FINITE ARITHMETIC SUBGROUPS OF $G L_{n}$, IV

YOSHIYUKI KITAOKA and HIROSHI SUZUKI

In this paper, we improve a result of the third paper of this series, that is we show

Theorem. Let K be a nilpotent extension of the rational number field \mathbf{Q} with Galois group Γ, and G a Γ-stable finite subgroup of $G L_{n}\left(O_{K}\right)$. Then G is of A-type.

Here, automorphisms in Γ act entry-wise on matrices in G, and G being Γ-stable means that $\sigma(g) \in G$ for every $\sigma \in \Gamma$ and $g \in G . O_{K}$ stands for the ring of integers in K and G being of A-type means the following:

Let $L=\mathbf{Z}\left[e_{1}, \ldots, e_{n}\right]$ be a free module over \mathbf{Z} and we make $g=\left(g_{i j}\right) \in G$ act on $O_{K} L$ by $g\left(e_{i}\right)=\sum_{j=1}^{n} g_{i j} e_{j}$. Then there exists a decomposition $L=\bigoplus_{i=1}^{k} L_{i}$ such that for every $g \in G$, we can take a root of unity $\varepsilon_{i}(g)(1 \leq i \leq k)$ and a permutation $s(g)$ so that $\varepsilon_{i}(g) g L_{i}=L_{s(g)(i)}$ for $i=1, \ldots, k$. (The definition of A-type in the third paper [3] of this series is wrong, but the results in it are true in the above sense of A-type. See the correction at the end.) We denote the identity matrix of size n by 1_{n}, and the ring of rational integers by \mathbf{Z}.

Lemma 1. Let F be an abelian extension of \mathbf{Q} with Galois group Γ, and \mathfrak{F} an integral ideal $\left(\neq O_{F}\right)$ of F. Let G be a Γ-stable finite subgroup of $G L_{n}\left(O_{F}\right)$. Then G is of A-type, and for a subgroup

$$
G(\mathfrak{F}):=\left\{g \in G \mid g \equiv 1_{n} \bmod \mathfrak{I}\right\}
$$

there exists an integral matrix $T \in G L_{n}(\mathbf{Z})$ such that $\left\{T g T^{-1} \mid g \in G(\Im)\right\}$ consists of diagonal matrices.

Proof. It is clear that

[^0]$$
S:=\sum_{g \in G} g^{t} \bar{g}
$$
is a rational integral positive definite matrix, where the bar denotes the complex conjugation. We introduce a lattice $L:=\mathbf{Z}\left[e_{1}, \ldots, e_{n}\right]$ with bilinear form $\left(B\left(e_{i}, e_{j}\right)\right):=S$ and consider the scalar extension $O_{F} L$ with $B(\lambda x, \mu y):=$ $\lambda \bar{\mu} B(x, y)$ for $\lambda, \mu \in O_{F}$ and $x, y \in L$. Then $L, O_{F} L$ are a positive definite quadratic lattice over \mathbf{Z} and a positive definite Hermitian lattice over O_{F}, respectively. Let
$$
L:=L_{1} \perp \cdots \perp L_{a}
$$
be the decomposition to indecomposable lattices. We define an automorphism ϕ_{g} : $O_{F} L \rightarrow O_{F} L$ by
$$
\left(\phi_{g}\left(e_{1}\right), \ldots, \phi_{g}\left(e_{n}\right)\right):=\left(e_{1}, \ldots, e_{n}\right)^{t} g \quad \text { i.e., } \phi_{g}\left(e_{i}\right)=\sum_{j=1}^{n} g_{i j} e_{j}
$$

Then ϕ_{g} is an isometry of $O_{F} L$ by $\left(B\left(\phi_{g}\left(e_{i}\right), \phi_{g}\left(e_{j}\right)\right)=g S^{t} \bar{g}=S\right.$. Hence by [1], there exist a root of unity $\varepsilon_{i} \in F$ and a permutation $\sigma \in \mathbb{S}_{a}$ such that

$$
\begin{equation*}
\varepsilon_{i} \phi_{g}\left(L_{i}\right)=L_{\sigma(t)} \quad \text { for } i=1, \ldots, a \tag{1}
\end{equation*}
$$

which implies that G is of A-type. Here assuming $g \in G(\mathfrak{J})$, we have

$$
\begin{equation*}
\phi_{g}(x) \equiv x \bmod \Im L, \tag{2}
\end{equation*}
$$

and hence the permutation σ in (1) is the identity. Now we take a basis $\left\{z_{1}, \ldots\right.$, $\left.z_{s}\right\}$ of L_{k} for an integer k with $1 \leq k \leq a$. Then there exist a root of unity $\varepsilon \in F$ and $A \in G L_{s}(\mathbf{Z})$ satisfying

$$
\begin{equation*}
\left(\varepsilon \phi_{g}\left(z_{1}\right), \ldots, \varepsilon \phi_{g}\left(z_{s}\right)\right)=\left(z_{1}, \ldots, z_{s}\right)^{t} A \tag{3}
\end{equation*}
$$

Let \mathfrak{B} be a prime ideal dividing \mathfrak{F} and p the rational prime number dividing \mathfrak{F}. At first, we claim that we can choose the matrix A so that

$$
A \equiv 1_{s} \bmod p
$$

By virtue of (2), (3), we have

$$
\begin{equation*}
\varepsilon^{-1} A \equiv 1_{s} \bmod \mathfrak{P} \tag{4}
\end{equation*}
$$

which implies, by putting $A=\left(a_{t}\right)$

$$
a_{i j} \equiv 0 \bmod p \text { if } i \neq j, \quad a_{i i} \equiv \varepsilon \bmod \mathfrak{B} \text { for every } i,
$$

and then we have

$$
\begin{equation*}
A \equiv a_{11} 1_{s} \bmod p \tag{5}
\end{equation*}
$$

Hence the claim is clear if $p=2$, and hereafter we assume $p>2 . \varepsilon^{-1} A\left(\equiv 1_{s} \bmod \right.$ $\mathfrak{P})$ is of finite order, and the order is a power of p, say p^{r}. Then we have $\varepsilon^{b^{r}} 1_{s}=$ $A^{p^{r}}$, which is a rational integral matrix. Thus $A^{p^{r}}= \pm 1_{s}$ is clear. If $A^{p^{r}}=-1_{s}$, then by replacing ε, A by $-\varepsilon,-A$ in (3), respectively, we may assume $A^{p^{r}}=1_{n}$ and $\varepsilon^{p^{r}}=1$. If $\varepsilon=1$, (4) implies the claim. Otherwise, let \mathfrak{p} be the prime ideal of $\mathbf{Q}(\varepsilon)$ under \mathfrak{P}; then (4) implies $a_{i i} \equiv \varepsilon \bmod \mathfrak{p}$. Now $\mathfrak{p}=(1-\varepsilon)$ yields $a_{i i} \equiv 1$ $\bmod \mathfrak{p}$ and hence $a_{i i} \equiv 1 \bmod p$. Thus we have shown the claim.

Next we claim that we can take 1_{s} as A. Since A is of finite order, the claim above yields $A=1_{s}$ if $p>2$. Suppose $p=2$. By virtue of $A \equiv 1_{s} \bmod 2$ and $x=$ $\left(x+\varepsilon \phi_{g}(x)\right) / 2+\left(x-\varepsilon \phi_{g}(x)\right) / 2$, we have $L_{k}=L_{+} \perp L_{-}$, where $L_{ \pm}=\{x \in$ $\left.L_{k} \mid \varepsilon \phi_{g}(x)= \pm x\right\}$. Since L_{k} is indecomposable, we have $L_{k}=L_{+}$or L_{-}, which means $A= \pm 1_{s}$. If necessary, by replacing ε, A by $-\varepsilon,-A$ in (3), respectively, we may assume $A=1_{s}$. Thus we have shown the claim. Hence we have only to take a matrix T as a transformation matrix from the original basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of L to the one consisting of bases of $L_{k}(k=1, \ldots, a)$.

Definition. Let K be a Galois extension of \mathbf{Q} with Galois group Γ and $\mathfrak{P a}$ prime ideal. Then we put, for a non-negative integer m

$$
V_{m}(\mathfrak{B} ; K / \mathbf{Q}):=\left\{u \in \Gamma \mid u(x) \equiv x \bmod \mathfrak{P}^{m+1} \text { for } x \in O_{K}\right\}
$$

Lemma 2. Let K be a Galois extension of \mathbf{Q} with Galois group Γ, and \mathfrak{P} a prime ideal of K, and suppose $\Gamma=V_{1}(\mathfrak{B} ; K / \mathbf{Q})$. Let F be the maximal abelian extension of \mathbf{Q} contained in K. Let G be a Γ-stable finite subgroup of $G L_{n}\left(O_{K}\right)$ and k a non-negative integer. Suppose that $G\left(\Re^{k+1}\right)$ consists of diagonal matrices. Then we have $G\left(\mathfrak{B}^{k}\right) \subset G L_{n}\left(O_{F}\right)$.

Proof. We take and fix an element $g \in G\left(\mathfrak{F}^{k}\right)$. Let us see, for $\sigma \in \Gamma$

$$
\sigma(g) \equiv g \bmod \mathfrak{B}^{k+1}
$$

If $k=0$, it is clear because of $\Gamma=V_{1}(\mathfrak{B} ; K / \mathbf{Q})$. Suppose $k>0$. Putting $g=1_{n}$ $+\pi^{k} A$ with $A \in M_{n}\left(O_{\mathfrak{F}}\right)$, where π is a prime element in the completion $O_{\mathfrak{B}}$ of O_{K} at the prime \mathfrak{F}, we have

$$
\sigma\left(\pi^{k}\right) \equiv \pi^{k} \bmod \mathfrak{B}^{k+1}, \quad \sigma(A) \equiv A \bmod \Re^{2}
$$

and hence

$$
\sigma(g) \equiv g \bmod \mathfrak{B}^{k+1} \quad \text { and } \quad \sigma(g) g^{-1} \in G\left(\Re^{k+1}\right)
$$

Thus $D_{\sigma}:=\sigma(g) g^{-1}$ is diagonal and it is easy to see

$$
D_{\mu \sigma}=\mu\left(D_{\sigma}\right) D_{\mu} \quad \text { for } \sigma, \mu \in \Gamma
$$

By Lemma 1 in [3], there exists a diagonal matrix $D \in G L_{n}(K)$, which satisfies

$$
D^{w} \in G L_{n}(\mathbf{Q}) \quad \text { and } \quad D_{\sigma}=\sigma\left(D^{-1}\right) D
$$

where w is the number of roots of unity in K. Then $\sigma(g) g^{-1}=\sigma\left(D^{-1}\right) D$ for every $\sigma \in \Gamma$ yields $h:=D g \in G L_{n}(\mathbf{Q})$. We choose a rational diagonal matrix h_{1} so that the greatest common divisor of entries of each row of $h_{1} h$ is 1 . Since $g=D^{-1} h=$ $\left(h_{1} D\right)^{-1} h_{1} h$ and $g \in G L_{n}\left(O_{K}\right)$, all diagonal entries of the diagonal matrix $h_{1} D$ are units in O_{K}. Moreover we know that $\left(h_{1} D\right)^{w}=h_{1}^{w} D^{w}$ is rational, and so all diagonal entries of $\left(h_{1} D\right)^{w}$ are ± 1, which means that all diagonal entries of $h_{1} D$ are roots of unity in K. Thus we have $g=\left(h_{1} D\right)^{-1} h_{1} h \in G L_{n}(F)$.

Lemma 3. Keeping everything in Lemma 2, we have $G \subset G L_{n}\left(O_{F}\right)$.
Proof. By Lemma 1, we may assume that $G(\mathfrak{F}) \cap M_{n}(F)$ consists of diagonal matrices. We take a sufficiently large integer k so that $G\left(\mathfrak{B}^{k}\right)=\left\{1_{n}\right\}$; then Lemma 2 yields $G\left(\Re^{k-1}\right) \subset G(\mathfrak{B}) \cap M_{n}(F)$ and then $G\left(\Re^{k-1}\right)$ consists of diagonal matrices, too. By iterating this operation, we see that $G(\mathfrak{F})$ consists of diagonal matrices and then Lemma 2 yields $G \subset G L_{n}\left(O_{F}\right)$.

Lemma 4. Let K be a nilpotent extension of \mathbf{Q} with Galois group Γ and suppose that 2 is the only ramified rational prime. Denoting a prime ideal of K lying over 2 by \mathfrak{B}, we have $\Gamma=V_{1}(\mathfrak{B} ; K / \mathbf{Q})$.

Proof. Let $\Phi(\Gamma)$ be the Frattini subgroup of Γ. Then it contains the commutator subgroup and the subfield $F(\neq \mathbf{Q})$ corresponding to $\Phi(\Gamma)$ is an abelian extension of \mathbf{Q} and 2 is the only ramified prime number. Let \mathfrak{p} be a prime ideal of F lying over 2 . Then $V_{0}(\mathfrak{p} ; F / \mathbf{Q})$ is induced by $V_{0}(\mathfrak{B} ; K / \mathbf{Q})$ and hence $V_{0}(\mathfrak{B} ;$ $K / \mathbf{Q}) \Phi(\Gamma) / \Phi(\Gamma)=V_{0}(\mathfrak{p} ; F / \mathbf{Q}) . V_{0}(\mathfrak{p} ; F / \mathbf{Q})=\operatorname{Gal}(F / \mathbf{Q})$ yields $V_{0}(\mathfrak{P} ; K / \mathbf{Q})$. $\Phi(\Gamma)=\Gamma$ and the property of the Frattini subgroup implies $V_{0}(\mathfrak{B} ; K / \mathbf{Q})=\Gamma$. Hence \mathfrak{B} is fully ramified and the order of the quotient group $V_{0}(\mathfrak{P} ; K / \mathbf{Q}) / V_{1}(\mathfrak{P}$; $K / \mathbf{Q})$ divides $N \mathfrak{B}-1=1$, which means $V_{0}(\mathfrak{F} ; K / \mathbf{Q})=V_{1}(\mathfrak{B} ; K / \mathbf{Q})$.

Proof of Theorem. We use induction on the degree [$K: \mathbf{Q}$]. By virtue of Lem-
ma 3 in [3], we may assume that the number of ramified rational prime number is one, and let it be p. We claim that G is contained in $G L_{n}(F)$, where F is the maximal abelian subfield of K. Then Theorem on p. 142 in [1] completes the proof. If p is odd, then K is a cyclic extension of \mathbf{Q} as in [3] and so the claim is obvious. Suppose $p=2$; then Lemma 3 and Lemma 4 yield that G is contained in $G L_{n}(F)$.

Remark. It is a problem to consider a general algebraic number field as a base field instead of \mathbf{Q}. Let K / F be a Galois extension of algebraic number fields, and G a $\operatorname{Gal}(K / F)$-stable finite subgroup of $G L_{n}\left(O_{K}\right)$. If K is totally real, then one generalization of the notion of being A-type is that G is already in $G L_{n}\left(O_{F}\right)$. But this is not adequate because there exists a counter-example when K / F is unramified. Nevertheless, it seemed not necessarily to be off the point, since the existence of a certain kind of element in G induces the existence of a proper intermediate subfield of K unramified over F. So, we asked the role of the existence of an unramified proper intermediate field. (c.f. p. 261 in [2].) But D. A. Malinin gave a following example in [4]: Set

$$
K=\mathbf{Q}(\alpha, \beta), F=\mathbf{Q}(\alpha \beta) \quad \text { for } \alpha=\sqrt{2+\sqrt{2}}, \beta=\sqrt{3+\sqrt{2}} .
$$

Then K / F is not unramified and for

$$
g=\left(g_{i j}\right), g_{11}=-g_{22}=-\beta, g_{21}=-g_{12}=-\alpha,
$$

$G=\left\{ \pm 1_{2}, \pm g\right\}$ is a $\operatorname{Gal}(K / F)$-stable subgroup of $G L_{2}\left(O_{K}\right)$. This seems to be the first example such that K / F is not umramified and G is not in $G L_{n}\left(O_{F}\right)$ up to roots of unity, although it is $\operatorname{Gal}(K / F)$-stable.

We can give another example: Let n be a natural number and F an algebraic number field containing nth roots of unity, and ε a unit in F, which is not a root of unity. Put $K:=F\left(\varepsilon^{1 / n}\right)$, which is a not necessarily unramified but abelian extension of F. For a cyclic permutation $\sigma:=(1,2, \ldots, n) \in \mathbb{S}_{n}$ and for $a_{1}=\cdots$ $=a_{n-1}=\varepsilon^{1 / n}$ and $a_{n}=\left(\varepsilon^{1 / n}\right)^{1-n}$, we put

$$
S=\left(a_{i} \delta_{\sigma(i), j}\right),
$$

where $\delta_{i j}$ denotes Kronecker's delta function. Then $S^{n}=1_{n}$ is easy and

$$
G:=\left\{\left.\left(\begin{array}{ccc}
\varepsilon_{1} & & 0 \\
& \ddots & \\
0 & & \varepsilon_{n}
\end{array}\right) S^{i} \right\rvert\, \varepsilon_{i}: n \text {th root of unity }\right\}
$$

is a $\operatorname{Gal}(K / F)$-stable finite subgroup of $G L_{n}\left(O_{K}\right) \cdot G$ is not contained in
$G L_{n}\left(O_{F}\right)$ up to roots of unity.
Is there an example of a $\operatorname{Gal}(K / F)$-stable finite subgroup G in $G L_{n}\left(O_{K}\right)$ such that G is not contained in $G L_{n}\left(O_{L}\right)$ for the maximal abelian subfield L of K over F, or what can we expect?

Malinin announced good results in [5], but the details are not available yet.

REFERENCES

[1] Y. Kitaoka, Finite arithmetic subgroups of $G L_{n}$, II, Nagoya Math. J., 77 (1980) 137-143
[2] ——, Arithmetic of quadratic forms, Cambridge University Press, 1993
[3] -, Finite arithmetic subgroups of $G L_{n}$, III, Proc. Indian Acad. Sci., 104 (1994) 201-206
[4] D. A. Malinin, Isometries of positive definite quadratic lattices, ISLC Mathematical College Works. Abstracts, Lie-Lobachevsky Colloquium. Tartu. October 26-30, 1992
[5] -, Lecture Notes in Mannheim, 1994

Corrections to [3]

As stated in the introduction, the definition of A-type in [3] is not adequate, and we should adopt the definition in this paper. Then the results are true with the following minor modifications in the proof of Lemma 3:

Page 203, line 6: $\varepsilon_{i} \sigma\left(L_{i}\right)=L_{i}$ should be " $\varepsilon_{i} \sigma\left(L_{i}\right)=L_{s(i)}$ for some permutation $s \in$ $\mathfrak{S}_{m}{ }^{\prime \prime}$.

Page 203, line 12: The displayed equation is numbered by (2).
Page 203, line 18: $\varepsilon_{i} \eta\left(L_{t}\right)=L_{i}$ should be " $\varepsilon_{i} \eta\left(L_{i}\right)=L_{s(i)}$ for some permutation $s \in \mathbb{S}_{m}$ ".

Page 203, line 19: $\mu\left(L_{i}\right)=L_{i}$ should be $\mu\left(L_{i}\right)=L_{s(i)}$.
Page 203, line 19: $\eta\left(O_{K^{\prime}} L_{i}\right)=O_{K^{\prime}} L_{i}$ should be $\eta\left(O_{K^{\prime}} L_{i}\right)=O_{K^{\prime}} L_{s(i)}$.
Pabe 203, line 19-line 20: Insert "that the permutation s is the identity and" between implies and $\eta(x)$.

Page 203, line 35: (1) should be (2).
Theorem 2 on p. 205 is improved as follows:
Page 205, line 9: $G L_{n}\left(O_{K}\right)$ should be " $G L_{m}\left(O_{K}\right)$ for any natural number m,".

Graduate School of Polymathematics
Nagoya University
Chikusa-ku, Nagoya 464-01
Japan

[^0]: Received April 3, 1995.
 Partially supported by Grand-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

