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1. Let F = F(g,n) be an oriented surface of genus g s l with n<2 boundary
components and let M(F) be its mapping class group. Then M(F) is generated by Dehn
twists about a finite number of non-bounding simple closed curves in F ([6,5]). See [1] for
the definition of a Dehn twist. Let e be a non-bounding simple closed curve in F and let E
denote the isotopy class of the Dehn twist about e. Let N be the normal closure of E2 in
M(F). In this paper we answer a question of Birman [1, Qu 28 page 219]:

THEOREM 1. The subgroup N is of finite index in M(F).

In fact we prove somewhat more:

THEOREM 2. If F is closed and has genus two or three, then the normal closure of E3 is
of finite index in M(F).

THEOREM 3. / / F has genus two and has a single boundary component, then the
normal closure of E2 or E3 is of finite index in M(F).

On the other hand we prove:

THEOREM 4. / / F has genus two and has « s O boundary components, then the normal
closure of Ek is of infinite idex in M(F) for all k>3.

The case g = l, n = 0 gives the group M = SL(2, Z) [1] and a Dehn twist is

represented by a matrix conjugate to the parabolic matrix E = I I. Let Nk be the

normal closure of Ek. Then Nk is of index 6, 24, 48, 120 for k = 2, 3, 4, 5 (respectively)
and is of infinite index if n >5 [9]. The case g = 1, n = 1 gives the group M = B3, the
braid group on 3 strings [1] and a Dehn twist is represented by one of the standard braid
generators o. Let Nk be the normal closure of cr\ Then Nk is of index 6, 24, 96, 600 for
k = 2, 3, 4, 5 (respectively) and is of infinite index if n > 5.

2. Proof of Theorem 1. Let F = F(g,0), g>l. Let Sp(2g,R) be the symplectic
group of rank 2g matrices with coefficients in the ring R = Z or Z/mZ. If we think of the
underlying symplectic space on which this symplectic group acts as being the homology
group HX(F', R) with its natural symplectic form coming from the algebraic intersection
number, then we have a natural map M(F)^>Sp(2g, R) which is actually onto [7 p. 178].
By a k-chain of simple closed curves in F we will mean a sequence c(), cuc2, • • • , ck_x of
homologically independent simple closed curves in F such that c, and cy intersect if and
only if \i—j\ = 1 and then only once geometrically. Theorem 1 will follow from:
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PROPOSITION 2.1. Let F = F(g,0) and let N be the normal closure of E2 in M(F).
Then N is the kernel of the natural map

<p:M(F)^Sp(2g,Z/2Z).

Proof. An easy calculation shows that N is contained in the kernel of the map q>. Let
<p':M(F)^>Sp(2g,Z) be the map giving the action of M(F) on //,(F,Z). Then <p' is
surjective ([7] p. 178) and q> is the composite of epimorphisms

M{F)-*Sp(2g,Z)^Sp(2g, ZI2Z).

We will prove (a) that N contains the kernel of the first map and (b) that the image of N
in Sp(2g,Z) is exactly the kernel of the second map. For (a) we note that by [10] the
kernel Ig of the map <p' is generated by (i) Dehn twists about bounding curves, and (ii)
bounding pairs. Here a bounding pair is a product GH~l, where G and H are Dehn twists
about disjoint non-bounding simple closed curves M F which together bound in F. This
kernel is called the Torelli group. To prove (a) it will suffice to show that N contains all
generators of types (i) and (ii). For generators of type (i) we will prove the following
more general result:

LEMMA 2.2. Let F be a surface of genus g > 0 with at most one boundary component.
Then the normal closure N of E2 contains the Dehn twists about all bounding curves.

Proof. First note ([6] or [1]) that if C is any Dehn twist about a non-bounding curve
in F, then there is an element a of M(F) such that aEa'1 = C. It follows that C2 belongs
to N. Now note that if d is a bounding curve in F with Dehn twist D, then there is another
bounding curve d' with Dehn twist D' such that d' bounds a surface of strictly smaller
genus (possibly zero) than does d and such that d and d' together bound a genus 1 surface
containing a 3-chain of simple closed curves x,y z with Dehn twists X,Y,Z. Now x and z
are disjoint curves and so X and Z commute. This fact and [6, Lemma 3] implies that

DD' = XZYXZY2XZYXZ (*)

lies in N. It easily follows by induction that each such D belongs to N. This proves the
Lemma and shows that the subgroup generated by Dehn twists about bounding curves lies
inN.

For generators of type (ii) we first note that for any bounding pair BD~l there is a
(2g + l)-chain c0, c1( c2,. . . , clg such that b and d only intersect some ck for fixed odd k
and then only once. Let

w = C0C\C2C3... Cg_2Cg_iCgCg_iCg_2... CJCQ.

Then w is an involution of F [1] and satisfies w(b) = d. One first notes that w belongs to N
and so BwB~lw~l = BD~l also belongs to N. This proves case (ii).

We next show that the image of N in Sp(2g, Z) is equal to the kernel of the natural
map Sp(2g,Z)^>Sp(2g,Z/2Z). We note that the image of D in Sp(2g,Z) is a primitive
symplectic transvection T and that the normal closure of T2 is a finite index in Sp(2g, Z)
since by [8] it is equal to the kernel of the map Sp(2g, Z)—»Sp(2g, Z/2Z). Theorem 1 now
follows.
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3. Proof of Theorem 2. Now suppose that F = F(2, 0) and let N be the normal
closure in M(F) of E3. We want to show that N contains /2. Again [10] shows that I2 is
generated by Dehn twists about bounding curves only, since there are no bounding pairs
in this case.

LEMMA 3.1. Let F be a surface of genus g with or without boundary and let N be the
normal closure in M(F) of E3. If D is the Dehn twist about a bounding curve d in F which
bounds a genus 1 subsurface, then D lies in N.

Proof. By the hypothesis we see that there is a 2-chain a, b in F such that d is
isotopic to the boundary of a tubular neighbourhood of a U b. Then one calculates that
D = (ABA)4. Now ABA = BAB and so

D = ABAABAABAABA = ABAABABABABA

= ABAAABAABABA = (AB)AAA(AB)~lABBAABABA

= (AB)AAA(AB)-lABBABABBA = (AB)AAA(AB)'lABBBABBBA

which clearly belongs to N.

Returning to the case where g = 2 and F is closed this lemma shows that N contains
all Dehn twists about bounding curves and so contains l2. Again [8] shows that the image
of N in 5/7(4, Z/3Z) is equal to the kernel of the natural map 5/7(4, Z)-» 5p(4, Z/3Z).

Now suppose that F = F(3,0) and that N is the normal closure of E3. To show that N
has finite index in M(F) it will suffice to show (i) that I3DN has finite index in I3 and (ii)
that the image of N in M(F)/I3 = Sp(6, Z) has finite index. In fact this latter fact again
follows from [8]. For (i) we note that by [3] there is a map T : / 3 - > / 1 where A is a free
abelian group of rank 14 and by [4] the kernel K of T is the subgroup generated by twists
on bounding curves. Since F has genus three and is closed we see that any bounding curve
bounds a surface of genus 1 and so Lemma 3.1 shows that any Dehn twist about a
bounding curve lies in N. Thus N contains K and we now need only show (i)' r(/3 l~l N)
has finite index in A. Since I3/K is generated by the images of bounding pairs (i)' will
follow from the fact that if BD~i is a bounding pair, then (BD~')3 = B3D~3 belongs to N.
This shows that in fact

/3/(/3 n N) = T(/3)/T(/3 n AO = (Z/3Z)14

and so M(F)/N is an extension of 5p(6,Z/3Z) by (Z/3Z)14. This concludes the proof of
Theorem 2.

4. Proof of Theorem 3. Let F = F(2,1) be a genus 2 surface with a single boundary
component and let A' be the normal closure of E2. Let T be the subgroup of the Torelli
subgroup /2,i generated by the Dehn twists about bounding curves. Let 7], i = 1, 2, be the
subgroup of T generated by the Dehn twists about bounding curves of genus i. Here the
genus of a bounding curve is the genus of the surface that it bounds. Clearly T is
generated by 7j and T2, since F has genus 2. Note that there is only one (isotopy class of)
bounding closed curve of genus 2, namely the curve parallel to the boundary component.
It follows that T2 is in the centre of T. Now by Lemma 2.2 we see that N contains all of T.
Again [4] shows that T is the kernel of the map r:I2i—>A where here A is a free abelian
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group of rank 4. An argument similar to that in §3 shows that

/I,2/(/2,, n N) = T(/2,,)/T(/2,, n N) = (Z/2Z)4.

This now shows that M(F)/N is an extension of 5p(4, Z/2Z) by (Z/2Z)4 and so is finite.
Let F be a genus 2 surface with a single boundary component and let N be the

normal closure of E3. By Lemma 3.1 we see that N contains 7, and so to conclude the
argument we must show that some power of the generator of T2 belongs to N. If D' is this
generator, then by (*) we have

D' = D~lXZYXZY2XZYXZ,

where D is the Dehn twist about a genus 1 bounding curve not meeting x, y or z. Thus

D'k = Dk(XZYXZY2XZYXZ)k,

for all k. Now X, Y and Z satisfy the "braid relations": XZ = ZX, XYX = YXY,
YZY = ZYZ and if we now add in the relations X3 = V3 = Z3 = identity coming from N,
then (by the Todd-Coxeter algorithm) we obtain a group of order 646 = 2334 in which the
element ZYXZY2XZYXZ has order 3. By Lemma 3.1 we see that D3 is in N and so D'3

belongs to N as required. Thus T/(T C\ N) is finite; in fact it is Z/3Z. It easily follows that
^(h,i)h(h,i H N) is a finite abelian 3-group and so M(F)/N is a finite extension of
Sp(4, Z/3Z). This proves Theorem 3.

5. Proof of Theorem 4. The theorem will follow for an arbitrary number n
of boundary components if we can prove it for the closed case (n = 0) since for any g and
n there is an epimorphism M(F(g, «))—»• M(F(g, 0)) ([1, §4.1)]. The idea for our proof is to
use a certain matrix representation of M = M(F(2,0)) constructed by Jones [2]. By [1] M
is generated by Dehn Twists Tu . . . , Ts and the Jones representation J of M satisfies

J(T2) =
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where q is an indeterminate. Now note that if (-!)*<? is a fcth root of 1, then each of
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(-l)*/(r ,) , . . . , (—l)kJ(Ts) has order k since an induction shows that for each / < 5, Tk

has the form

{-If Id + (qk~l - qk'2 + ...+ {-\f-2q + (-I)*"1)**' + (qk - \)U

for some matrices W, U. Thus we obtain a representation J' of M/N, where N is the
normal closure of Ek by letting (-l)kq be a kth root of 1 and putting J'(1}) = (-l)kJ(Tj).
Let b be the bounding curve which is symmetric relative to T,,. . . , T5. Then the Dehn
twist about b is B = {TxT2Ttf. Let R=J'(BT3BTj'). Then interchanging the 2nd and 4th

rows and columns of R gives a matrix R' having the form I ) where X = X{q) is a

2 x 2 matrix, t = q12 and / is the 3 x 3 identity matrix. The characteristic polynomial of
X/q6 is

x2 - - Iq1 + q6 + 2q5 - 2q4 + 2q3 + q2-2q + l)/q4

One checks that for k = 4, (with q = i) X is a non-trivial parabolic; and that if k = 6 (with
q = primitive cube root of 1) then X has distinct eigenvalues which are not roots of unity
(they have absolute values equal to 010102. . . and 1/0-10102 . . .). Thus in both cases we
see that R has infinite order. It follows that if k is even and 3 | k, then R has infinite
order. If k = 2(3n ± 1) > 6, then letting q = exp(4mn/k), we see that R has infinite order
by noticing that the absolute values of the eigenvalues of X rapidly converge to
0-10102. . . and 1/010102. . . as M—»°°. One similarly deals with the odd cases using
q = exp(3nin/k) if k = An ± 1 and n is odd and q = exp((3« — l)m/k) otherwise.

The author wishes to thank the referee for some useful comments.

REFERENCES

1. J. Birman, Braids, links and mapping class groups, (Princeton University Press, Annals of
Math Studies #82, 1975).

2. V. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. Math.
126 (1987) 335-388.

3. D. Johnson, An abelian quotient of the mapping class group /„, Math. Ann. 249 (1980)
225-242.

4. D. Johnson, The structure of the Torelli Group II. Topology 24 (1985) 113-126.
5. D. Johnson, The structure of the Torelli Group I. Ann. Math. 118 (1983) 423-442.
6. W. B. R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold,

Proc. Camb. Phil. Soc. 60 (1964) 769-778.
7. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, (Dover, 1976).
8. J. Mennicke, Zur Theorie der Siegelschen Modulgruppe, Math. Ann. 157 (1965) 115-129.
9. M. Newman, Integral matrices, (Academic Press, 1972).

10. J. Powell, Two theorems on the mapping class group of surfaces, Proc. AMS 68 (1978)
347-350.
DEPARTMENT OF MATHEMATICS,

BRIGHAM YOUNG UNIVERSITY,

PROVO, UTAH, 84602, U.S.A.

https://doi.org/10.1017/S0017089500008879 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008879

