 − λ)η(v, u)T∇ f (u + λη(v, u))]2

+ f (u + λη(v, u))(1 − λ)η(v, u)T∇2 f (u + λη(v, u))(1 − λ)η(v, u)} ≥ 0

for r > 0, and

{(1 − λ)2η(v, u)T∇2 f (u + λη(v, u))η(v, u) f (u + λη(v, u + λη(v, u)))
− [(1 − λ)η(v, u)T∇ f (u + λη(v, u))]2}/ f 2(u + λη(v, u)) ≥ 0

for r = 0. Thus

φ′′(λ) = r f r−2(u + λη(v, u)){(r − 1)[η(v, u)T∇ f (u + λη(v, u))]2

+ f (u + λη(v, u))η(v, u)T∇2 f (u + λη(v, u))η(v, u)} ≥ 0

for r > 0, and

φ′′(λ) = {η(v, u)T∇2 f (u + λη(v, u))η(v, u) f (u + λη(v, u + λη(v, u)))
− [η(v, u)T∇ f (u + λη(v, u))]2}/ f 2(u + λη(v, u)) ≥ 0

for r = 0. Consequently, φ(λ) = f r(u + λη(v, u)) is convex with respect to λ. By
Proposition 2.11, f is weakly r-preinvex with respect to η. This completes the proof. �

3. Hermite–Hadamard inequality for weakly r-preinvex function

For simplicity, in this section, we assume that K ⊂ Rn is a nonempty invex set
with respect to a vector valued function η : K × K → Rn. Applying the definitions,
conditions and results of Section 2, gives the following theorems.

Theorem 3.1. Let f be a weakly r-preinvex function on an invex set K with r ≥ 0.
Assume that f is positive and continuous on Pax and is twice-differentiable on P0

ax
for every a, b ∈ K, λ ∈ [0, 1] and a < x = a + η(b, a), and let η satisfy Condition C.
Let m and M be the minimum and maximum of f on Pax, respectively. Further, let
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g1, g2 : (0,∞)→ R and suppose that g2 is positive and integrable on [m, M] and that
g1/g2 is integrable on [m,M]. If g1/g2 is increasing on [m,M], then∫ 1

0 g1( f (a + λη(b, a))) dλ∫ 1
0 g2( f (a + λη(b, a))) dλ

≤

∫ f (a+η(b,a))
f (a) xr−1g1(x) dx∫ f (a+η(b,a))
f (a) xr−1g2(x) dx

(3.1)

for f (a) , f (a + η(b, a)); the right-hand side of (3.1) is defined to be g1( f (a))/g2( f (a))
for f (a) = f (a + η(b, a)). If g1/g2 is decreasing, then the inequality (3.1) is reversed.

Proof. We will give the proof in the case when r > 0 and g1/g2 is increasing. The
proof in the other cases is analogous. Let φ(λ) = f r(a + λη(b, a)) for r , 0 and
φ(λ) = ln f (a + λη(b, a)) for r = 0. For convenience, let ψ(λ) = f (a + λη(b, a)). Since
f is weakly r-preinvex with respect to η, Proposition 2.12 gives

φ′′(λ) = r f (r−2)(a){(r − 1)[η(b, a)T∇ f (a)]2 + f (a)η(b, a)T∇2 f (a)η(b, a)} > 0.

When f (a) , f (a + η(b, a)), the inequality (3.1) is equivalent to∫ 1
0 g1(ψ(λ)) dλ∫ 1
0 g2(ψ(λ)) dλ

≤

∫ 1
0 ψr−1(λ)g1(ψ(λ))ψ′(λ) dλ∫ 1
0 ψr−1(λ)g2(ψ(λ))ψ′(λ) dλ

. (3.2)

Consider

I =

∫ 1

0
g1(ψ(λ)) dλ

∫ 1

0
ψr−1(µ)g2(ψ(µ))ψ′(µ) dµ

−

∫ 1

0
g2(ψ(λ)) dλ

∫ 1

0
ψr−1(µ)g1(ψ(µ))ψ′(µ) dµ

=

∫ 1

0

∫ 1

0
g2(ψ(λ))g2(ψ(µ))ψr−1(µ)ψ′(µ)

(g1(ψ(λ))
g2(ψ(λ))

−
g1(ψ(µ))
g2(ψ(µ))

)
dλ dµ. (3.3)

Interchanging λ and µ in (3.3) and adding the resulting equation to (3.3) gives

I =
1
2r

∫ 1

0

∫ 1

0
g2(ψ(λ))g2(ψ(µ))

[
(ψr(µ))′ − (ψr(λ))′

](g1(ψ(λ))
g2(ψ(λ))

−
g1(ψ(µ))
g2(ψ(µ))

)
dλ dµ.

(3.4)
First, suppose that φ′(λ) = (ψr(λ))′ ≥ 0 for all λ ∈ (0, 1). Since φ′′(λ) = (ψr(λ))′′ ≥ 0,

1
r
[
(ψr(µ))′ − (ψr(λ))′)

](g1(ψ(λ))
g2(ψ(λ))

−
g1(ψ(µ))
g2(ψ(µ))

)
≤ 0.

From (3.4), I ≤ 0. This implies that the inequality (3.2) holds and then (3.1) holds.
If φ′(λ) = (ψr(λ))′ ≤ 0 for all λ ∈ (0, 1), a similar argument gives I ≥ 0 and again the
inequality (3.1) holds.

Now suppose that φ′(λ) = (ψr(λ))′ changes sign and that φ(0) < φ(1). Then ψr(0) ≤
ψr(1) and there exists a point α ∈ (0, 1) such that φ′(α) = (ψr(α))′ = 0 and (ψr(λ))′ ≤ 0
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for all λ ∈ [0, α] and (ψr(λ))′ ≥ 0 for all λ ∈ [α, 1]. Therefore, there exists β ∈ (α, 1)
such that ψ(0) = ψ(β). Thus∫ β

0
ψr−1(λ)g1(ψ(λ))ψ′(λ) dλ =

∫ ψ(α)

ψ(0)
xr−1g1(x) dx +

∫ ψ(β)

ψ(α)
xr−1g1(x) dx = 0

and, similarly, ∫ β

0
ψr−1(λ)g2(ψ(λ))ψ′(λ) dλ = 0.

Consequently, the inequality (3.1) is equivalent to∫ 1
0 g1(ψ(λ)) dλ∫ 1
0 g1(ψ(λ)) dλ

≤

∫ 1
β
ψr−1(λ)g1(ψ(λ))ψ′(λ) dλ∫ 1

β
ψr−1(λ)g2(ψ(λ))ψ′(λ) dλ

. (3.5)

Consider

I2 =

∫ 1

0
g1(ψ(λ)) dλ

∫ 1

β

ψr−1(µ)g2(ψ(µ))ψ′(µ) dµ

−

∫ 1

0
g2(ψ(λ)) dλ

∫ 1

β

ψr−1(µ)g1(ψ(µ))ψ′(µ) dµ

=
1
r

∫ 1

0

∫ 1

β

g2(ψ(λ))g2(ψ(µ))ψr−1(µ)ψ′(µ)
(g1(ψ(λ))
g2(ψ(λ))

−
g1(ψ(µ))
g2(ψ(µ))

)
dλ dµ.

Split the double integral into two parts

I2 =
1
r

∫ 1

0

∫ 1

β

. . . dλ dµ =
1
r

( ∫ β

0

∫ 1

β

. . . dλ dµ +

∫ 1

β

∫ 1

β

. . . dλ dµ
)

= I21 + I22.

When (λ, µ) ∈ [0, β] × [β, 1], λ ≤ µ and (ψr(µ))′ = rψr−1(µ)ψ′(µ) ≥ 0 for all µ ∈ (β, 1).
Thus ψ′(µ) ≥ 0 for all µ ∈ (β, 1) and

g1(ψ(λ))
g2(ψ(λ))

≤
g1(ψ(β))
g2(ψ(β))

≤
g1(ψ(µ))
g2(ψ(µ))

.

This gives I21 ≤ 0. By the result proved in the case when φ′(λ) = (ψr(λ))′ ≥ 0, we see
that I22 ≤ 0. Therefore, I2 = I21 + I22 ≤ 0. It follows that (3.5) and also (3.1) hold.
Finally, if the sign of the derivative φ′(λ) = (ψr(λ))′ changes and ψ(0) ≥ ψ(1), a similar
proof again shows that (3.1) holds.

When f (a) = f (a + η(b, a)), ψ(0) = ψ(1), so φ(0) = φ(1). Since φ′′ = (ψr(λ))′′ ≥ 0,
we see that φ′ = (ψr(λ))′ is continuous and increasing for λ ∈ (0,1). There exists a point
α ∈ (0, 1) such that (ψr(α))′ = 0 and (ψr(λ))′ ≤ 0 for all λ ∈ (0, α) and (ψr(λ))′ ≥ 0 for
all λ ∈ (α, 1). Hence

g1(ψ(λ))
g2(ψ(λ))

≤
g1(ψ(1))
g2(ψ(1))
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for all λ ∈ (0, 1). It follows that∫ 1

0
g1(ψ(λ)) dλ ≤

g1(ψ(1))
g2(ψ(1))

∫ 1

0
g2(ψ(λ)) dλ.

Therefore, the inequality (3.1) is valid. This completes the proof of Theorem 3.1. �

Remark 3.2. If we take g1(x) = xp and g2(x) = xq for suitable real numbers p, q in
(3.1), we get the extended mean inequality for the twice-differentiable and weakly
r-preinvex function f on an invex set with respect to η satisfying Condition C given by

Mp,q( f ; a, a + η(b, a)) ≤ E(p + r, q + r; f (a), f (a + η(b, a))). (3.6)

Moreover, if we take q = 0 in (3.6),

Mp( f ; a, a + η(b, a)) ≤ E(p + r, r; f (a), f (a + η(b, a))). (3.7)

Taking r = 1 in (3.7) gives

Mp( f ; a, a + η(b, a)) ≤ Lp( f (a), f (a + η(b, a))),

and taking p = 1 in (3.7) gives

1
η(b, a)

∫ a+η(b,a)

a
f (x) dx ≤ Fr( f (a), f (a + η(b, a))). (3.8)

Further, if f satisfies the Condition D, (3.8) becomes

1
η(b, a)

∫ a+η(b,a)

a
f (x) dx ≤ Fr( f (a), f (a + η(b, a))) ≤ Fr( f (a), f (b)). (3.9)

The inequality (3.9) is a refinement of the inequality given by Ul-Haq and Iqbal in [11].
For r = 1 or r = 0 in (3.9), the inequality (3.9) is a refinement of the inequality given
by Noor in [10].

Theorem 3.3. Let f be a weakly r-preinvex function on an invex set K with r ≥ 0.
Assume that f is positive and continuous on Pax for given a, b ∈ K, λ ∈ [0, 1] and
a < x = a + η(b, a). Further, let g : (0,∞)→ R be positive and integrable on [m, M],
where m,M are as in Theorem 3.1. If g is increasing on [m,M], then∫ 1

0
g( f (a + λη(b, a))) dλ ≤

r
f r(a + η(b, a)) − f r(a)

∫ f (a+η(b,a))

f (a)
xr−1g(x) dx (3.10)

for f (a) , f (a + η(b, a)); the right-hand side of (3.10) is defined to be g( f (a)) for
f (a) = f (a + η(b, a)). If g is decreasing, the inequality (3.10) is reversed.

Proof. We consider only the case when r > 0 and g is increasing. The proof is
analogous in the other cases. When f (a) , f (a + η(b, a)), the definition of a weakly
r-preinvex function yields∫ 1

0
g( f (a + λη(b, a))) dλ≤

∫ 1

0
g
(
(λ f r(a + η(b, a)) + (1 − λ) f r(a))1/r) dλ

=
r

f r(a + η(b, a)) − f r(a)

∫ f (a+η(b,a))

f (a)
g(x)xr−1 dx.
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Similarly, when f (a) = f (a + η(b, a)), it is immediate that∫ 1

0
g( f (a + λη(b, a))) dλ ≤

∫ 1

0
g
(
(λ f r(a + η(b, a)) + (1 − λ) f r(a))1/r) dλ = g( f (a)).

The proof of Theorem 3.3 is complete. �

Remark 3.4. Note that it is not necessary for the function f in Theorem 3.3 to be twice
differentiable. Similarly to Remark 3.2, if we take g(x) = xp in (3.10), we obtain the
extended mean inequality for the weakly r-preinvex function f on an invex set with
respect to η given by

Mp( f ; a, a + η(b, a)) ≤ E(p + r, r; f (a), f (a + η(b, a))). (3.11)

Taking r = 1 in (3.11) gives

Mp( f ; a, a + η(b, a)) ≤ Lp( f (a), f (a + η(b, a))),

and taking p = 1 in (3.11) gives

1
η(b, a)

∫ a+η(b,a)

a
f (x) dx ≤ Fr( f (a), f (a + η(b, a))). (3.12)

Further, if f satisfies Condition D, (3.12) yields

1
η(b, a)

∫ a+η(b,a)

a
f (x) dx ≤ Fr( f (a), f (a + η(b, a))) ≤ Fr( f (a), f (b)). (3.13)

The inequality (3.13) is a refinement of the inequality given by Ul-Haq and Iqbal
in [11] and also a refinement of the inequality given by Noor in [10].
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