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0. Introduction

With differential equations in the neighbourhood of an irregular singular point, it
sometimes happens that formal solutions may converge. For example, this occurs for
Bessel's equation at °° when the parameter is half of an odd integer. In addition, there are
some classical theorems of Perron and Lettenmeyer which give sufficient conditions for the
existence of linearly independent analytic solutions at (generally) an irregular singular
point. Using the principle of reduction of order, such a solution may be used to transform
the differential equation into one whose coefficient matrix is triangularly blocked with an
(n — 1) and 1-block on the diagonal. The solutions of the given differential equation can
thus be obtained by solving a lower dimensional differential equation plus quadrature.

More generally, one may consider a meromorphic differential equation [A] which is
equivalent to [B] whose cofncient matrix is of the form

with square diagonal blocks of dimension at least one. Such a differential equation [A] is
called reducible.

It was shown in (3) (in the distinct eigenvalue case) and later in (6) (without restriction)
that there exist for [B] a formal fundamental solution, corresponding normal solutions,
and normal connection matrices which are all blocked triangularly in the same way. This
allows one to characterise reducibility in terms of conditions involving the block structure
of the invariants.

In an example like (0.1) one can say, roughly speaking, that the zeros in the coefficient
matrix appear also in the solutions of [A]. Hence one may ask how generally this can hold.
If we take, for example, a system [A] corresponding to the n th order equation yM — y = 0,
then

0 1 0 . 0

A(z) =
1
0.
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has a large number of zeros, but every fundamental solution matrix can be seen to have all
non-zero elements. Therefore we cannot expect every zero position of A to imply a zero in
the corresponding position of some fundamental solution. However, if we require that the
non-zero positions of A(z) are contained in a transitive position set u (see Section 1), then
the iteration process of the Picard-Lindelof existence theorem, starting with the / matrix,
could be used to obtain an actual fundamental solution differing from /only in positions
contained in a. For formal solutions, however, this argument does not apply. Nevertheless
we prove in Section 1 the existence of a formal fundamental solution Hof [A] having the
same property, and we furthermore show that the normal solutions and consequently all
the invariants corresponding to (A, H) have the same structure.

Section 2 characterises reducible equations, i.e. equations which are meromorphically
resp. analytically resp. root-meromorphically equivalent to a system [A] as described
above, in terms of their invariants. This allows to check simply by investigation of the
invariants how far a system can be simplified by means of meromorphic resp. analytic resp.
root-meromorphic transformations. Again, this section extends the results of (3), (6) for
the case of lower triangular reducibility.

As an application of the discussions in Sections 1 and 2 we characterise in Section 3 all
formal vector solutions h(z) of [A], which in a natural sense can be said to converge, in
terms of the invariants and show how they can be explicitly found and used to reduce the
size of the system. Since a special case of a convergent formal vector solution is a solution
which is analytic at °° , our results in particular characterise the existence of such solutions
in terms of the invariants. Recently, in determining the index of the differential operator
corresponding to an nth order scalar meromorphic differential equation, B. Malgrange (8)
has given sufficient conditions for the existence of analytic solutions, which may be thought
to generalise the classical Perron and Lettenmeyer theorems. L. M. Hall (5) has recently
given some necessary and sufficient conditions for the same question. They are generally
difficult to apply but in light of the above mentioned correspondence between convergent
formal solutions and invariants, these conditions are equivalent to the vanishing of certain
invariants.

In the case of reduced differential equations whose diagonal blocks have known normal
solutions-, one may find the normal solutions of the full differential equation and calculate
the corresponding invariants explicitly (Section 4). Section 5 covers the "inverse" prob-
lem, namely an explicit construction of a reduced differential equation having given
invariants, provided that the same problem for the diagonal blocks is already solved. In a
final Section 6, we consider certain optimal types of reducibility.

For the notations used in this paper, see (1) and (2).

1. Reduced Systems

Let a be an arbitrary transitive set of positions (/', k), 1 ^ j , k ^ n. We call a n x n-matrix
reduced of type a, if its elements are non-zero only for positions in a. Using the transitivity
of <x, we see that the set of matrices reduced of type a is closed under matrix multiplication.

Given a position set a, there exists a uniquely defined matrix with ones in all positions
included in cr and zeros elsewhere. We call this matrix the incidence matrix and denote it
also by cr. Given a transitive set a, then a permutation TT of {1,. . . , n} yields an equivalent
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MEROMORPHIC DIFFERENTIAL EQUATIONS 165

transitive set, say a, and the corresponding incidence matrices are related by

&=R~'o-R, (1.1)

where R is a permutation matrix determined by IT. We first want to show that we can
choose R in a way that & shows a lower triangular block structure.

Lemma 1. Let a be an incidence matrix corresponding to an arbitrary transitive
position set. Then there exists an equivalent set a whose incidence matrix is lower triangularly
blocked in such a way that a position in a block shows a one iff every position in the same
block does, and that the position indices of the off-diagonal non-zero blocks form a transitive
and antisymmetric set.

Proof. We define for 1 S j , k S n

j~k iff j=k or (j, k) and (k, j) e o: (1.2)

This is an equivalence relation on {1, . . . , n}, and by a suitable permutation we can arrange
that the equivalence classes consist of consecutive numbers. This permutation takes a into
& = R~laR which shows a block structure such that all the positions in a block are equal,
and that the indices of the non-zero off-diagonal blocks form a transitive and anti-
symmetric set. If o- = {\,..., n}2, i.e. the set of all pairs (y, k) ( I S / , fcS n), then there is only
one (diagonal) block of all ones, and we call a trivial. For a non-trivial a this transitive arid
antisymmetric set is non-empty. Then applying a second permutation we can arrange that
&= R~l&R is lower triangularly blocked (see (2, Section 3)). This completes the proof;

We call every transitive position set a for which we can take R = / in Lemma 1 a
normalised transitive set. The normalised sets are the most interesting ones for the
following discussion, however we wish to consider others, too. For a given transitive a, we
call a matrix reduced of type a+ if it is the sum of the identity matrix and a matrix which is
reduced of type a. For normalised cr, this means that a matrix is reduced of type a+ iff it is
reduced of type <x except that it has /-blocks on the diagonal where a has zero-blocks.

Proposition 1. Let[A\ be a meromorphic differential equation, where A(z) is reduced
of type a. Then there exists a formal fundamental solution matrix H(z) = ^(z) exp [Q(z)]
(with in general not normalised Q(z)) such that H is reduced of type a+.

Furthermore, for every such H(z) and every integer v there exists an actual fundamental
solution matrix Y^(z) which is also reduced of type a+ and satisfies

in Sv: (1.3)

Remark. The set of matrices reduced of type <x+ is also closed under matrix
multiplication and the set of all invertible matrices reduced of type a+ forms a group.
Hence, if H=y¥e° is reduced of type a+, then the formal circuit matrix elmL is reduced of
type o-+, too. Therefore we may choose L to be also reduced of type a (see (4, p. 104)).
Since e~° and z~L are reduced of type a+, we have

H=FmzLe°,

where Fm is a formal meromorphic transformation and also reduced of type a+.
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An inspection of the proof of (1, Lemma 2) shows that every formal meromorphic
transformation Fm which is reduced of type cr+ for a normalised cr can be uniquely factored
as

Fm = FaP(z)zK,

where P(z) is a lower triangular matrix polynomial with diag P{z) = I and P(o) = I, Kisa
diagonal matrix of integers, and P(z)zK is reduced of type er+.

Proof. For the proof we may without loss of generality assume that cr is a normalised
transitive set, because the general case follows by applying the same permutation similarity
transformation to all the matrices involved. For such a cr, we proceed by induction over n,
and we may assume cr to be non-trivial.

If n = 1, the proposition is trivial. If n>\, we partition

'ii(z) Ai2(z)1

>2i(z) A22(z)J'

where An is of dimension rc;xny, nx + n2=n, and l ^ n i S n - 1 is chosen so that it
corresponds to the lower triangular block structure of cr. Then we see that A(z) being
reduced of type cr implies Ai2(z) = 0 and Ay; reduced of type cr,, where

CT\ — Cr I I {I, ..., « i } ,

cr2= cr H {ni + 1, ..., n}2.

For / = 1, 2, the set 07 is again transitive and normalised, and by induction hypothesis we
see that [A>y] has a formal fundamental solution matrix Hjj =

 ylrjjeoj, such that H^ is
reduced of type cr).

If we define

H2,(z) = H22(z) ^ H2~2
1(z)A2i(z)Hu(z)dz = V2le°> (1.4)

(for the definition and existence of the formal integral see (6, p. 132)), then

* » • [ £:
is a formal fundamental solution of [A]. In order to show that H is reduced of type <r+, we
rewrite (1.4) as

ro 01 = ro o i r ro oiro oirHnW oi
L H 2 I ( Z ) OJ LO H22(Z)\ J LO HI 2

1 (Z ) JLA 2 1 (2 ) OJLO OJ Z' {' '
Here the integrand is reduced of type a and so is the left side, since the formal integral
assigns to the zero-expression the zero-expression as an antiderivative (see (6)).

To obtain the existence of a reduced actual solution for any reduced formal solution
and for arbitrary v, let the matrix YVt y; be an actual fundamental solution of [A;7] satisfying

YV,JJ = HJJ in SK (1.5)

which is reduced of type cr) (the existence following by the induction hypothesis).
The same argument as in the formal case shows that for
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MEROMORPHIC DIFFERENTIAL EQUATIONS 167

^,2 . (2)= Y_,22(z) j YZ!22(z)A2l(z)Yv,u(z) dz

the matrix

•, 22-1

is a fundamental solution of [A] which is reduced of type a+, provided we define the
integral to mean an antiderivative considered on the Riemann surface of log z, and the
antiderivative of the zero function is chosen to be the zero function. This Yv may not satisfy
(1.3), however there exists a constant invertible matrix

such that

Calculating the product on the left-hand side, we see

Yv< nCn = [ f i l l s / 0 ' , Y,, 11 C,2 = [0]s_ec

We also have Y,, „ = [Vuhj0', therefore

e 'Cue ' = I, e 'Ci2e 2 = 0 in Sv.

This shows that

o11 " y 1
is a transition matrix in Sv, hence for

c=c\c~" ~cri lCi2i = r 7 °
I 0 / J Lc21 c2 2

we have

YVC= [*]s,eo, in particular, Y,, 22C22 =

Utilising Y1/22 = [1I''22]e
O2, we see that

U 0
LO Cz;

is also a transition matrix in Sv, hence

To complete the proof, we expand the product YVQ and see that the (2,1) position is

Ŷ .+ Y^C^t^ke0'.

Multiplying by Y~v\2 = «~°2[^22]s^ we obtain
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The transitivity of a implies that ^22^21 and Y7,22 Y*. 21 both have zeros in positions not in
a. Therefore, if Q , = C2i(l) + C2](2), C2i(l) having non-zero elements only in a, C2X(2)
having non-zero elements only in positions not in o; we see

C2A2) = e-°mse°'.
This shows

where C] is reduced of type a+ and Q is a transition matrix for Sv. Hence

YVQ = H in Sv

and YVC\ is reduced of type a+, which completes the proof.
We next aim to prove that to a given pair (A, H), where both A(z) and H(z) =

^(z)eO ( 2 ) are reduced of type a resp. a+, there correspond normal solutions and
normalised connection matrices being reduced of type a+ for all v. To that extent, we first
state

Proposition 2. Let [A] be a meromorphic differential equation and H= f e ° a formal
fundamental solution of [A]. For every v, assume the existence of fundamental solutions Yv

such that
YV=H in Sm

and that the connection matrices Wv= Y^1 Yv-\ are reduced of type cr+ for some transitive
position set a. Then the normalised connection matrices Vv corresponding to H are also
reduced of type a+ for every v. Furthermore, if Yv are reduced of type a+ for all v, then the
same holds for the normal solutions Xv.

Note that when Q(z) = q(z)I, the proposition follows trivially. Otherwise, for a proof
when Q is normalised, we refer to (6), and the generalisation to arbitrary Q follows from
the discussion at the end of Section 7 in (2).

Propositions 1 and 2 have the following

Corollary. Let [A] be a meromorphic differential equation where A is reduced of type a
for some transitive position set a and letH=^e° be a formal fundamental solution matrix
which is reduced of type a+. Then for every v the normalised connection matrix Vv and the
normal solution Xv are reduced of type a+. Furthermore, if a is normalised and \_AU] is a
diagonal block of [A] in the block structure induced by o; then for every v for which rv is a
Stokes' ray for [Ayy] the diagonal block XViij of Xv is the normal solution corresponding to
(A/j, Hjj) and the Stokes' ray rv, and VVf ;7 is the corresponding normalised connection matrix.
If TV is not a Stokes' ray of [ A^], then VVy ̂ =Iand there are two alternatives: Either [ Ayy] has
no Stokes' rays in which case Xvjj= Hjj (hence Hys is convergent) or Xvji is the normal
solution corresponding to (Ajj, Hjj) and the Stokes' ray of[Ajj] which follows v

The parts of the Corollary which are not immediate consequences of the preceding
Propositions, are obtained by an easy generalisation of the corresponding Korollar in (6),
where a proof is given for a special case of triangular blocking.

A discussion of the off-diagonal blocks of the normal solutions and the connection
system can be found in Section 4.
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2. Reducibility

Let [A] be a meromorphic differential equation. We call [A] meromorphically
reducible if it is meromorphically equivalent to an equation [A] which is reduced of type cr
for some transitive set cr=[= {1,. . . , n}2. In this case we call a the type of reducibility of [A].
We will characterise reducible systems in terms of their invariants. To do this, we now
formulate

Proposition 3. Let cr be a transitive position set, and let F(z) be a formal meromorphic
transformation. Furthermore, let Tv(z) be analytic matrices for z & Sv,\ z\> a {for some
given aSO) and satisfying for some real numbers 0Si r 0 < . . . < Tm_i < 2 TT, rm = T0 + 2TT,

7-, T_i = Tm_!-27r,

Tv(z)sF(z) in S^SiTr-i, TV+1) for v = 0,...,m, (2.1)

Tm(z)=T0(ze~2™) in Sm. (2.2)

// TVj v-i(z) = T~v
l(z) Tv-i(z) are reduced of type a+ for v = 1,..., m, then there exists an

actual meromorphic transformation T(z) such that

Jv{z)=T{z)tv{z), (2.3)
where Tv(z) are reduced of type cr+.

Proof. If cr is trivial or the empty set, then the proposition holds, since in the first case
we can take T(z) = I, and in the second case TVi v-i{z) = I, hence T(z) = Tv(z) is indepen-
dent of vand (2.1), (2.2) imply that T(z) is a meromorphic transformation. Now assume a
to be non-trivial and proceed by induction on n. When n = 1, either a is empty or trivial.
Therefore we may assume n > 1 and also, without loss of generality, a to be normalised.
Then take any partitioning of the incidence matrix a of the form

cr, of dimension n,jcn;, i = 1, 2, where n, ̂ l, nl + n2= n. In the same way, let

T " = \ T T ' a " d F = P F •
L'1,,21 V 22J Lr2 i ^22J

We also may assume F22 to be invertible (otherwise multiply Tv and Ffrom the left by an
appropriately chosen permutation matrix without changing cr), and we conclude from (2.1)
that Tv 22 is invertible, at least for | 2 | large enough, for all v. Hence we may factor

, 12 7^22! \TVi 11 T^ 127^22^, 21 0

JL
_f^ Tv, 12 7^22! \TVi 11 T^ 1

~Lo / JL T
Since TVt „_] = TT1 Tv-\ has a zero block in the (1, 2) position, then calculating the (1, 2)
position in the product we obtain

TVj 12^22 = Tl-i, 12T^-i,22 for v = l , . . . , m.

In light of (2.2), we see that

to / J Lo / J
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is independent of v and defines a single-valued analytic function which is asymptotic to

U F12F2-il

Lo i r
hence f is a meromorphic transformation.

Let us therefore assume without loss of generality Tul2=0 for v = 0,..., m and
consequently F,2 = 0. Then (2.1), (2.2) imply Tv, ̂ F^ in Sw T^ y/(z) = To, y/(z<T2m), and
TZJJTV-I, jj is reduced of type ar~) for / = 1,2. Hence we may, by the induction hypothesis,
assume that there exist actual meromorphic transformations 7};such that for / = 1, 2 and
v = 0,..., m

TVyjj=Tjjf^jj, tVijj reduced of type a*.

So, splitting off a left-hand factor T=diag[7i,, T22] from all the Tm we may assume
without loss of generality that Tv< ti is reduced of type a+j. In this case, we factor

T = r 7 o-irr,,,,, o i f .
" Lt,2 1 JJL o TV,22Y "-21 I*211*11'

and we see

_ f Tui^- i , n 0 I
1 , . . , -1 I ^ ^ - *• A^ -| I .

" * V 1. I yri — 1 / r fi T 1 \ T̂* r 11 — J ft i I

This shows that TVt v-i is reduced of type a+ iff T^-ĵ  2i — TVt 2X has non-zero elements only
in positions in a. Hence for positions not in a, the elements of fV: 2X do not depend on v,
and are therefore functions meromorphic at z=°° . This proves

71/, 2 1 = T2\ + TVi 2\,

where
/r

=\ ^ , T ; 2 2 ]
•,21

is reduced of type cr+.
Therefore

T=

is meromorphic at z = o°, Tv(z) = T(z) TJiz), and this completes the proof of the proposi-
tion.

Remark. If the matrix F(z) in Proposition 3 is formally analytic, then an inspection of
the proof shows that in (2.3) we may take Tto be an actual analytic transformation.

Now let a fixed formal fundamental solution H = iVeo of [A] with normalised Q be
selected, and let e2mL resp. (Vv) denote the corresponding formal circuit matrix resp. the
corresponding normalised connection system. Then we have

Theorem 1. A meromorphic differential equation [A] is meromorphically reducible of
type a iff there exists a diagonally blocked (like Q(z)) invertible constant matrix D and a set &
equivalent to a such that
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e°, D'1e2"LD and D~lVvD forall v

are reduced of type a+.

Remark 1. Utilising Proposition 4, Part 2 and the fact that a product of reduced
matrices is again reduced of the same type, we see that it is sufficient for reducibility if
e°, D'ie2wiLD and D"1 V_Dfor v = 1,..., m are reduced of type &+.

Remark 2. Given a, a matrix C is reduced of type &+ iff its elements outside <r are
zero off the diagonal and one on the diagonal. In other words, the position set where C
differs from I must be contained in &. There is therefore a minimal & such that the
conditions of Theorem 2 for fixed D are satisfied, namely the transitive closure of the
position set where one of the matrices e°, D~1e2mLD and D~l VvD'is different from /. In
general, the possible choices of D will influence &, but if D is strictly diagonal this is not the
case (this happens e.g. if all Sj = 1).

Proof, (a) If [A] is reducible of type a, then [A] is equivalent to a system [A] by
means of a meromorphic transformation T, and A is reduced of type a. Then [A] has,
according to Proposition 1, a formal fundamental solution H=^e°, which is reduced of
type cr+ and Q is.perhaps, not normalised. An additional permutation similarity applied to
[A] normalises Q, and the new H is reduced of type <x+. Using the same notation for the
new objects we conclude Q=Q and TH=HD for a diagonally blocked constant
invertible D. It follows that e° is reduced of type d+. Since D~le2iriLD resp. D"1 VJDare
the formal circuit matrix resp. the normalised connection matrices corresponding to H,
they are reduced of type &+ according to the Corollary of Proposition 2 and the Remark
following Proposition 1. This proves the necessity.

(b) Conversely, let e°, D~le2lTiLD and D"1 V^Dbe reduced of type &+ for all v. Let
H= HD, then e2™£ = D~1e2lTiLD resp. VV = D~X KDare the formal circuit matrix resp.
the normalised connection matrices corresponding to H. We choose L to be reduced of
type (T (compare the Remark following Proposition 3), and define F by

H=FzCe°.

Then F is a formal meromorphic series.
If Xv denote the basic solutions corresponding to H, we define

and we have (in view of Xm(z) = X0(ze~2vi)e27riC, H(z) = H(ze-27ri)e27riC)

fXz) = F(z) in 5, for v = 0,...,m,
fm(z)=T0(ze-2™) in Sm,

%, v.t(z)=fl\z)fv-l(z) = zLeoVue-°z-1; (v = 1,..., m),

and fVt „_! is reduced of type &+. If we apply Proposition 3, then Tj(z) = T{z) T£z), where
T(z) is a meromorphic transformation, and fv are reduced of type &+.

But Xv= T~*XV= TJ<z)zLeo is also reduced of type &+, therefore its logarithmic
derivative A is reduced of type a. Thus Ttakes [A] into [A] and an additional permutation
takes [A] into a reduced differential equation of type a. This completes the proof.
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Remark. The given formal solution H of [A] may be factored as

H=FaP(z)zKzLeo;

here P(z)zK are as in Lemma 2 of (1) and uniquely determined once L is selected, and we
assume that the eigenvalues of L belong to a fixed system of representatives mod 1, where
the zero equivalence class is represented by zero. For example, if H = Ha, then P(z)zK are
the matrices which were selected to form a complete system of formal analytic invariants.
Then, using the proof of Theorem 1 and the Remarks following Proposition 1 resp.
Proposition 3, we see:

A meromorphic differential equation [A] is analytically reducible of type a iff there exists a
diagonally blocked invertible constant matrix D and a set & equivalent to a such that

e°,D~xe2wiLD and D~XVVD for ally

are reduced of type a+, and additionally there exists a factorisation of

P{z)zKD=Fa{z)Pz*, (2.4)

whereFa(z) is an analytic transformation, P(z) a matrix polynomial such that diag P(z) = I,
F(0) = I, K is a diagonal matrix of integers, and P(z)zK is reduced of type &+.

Note that (2.4) is automatically satisfied if (/, /) or (/, i) belongs to a for every pair (i, j),
so that in this case meromorphic and analytic reducibility are equivalent.

We generalise the notion of reducibility in a natural way as follows:
A meromorphic differential equation [A] is said to be v-meromorphically reducible if

there exists an actual o-meromorphic transformation which takes [A] into a system [A],
where A in general is a u-meromorphic matrix and reduced of type a for some non-trivial
transitive position set cr.

Corollary to Theorem 1. A meromorphic differential equation [A] is v-
meromorphically reducible of type a iff there exists a diagonally blocked invertible constant
matrix D and a set cr equivalent to a such that

eQ,D~\2viriLD and D~XVVD for all v

are reduced of type a+.
A proof of this Corollary in a special case can be found in (6, p. 149), and in just the

same way the general case can be derived, using the general form of Theorem 1. We
therefore omit the details of the proof.

Remark 1. Again it is sufficient for u-meromorphic reducibility to require that

e°, D~1e2vnlLD and D~l V»D for v = \,...,mv

are reduced of type <r+.

Remark 2. In many examples, the conditions for u-meromorphic reducibility imply
meromorphic reducibility of a possibility different type. There are, however, cases of
equations which are u-meromorphically reducible, but not meromorphically reducible of
any type. For an example, note that meromorphic reducibility implies that Q can be split
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into at least two parts which are closed under analytic continuation. Hence if we take n = 4
and Q consisting of a single superblock with p = 4, 5 = 1, the corresponding equation
cannot be meromorphically reducible, independent of what the proper invariants are.
However it may be u-meromorphically reducible for v = 2, 4 (take, for example, the
connection matrices to be I).

3. Convergent formal vector solutions

Let h(z) be a column vector of formal logarithmic-exponential expressions which
satisfies a given equation [A]. We call h(z) a convergent vector solution, if all the formal
series in the reduced forms of the components of h(z) are convergent.

Let now [A] be given. The set of all convergent vector solutions of [A] is a vector space
of dimension, say fc, 0 g fc Si n, which is closed under analytic continuation and which has,
in case k § 1, a basis hu ..., hk.

If h is any formal or convergent solution vector of [A] then it has the form

h(z) = He

= ^P(z)eo(z) is a formal fundamental solution and c a constant vector.

h(z) =

where
Therefore we have

and ifij is a linear combination of columns of ¥ corresponding to q,. Hence every i/̂ e'1' is
again a solution of [A] and converges if h(z) converges. Therefore we may without loss of
generality assume that the selected basis consists of vectors ht = ̂ e^Xl = y = k). Selecting
further linearly independent divergent h(z), we can construct a formal fundamental
solution

where the first k columns of Hequal hu ..., hk, and Q is not necessarily normalised.
Since the space of all convergent vector solutions is closed under analytic continuation,

the analytic continuation of hj(l^j^k) depends linearly on h^,..., hk, hence the formal
monodromy factor e2mL of H is reduced of type o"t,where

1.

1.

0.

0.

..1

..1

..0

..0

1

1

1

1

...1

...1

...1

...1

Therefore let without loss of generality L be selected to be reduced of type ak, then (since
zL then is reduced of type o~+

k) we have

H=FzLeu, (3.1)
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where F is formally meromorphic such that the first k columns of F converge and L is
reduced of type ak.

Every fundamental formal solution Hof the form (3.1) for some fc(l Si k ^ n) may be
called partially convergent, and k may be called the rank of convergence. It is clear that a
partially convergent H gives rise to k linearly independent convergent vector solutions,
namely its first k columns, and if we find a partially convergent H where the corresponding
k is maximal, then every convergent vector solution is a linear combination of the first k
columns of H. The problem of finding all convergent vector solutions is therefore reduced
to finding a partially convergent H with maximal k, and the following theorem will
characterise all partially convergent H in terms of invariants.

To do this, let H = We0 with normalised Q be a fixed formal fundamental solution of
[A], with corresponding formal circuit matrix e2mL, normalised connection system (VJ,
and normal solutions Xv. Let finally &k be the transitive set with the incidence matrix

0...0 1...T

0...0 1...1

0...0 1...1

0...0 1...1

crk =

Then we have

Theorem 2. The differential equation [A] has a partially convergent formal funda-
mental solution H of rank k iff it is reducible of type ak to [A],

= [A,, A121

I o A22\'
(3.2)

where [ A u ] is a fcxfe matrix having a convergent formal solution. Furthermore, a formal
fundamental solution H=^e° is partially convergent of rank k iff it is of the form

H=HQ (3.3)

where C= DR with D a constant, diagonally blocked (like Q) and invertible matrix, R a
suitable permutation matrix, such that

C~1e2mLC is reduced of type cr+
k and C~lVvC is reduced of type a t (3.4)

for all v. Finally, for these C the first k columns ofXuC( the normal solutions corresponding to
H) are equal to the same columns of H= HC and a transformation reducing [A] can be
explicitly constructed using these columns.

Proof. Let [A] have a partially convergent solution H= FzLe° of rank k. Then
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where F n is a kxk matrix and, without loss of generality, we assume F n to be invertible
(otherwise apply a permutation to the rows of H which corresponds to a permutation
similarity of [A]). Then we factor

'.F21 /JLO F22-F21FTlFl2

and T is an actual meromorphic transformation which takes (A, H) into (A, H) where

H=Fzce°

is reduced of type at and has a convergent block in the first diagonal position. Therefore
[A] is reduced of type ak, hence of the form (3.2) with [An] having the convergent formal
solution zL"e°>. Note that the transformation T is explicitly determined by the first k
columns of H. Furthermore, there is a unique C= DR with D and R as described in the
Theorem satisfying (3.3), and the pairs (A, HC= M) and (A, H) have the same invariants,
namely C"1 e2mXCand C~x VVC. Using the Corollary of Proposition 2 we therefore obtain
(3.4) for this C.

Now assume [A] to be reducible of type crk to an [A], satisfying (3.2). Then according
to Proposition 1 there exists a formal fundamental solution

0

where Hu is convergent and L is reduced of type ak. Let T be any actual meromorphic
transformation taking [A] into [A]. Then

H= TH

is a formal fundamental solution of [A] which is partially convergent of rank k.
Now let (3.4) be satisfied for some C as described in the Theorem. Then Xv = XVQ

e2mL = C~xe2mLQ and Vv=C~lVvCare the normal solutions resp. the formal circuit
matrix resp. the normalised connection matrices corresponding to H= HC=^e°. From
Xv-i = XVVVand the fact that Vuis reduced of type crt we conclude that the first k columns
of'X,, do not depend on v. From Xm(z) = Xo(ze~2™)e2™L and the fact that e2mX is reduced
of type a\ (so that we can choose L to be reduced of type ak) we see that the first k columns
of Xve~°z~c are single valued functions in the z-plane having as an asymptotic in a full
neighbourhood of °° the first k columns of F = He~°z~L. Therefore these columns of F
converge, hence H is partially convergent of rank k, and the first k columns of Xv are
equal to the corresponding columns of H. This completes the proof.

Remark. In (6) we considered a related, but slightly differently phrased question,
namely whether [A] has a formal fundamental solution H= F^e0 (where z*e° is the
formal root-meromorphic invariant and Fwa formal root-meromorphic series) exists with
at least one column of Fw convergent. This then implied the existence of several linearly
independent convergent formal vector solutions, but did not necessarily give all the
convergent formal vector solutions.
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4. Calculation of invariants for reduced systems

In (2) we remarked that the Closing Theorem guarantees the computability of the
invariants. However, an actual computation requires the knowledge of actual solutions
Xv = H in Su (for some formal fundamental solution H) and setting YV=XVQ, and using
the Closing Theorem leads then to a non-linear system of equations for the CU The
situation becomes considerably easier in the case of a differential equation [A] which is
reduced of type a, where we assume that cr is normalised and the normal solutions of the
diagonal blocks are known. We will see that in this case some Xv can be constructed by
quadrature and the system of equations for Cv becomes linear. Throughout this section, let
cr have the following incidence matrix

1...1 0...0

1...1 0...0

L..1 1...1

where the diagonal blocks of cr are of sizes nyxn;, say, with 1 ^ n,, n1 + n2 = n. A generalisa-
tion to arbitrary (normalised) cr can be obtained by an application of the following
discussion to each diagonal block.

Let A(z) be reduced of type cr, then

|-All(z) 0
L A ( ) A (

and let

H(z) =
\Hu(z)
lH2i(z)

be a fixed formal fundamental solution of [A] which is reduced of type a, too. Then for
y'=l, 2, Hjj(z) is a formal fundamental solution of [A;/], and we assume that the
corresponding normal solutions Xvjj are known. By VVtlj we denote the corresponding
connection matrices (see the Corollary to Proposition 2).

From Section 1 we know that the normal solutions Xv of [A] corresponding to Hhave
the form

v, 21 -^-v,

and by "variations of constants"

Ar,,2iU) = Xv,22{z) | XZ!22(z)A2l(z)X^u(z) dz,

if we choose the antiderivative of X~v]22A2XXVt\X appropriately. Choosing z0 on the
Riemann surface of log z arbitrarily (but | z0 \ large enough), then all the possible
antiderivatives are of the form

(4.1)
j O
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with a constant matrix Q 2 1 . We see that Xw,22^,21— ̂ 21^°' in Sv is equivalent to

y^2. = e - < ^ ^ 2 l ^ 2 . k e ° ' = e-°W2lls,e°<. (4.2)

Let the elements of matrices with subscripts 2, 1 be denoted by corresponding lower case
letters, indexed by subscripts /, k, where nt +1 = / = n, 1 g k S nx. Then we see that

yv,jk{z)^>® as z^>°°, arg Z = T, (4.3)

if r^ TV is chosen such that

Tv-i<T<Tv+1,e
q"(z)~qilz)^0 as 2^00, arg Z = T. (4.4)

This implies (if fvjke
qk~q< denotes the (7, k) element of X ,̂ 22^21 X,, u)

cvJk= \ U,jk{OeqkU)-q>{° d{, (4.5)

where FVt k denotes some path from 00 to z0 following the ray arg z = r for | z | large.
If there exists no T satisfying (4.4), then either eqkiz)~qtz)^*<x> in Sv or qk = qr In the first

case (4.2) holds whatever the value of cvjk may be. In the second case we have
yv.jk—[ipjk]ss which determines cv^k uniquely (because c = [0]s>, implies c = 0 for a
constant c).

From

K,2i Vu...
we see

K, 21 = V_, 22 n_ , , 21 - n , 21 K,,, , (4.6)

hence from

we obtain
Vw,2i- VI,,22Q_i,2|—Q21 Vp.n- (4.7)

From (4.7) we see that V,, € %(pv) means that certain linear equations in the elements of
C,,,2i and C-_i>21 must be satisfied. These have a unique solution, if we consider the
Closing Condition

which relates Cn^i to Co,2i.
In a simple case we can solve this system explicitly in terms of contour integrals over the

elements of XZ,\2A2iX^u for v = 0,..., m — 1:
Let the leading coefficient of A{z) have all distinct eigenvalues. Then (see (3)) we know
that

XV = H in <?„ (4.8)
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where Sfv is a "large" sector extending from rv+l in the negative direction, until every pair
(/, k) changes dominance in ifv exactly once. Then, according to (4.5), the matrix CVy2X is
explicitly constructable in terms of integrals along certain paths from °° to z0, and so is
^p,2i(z) (take z = z0). If we additionally assume that Vv,2if^0 only if VV,JJ=IJ for j = 1, 2
(which is, for example, true if all the pv are only singletons), then for those v where
V>,,2i^0, we have Xv-X<ji = XVtjj for / = 1, 2, hence (4.6) implies

v, 21 —

where FM generically denotes paths from °° to z which may be different for the elements of
the integrand and are chosen according to (4.5), and the elements in VVt2i which are
non-zero are given as a contour integral over the corresponding element of X~\2A2XX^, x

along a contour indicated in Figure 1.
We summarise these results as follows.

Proposition 4. Suppose [A] is reduced of type a, and that a reduced formal funda-
mental solution H and the diagonal blocks of the corresponding normal solutions and
connection matrices are known. Then the (2,1) blocks of Xv and Vv can be explicitly
calculated from A2i using constant matrices Cv2\ as follows:

= Xv,22(z)\ \
L Jz<>

Q211,
J

Vv,2\=
^ 21

Some of the elements of C^2X are determined by the required asymptotic for X^21 (using
integrals extending to<*>) and the others by the support conditions for VVt21( which represent
linear equations). In the special case of different eigenvalues and "simple" Stokes' rays, e.g.,
the invariants VVt2\ are given by explicit loop integrals.

argz = T,,

v

Fig.l
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5. Construction of reduced differential equations

We now assume that matrices Q, L and Vv (for all v) are given which correspond to a
reducible differential equation of type a and that the diagonal blocks XVjJi of the
normalised solutions Xv are known and are of the form

Xv.a = Ev.,,z
M~>, (5.1)

with a constant matrix MVwj and a matrix Ev<ij of entire functions with non-zero determin-
ant for all z. If X^yydoes not directly satisfy (5.1), then we can modify it by a meromorphic
transformation; see (6). Such transformations can also be used to change the eigenvalues
of Mvj mod 1, and we will use this freedom later to ensure the convergence of certain
integrals.

Our objective is to obtain an explicit integral representation for matrices Xv2i which
together with XVyjj form normal solutions Xv of a differential equation [A] which is
reduced of type a and has the prescribed matrices as invariants.

Let

Tv. „_, = diag[X,,,e~°>z~L< ', Xv,22e-°2z-L^]zLe

Then Tv, v-i(z) has In. as matrices on the diagonal and TVj „_! = / in S'v. The (2, 1) block of
TVj „_! can be written as follows:

Ti. ,,-,,21 = XK 22(z)[ VK 21+i?21(z) K , , , - K, 22&i(z)]XZLu ,,(z); (5.2)

where i?2i(z) denotes the (2, 1) block of diag[e~°Tz"L", e~°2z~L^2]zLe°. By adding a
suitably large integer to all the eigenvalues of MVj2 (for all v), we can arrange that
expression (5.2) tends to zero as z tends to zero along a fixed, but arbitrary ray. Therefore,
if we define •y,, = {£| 0 ^ | f |<c°,arg f = 1/2(TP_I + redirected from 0 to <*>, we have that

1 m f 1
7Uz) = / - - — I (T^^U)-T)dC, for | a r g z - T p | small, (5.3)

defines matrix functions which are analytic near the ray arg z = j m and can be analytically
extended on the whole Riemann surface of log z (by deforming the path of integration
appropriately).

Obviously

[T.M /] (54>

that

Furthermore, we see from

and clearly by definition (using that is single valued) Tv+m{z) = Tj(ze~2™)

that

TJiz) = 1+ t FjZ-' + z-kRv, k(z), (5.5)
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where

^l\ \ (5.6)

(5.7)
Z

From T ^ ^ - ^ ^ s / in S^ we conclude (by possibly deforming the path of integration in
case z e %,.) that Rv< fc(z)-»0 as z-»°°, uniformly in every proper subsector of Sm hence
T,, admits an asymptotic power series expansion in Sw and the coefficients are given by
(5.6).

In order to calculate 771 Tv-\, we first remark that

Tv+m, v+m-i(z) = 7 ; ^(ze-2™), (5.8)

which implies

= \ -^{T^^AO-QdC (5.9)

Therefore we have for any integer k and for small | arg z — TV\

(5.10)

We now take for a fixed v some k such that l t g i / g m - 1 + li. Then TJ^z) is directly defined
by (5.10) for some z0, arg z0 = T,,, whereas Tv-X{z) can be analytically continued to z0 by a
deformation of yv into -y,, (see Figure 2).

This shows

TWzo) - Tv(z0) = ^- ( f - f ) 7^— (Tv, V-2m \Jyii )yJ £- z0

= Tv, v-i(zo)~ ,̂

and using this together with (5.4) we conclude that for all v and

771(zm_1(z) = /+r,_1(z)-7;(z)=7;,, ,_1(z). (5.11)

We now define

and we see that the definition of TKV-i and (5.11) imply X~1Xv_i=V>/. Letting
H/y = FjjZ^iie0' denote the asymptotic expansion of XvJj in Sw we see using (5.5), (5.6) and
defining

H(z) = (/+ I Fjz-') diag [F, „ F22]zLe°,
i

that
XV = H in S,,, (5.13)
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Fig. 2

hence [A] = [X^X"1] is a meromorphic differential equation with H as a formal solution
and Xv resp. Vv as the corresponding normal solutions resp. connection matrices. From
(5.8) we see that

A = X'vXZ1=T'vT-1+Tvdiag[An,A22]T;1

n, X,,22][ °
L.X2i(

' •*• 1/ * * * * * > ^ I -* ^U I I 1 •* * ! / . ^ ^ I I ^ *•** / v --^

which implies A2l=Tv,2i+Tv,21All-A22Tv,2l+XVt22<£'2iXZ^. (5.14)

Using (5.2), we see by differentiation of (5.3) and a partial integration (note that
7^,K-i,2i(^)^0 as £-»0 along arbitrary rays):

1 m f 1

=-— I

2OT M=I Jy f - z

and from (5.4) we conclude

= - -i-: f [ - i - (A22(^) - A22(z)) 7^ „_,,
2771̂ =1 J f-Z

(5.15)

+ X,,,22(z)i?21(z)X-1
n(z).

Note that all the integrals above exist because the integrands are all asymptotically zero as
£—»oo along yF.

Our assumptions on X ^ imply that [Ajj(z)] is a standard example, i.e. of the form

Ajj(z) = AjtOzri'i +... + Ajtrjz~\ Tj Poincarerankof [Ayy].

t-zk
Inserting this in (5.15) and evaluating— for k= - 1 , . . . , r;--l shows that the first

two sums in (5.15) are again of the standard example type with Poincare rank r^
max(r,, r 2 ) - l .
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To evaluate the third sum in (5.15), we take R>\ z | and restrict all the integrals to
| £ | g R . Using that X^^C) = X0,/y(£e~2m>2mX//, the third sum equals

\C\SR

f l v

(5.16)

J j ^
yO

- J -j^

From the definition of ££2\(Q we conclude that

r / on = p — - o. "ir / on

and by differentiation we obtain, considering the (2,1) block only:

<S^1(£>2™) = e-2"L"Se2i(t)e
2niL". (5.17)

Therefore (5.16) becomes equal to

1 m - 1 f 1
- ^ — lim I —X^22{t)2'2M)X^u{£)dt; (5.18)

2m R - » ^=o J^(R) f - z
herein fi^iR) denotes the path indicated in Figure 3.

By an appropriate change of the eigenvalues of M^ 2 we can ensure the convergence of
the above integrals at 0.

Fig. 3

We now take R fixed and add and subtract integrals taken along the circle | £ | = R between
•ŷ  and %t+i- This leads to integrals along closed curves which are zero except for the path
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that includes £= z; in this case we gain a term - XVi22(z)^2i(z)XZ,\i(z) which cancels
against the fourth term in (5.15). The leftover terms are

1 m~a f 1
y~. I j— Xr.M&MXZniQdC (5.19)

where )3^ denotes the (positively traced) arc of the circle | £ | = R which lies between y^
and 7^+1. Along j8M, the integrand in (5.19) can be replaced by a sufficiently large part of its
asymptotic expansion, this alters (5.19) by an error term which tends to zero as R —»°°. The
asymptotic expansion, however, is independent of (JL and does not contain exponential
terms. Additionally, according to (5.17), it is single valued, hence meromorphic. So we see
that (5.19) equals

^ - f 7 ^ - ?P(£)dt, (5,20)

where k is some integer and P(£) a polynomial in £~' which is completely determined by
the formal expansions. Using the residue theory we can calculate this integral explicitly,
the result does not depend on R and gives the part of zkP(z) which is regular at zero. This
finally proves:

If we expand

XIJL,22(z)22l(z)X-J11(z) = zkF0,2l +... + zFk.u2l + FK2l+O(z~l) in S», (5.21)

then

1 m f 1
2i(z)=-—Z (A22(£)-A22(z))7^_li

+ T-Z \ -r—Tr.^iMAntf-AnizyidS (5.22)

hence A2](z) has at most a first order pole at z = 0, but its Poincare rank may exceed the
ranks of [A^] for / = 1, 2. However, if L is diagonally blocked, i.e. i£2x = 0, this will not
happen.

We summarise these results as follows.

Proposition 5. Under the assumptions mentioned for the,diagonal blocks Ayi (together
with their formal fundamental solutions Hn, normal solutions XVt jj, and connection matrices
Vv,jj), and given an "admissible" formal monodromy matrix L and admissible connection
matrices Vv(with the VVijj as diagonal blocks), there are explicitly given "sectorial transfor-
mations" TXz), a formal fundamental solution H(z), and normal solutions Xv(z) having
the given invariants and belonging to a differential equation [A], where

\21 /\
and A2X is explicitly given by (5.21), (5.22).

Thus, given reduced meromorphic invariants zLe° and Vv, we can explicitly construct
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a corresponding reduced differential equation [A] provided that the same problem for the
diagonal blocks is already solved. The construction is, in principle, the converse of
Proposition 4.

6. Block-reducibility

In Section 2 we have seen that the conditions for reducibility involve a similarity
transformation of the matrices Vv and e2mL by means of a diagonally blocked invertible
constant matrix D. This complicates the application of these conditions, since it is not clear
how D should be selected to obtain an optimal type of reducibility. We now will see that
this complication can be avoided if we are willing to consider another type of reducibility
which is slightly restricted but in some sense quite natural.

Let [A] be given, and let the corresponding Q be arbitrarily ordered such that equal
elements appear consecutively, i.e.

Q(z) = diag [qi(z)ISl,..., * ( z )U (6.1)

and qk ^ qt for k ̂  j (see (1, Section 1)). We call a transitive set a consistent with Q if the
corresponding incidence matrix a has the property that in the block structure induced by
the block structure of Q(z) a block of a contains all ones or all zeros as its elements. In this
section we will consider only such transitive sets a- which are consistent with Q for some
suitable ordering of Q satisfying (6.1).

A matrix is called block-reduced of type a if it is reduced of type a for a cr which is
consistent with some Q satisfying (6.1); it is said to be block-reduced of type a+ if it is the
sum of the identity matrix and a matrix which is block-reduced of type a.

A meromorphic differential equation [A] is said to be block-reduced of type cr, if it has
a formal fundamental solution H=tye° with Q satisfying (6.1), //being block-reduced of
type a+ and a is consistent with Q. Note that this definition differs from the corresponding
one in Section 2; in fact [A] being block-reduced of type a implies that the coefficient
matrix A(z) is block-reduced of type a whereas the latter implies the existence of an
H— "We0 which is block-reduced of type a+, however Q may possibly not satisfy (6.1), or
a may not be consistent with Q.

We call [A] v-meromorphically block-reducible of type a if [A] is u-meromorphically
equivalent to, say, [A] which is block-reduced of type cr.

We again call two sets a and d equivalent, if the corresponding incidence matrices are
related by

a = R~lo-R, (6.2)

where R is a block permutation matrix, i.e. Q = R~1QR again satisfies (6.1).
With these notions we can establish an analogue to the results of Section 2. Let again a

formal fundamental solution H = * e ° of [A] with Q satisfying (6.1) being selected, and
let e2mL and (VJ) denote the corresponding formal circuit matrix resp. the normalised
connection system.

Theorem 3. A meromorphic differential equation [A] is v-meromophically block-
reducible of type a iff there exists a set a which is consistent with Qand equivalent with a such
that

https://doi.org/10.1017/S0013091500003047 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003047


MEROMORPHIC DIFFERENTIAL EQUATIONS 185

e°,e2v7riL, and Vv forall v (6.3)

are block-reduced of type a+.

Remark. We see that in condition (6.3) no diagonally blocked D appears. This makes
it easy to check whether (6.3) holds. In case that all the elements of Q are distinct, i.e. all
Sj = 1 for y = 1,..., / then these new notions completely coincide with the ones of Section 2
and (6.3) can be directly seen to be equivalent to the corresponding condition of Theorem
1 resp. its Corollary.

A proof of Theorem 3 follows easily by an inspection of the proof of Theorem 1 and can
be omitted here.

If we want to block-reduce a given [A] as far as possible disregarding the roots which
may come into the new equation, we can see that there always exists a best-possible a in
the sense that every other possible type of block-reducibility for [A] contains a type which
is equivalent to o\ To this extent, the formal solution H of [A] may be taken to be
meromorphically normalised (see (1, Sections 1, 2)). Then

(6.4
where R is a direct sum of superblocks, each of which has the form

0 . . .

0 . . Is 0

(6.5)

and D is diagonally blocked, constant and invertible and commutes with R.
If we take v to be a multiple of the order of R (i.e. of the smallest integer /i. such that

R" = I), then e2mHL = D" is diagonally blocked. Hence if a is the smallest set of
block-indices such that all Vv are block-reduced of type a+, the condition that e° and
e2vmL a r e a j S Q block-reduced of type a+ can be made true by simply adding those diagonal
positions to a where the corresponding blocks of e° or D" differ from /. This additional set
can be minimised by taking v also as a multiple of the order of those blocks of D which are
"roots of unity", i.e. which have an integer power equalling /. Other choices of i; do not
lead to a smaller set a, since the off-diagonal positions have to contain at least all those
index pairs where at least one Vv has a non-zero block, and the additional set of diagonal
positions is minimal, since a diagonal block of e

2v7"L = D"R" is either 0 or the uth power of
the corresponding diagonal block of D.

Thus, apart from locating the non-zero blocks in Q and the blocks in D which are not
roots of unity, we have to find the smallest a such thatall Vv are block-reduced of type a+.

This can be done as follows, using only Vu ..., Vm:
(i) Find the smallest set o-x such that Vu ..., Vm are block-reduced of type &\.
(ii) / / a set a, is defined, take

ai+i = o) U R-'o-.i?1 for j= 1, 2

Follow this procedure until for the first time a^ = o-kt+l.
If a is defined to be the transitive closure ofah, then a is the smallest transitive set such that

all Vv are block-reduced of type a+.
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To see this, observe that <rM = cr^+i, where yx is the order of R, hence jQ S= /x exists, and

aj+l = ax U R~laAR U . . . U R'^^R' (6.6)

Hence R~1aji,R c a,-,, and consequently R~*(TR C a. In view of R~* = .R**"1 we see by
iteration that R~kaRk s a for all integers k. Since V^are block-reduced of type <r+ for
t> = 1 , . . . , m, we have that

is block-reduced of type <r+ for all integers k (note that D~k(I- Vv)D
k has the same

zero/non-zero block structure as /— Vv). The minimality of a is clear by construction and
(6.7).
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