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CR Extension from Manifolds of
Higher Type

Luca Baracco and Giuseppe Zampieri

Abstract. This paper deals with the extension of CR functions from a manifold M ⊂ C
n into directions

produced by higher order commutators of holomorphic and antiholomorphic vector fields. It uses

the theory of complex “sectors” attached to real submanifolds introduced in recent joint work of the

authors with D. Zaitsev. In addition, it develops a new technique of approximation of sectors by

smooth discs.

1 Notations, Generalities, and Statements

Let M be a real submanifold of C
N of codimension l in a neighborhood of a point

po. We assume throughout the paper that M is generic which means that its tangent

plane Tpo
M is not contained in any complex proper subspace of C

N . A wedge W in
C

N is a domain which, for an open cone Γ and a neighborhood B of po, satisfies,

(1.1) ((M ∩ B) + Γ) ∩ B ⊂ W.

The maximal cone such that (1.1) holds for every proper subcone Γ and suitable B

is invariant under Tpo
M and can therefore be identified with a cone Γ in the normal

space (TM C
N)po

, the so called “directional” cone of W at po.
We deal with the space CRM of continuous CR functions on M, that is, the so-

lutions f of the equation ∂̄M f = 0 where ∂̄M f denotes the component of ∂̄ f tan-

gential to M. (When f is not C1 the equation ∂̄M f = 0 must be understood in
the sense of currents.) A large class of CR functions is described as “topological”

boundary values. Thus, if F is a holomorphic function on a wedge W with edge
M, continuous up to M, then its boundary value f = b(F) is a CR function on

M due to ∂̄M f = b(∂̄F) (= 0). Note that by the Ajrapetyan–Henkin edge of the

wedge theorem [1], there is a maximal directional cone Γ for wedge extendibility of
f = b(F). In particular, if we denote by Γ

∗ the polar of this maximal cone, we can

meaningfully define the analytic wave front set of b(F) by W F(b(F))po
= −Γ

∗. The

notion of wave front set for CR functions more general than just boundary values
requires heavy microlocal machinery [5] and goes beyond the purpose of this pre-

sentation. We write complex coordinates as (z, w) ∈ C
l × C

n
= C

N , z = x + i y,
and suppose that M is defined in a neighborhood of po = 0 by a system of equations

y j = h j j = 1, . . . , l with h(0) = 0 and ∂h(0) = 0; we also write r = (r j) j =

(−y j + h j) j . Select one of the w-coordinates, say w1, and define M̃ := M ∩ (C
l
z ×

C
1
w1
×{0}× · · · ). We decompose l as l = l1 + · · ·+ lr , write I1 = (1, . . . , l1), . . . , Ir =
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(
∑

j≤r−1 l j , . . . , l), and decompose z as z = (zI1
, . . . , zIr

). For a set of integers
m1 < · · · < mr, where mr is possibly +∞, we define the notions of weighted ho-

mogeneity and vanishing order. For a function g = g(xI1
, . . . , xI j

, w1), with j ≤ r,
we say that g is homogeneous of weight m j when h(tm1 xI1

, . . . , tm j xI j
, tw1) is a ho-

mogeneous polynomial in t of degree m j . We say that g is infinitesimal of weight m j ,

and write h = Om j , when g(tm1 xI1
, . . . , tm j xI j

, tw1) = O(tm j ). A special definition is
needed for j = r and mr = +∞. In this case we say that g is infinitesimal of weight

+∞, and write g = O+∞, when g(tm1 xI1
, . . . , tmxIr

, tw1) = O(tm) for any m. In other

words, g is divisible by some monomial in xIr
. We recall the Bloom–Graham nor-

mal form for equations of M̃ [7]. Intrinsically associated with M̃ there are integers

m1 < · · · < mr, the so called Hörmander numbers, and l1, . . . , lr with
∑

j l j = l,

their respective multiplicities. For mr < +∞, in suitable coordinates at po, M̃ is
described by the following equations.

yI1
= PI1

(w1) + Om1+1,

yI2
= PI2

(xI1
, w1) + Om2+1,

. . .

yIr
= PIr

(xI1
, . . . , xIr−1

, w1) + Omr+1,

(1.2)

with each PI j
homogeneous of degree m j and such that for any ξo ∈ R

l j , 〈ξo, PI j
〉

is not M̃-pluriharmonic. (A homogeneous polynomial g of weight m j is said to be

M̃-pluriharmonic of weight m j if there exists F holomorphic in C
l+1 such that g =

Im F|M̃ + Om j +1.) When mr = +∞, for any m there are coordinates such that (1.2)

holds with the last equation replaced by yIr
= Om. Then M̃ is said to be of finite

type when mr < +∞, and M̃ is semirigid when each PI j
is a function of w1 only.

The similar notions of finite type and semirigidity for M instead of M̃ apply when

one deals with equations of type (1.2) involving all w-variables instead of w1 only.
We will see in §3 that finite type can be characterized by means of brackets instead

of normal equations: iterated commutators of vector fields tangential to M, of (1, 0)

and (0, 1) type, up to a certain finite number, the highest Hörmander number mr,
span the whole complexified tangent bundle C ⊗R TM. Let us recall that if M is of

finite type, then according to Tumanov [13], CR functions f are boundary values

f = b(F) of holomorphic functions F on a wedge W ; in particular, in this situation,
the notion of wave front set applies to any f .

Theorem 1.1 Let M be a generic manifold of C
N of finite type, and, for a choice of

a complex tangent direction w1, let (1.2) be a normal system of equations for M̃ =

M ∩ (C
l
z × C

1
w1

× {0} × · · · ). We assume that for some j, for ξo ∈ R
l j +···+lr and with

the notation P := 〈ξo, PI j
〉 we have

(1.3)

{
P = P(w1) for a homogeneous polynomial P of degree m j,

P(w1) ≥ 0 for w1 in a sector S of angle > π
m j

.

Then ξo /∈ WF( f ) for all f ∈ CRM .
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The proof will follow in §2. The first of (1.3) is a sort of semirigidity in direction
w1 and codirection ξo. We will exhibit in §4 (Proposition 4.2 and Corollary 4.3) a

large class of hypersurfaces M for which, when (1.3) is violated, we can find a barrier
that is a holomorphic function F with M ⊂ {Im F < 0}. In particular, for these M,

there always exist CR functions f ∈ CRM such that ξo ∈ W F( f ) for ξo
= d(Im F).

This shows that the statement in Theorem 1.1 is sharp.

Remark 1.2. When j = 1 the first of (1.3) is automatically fulfilled. Also, since we

are assuming that PI1
is not M̃-harmonic, it is divisible by |w1|2 and therefore it has

at most 2m1 − 2 zeroes on the unit circle |w1| = 1. In particular, for either of ±P the
second of (1.3) is satisfied.

Remark 1.3. There is a sort of hierarchy between the Hörmander numbers m j whose

geometric meaning will be fully clear from the proof in §2. According to it, (1.3) for
j > 1 gives the control not of the whole WF( f ), but only of its section WF( f ) ∩(
{0} × · · · × {0} × R

l j +···+lr
)
. In fact, the proof of the theorem will consist in prov-

ing CR extension in some extra direction v close to the component normal to M of
the disc attached to M over S, and (1.3) does not give information for v itself but for

vI j ,...,Ir
.

When M is of finite type and semirigid (in the complex of its arguments w), our
proof provides an alternative proof of the extension of any f to a wedge W . The

first conclusion in this direction is due to [5], where a description of W is also given.

We improve this description by specifying the vanishing order in a precise direc-
tion w1. Also, the semirigidity in the first of (1.3) can be released, as well the hypoth-

esis that the equations are in canonical form as in (1.2). What is indeed essential is
the weighted vanishing order; non-M̃-harmonicity in the homogeneous terms is not

needed. Thus, suppose that M is of finite type and that M̃ = M∩(C
l×C×{0}×· · · )

has equations in the (not necessarily normal) form yI j
= hI j

with hI j
= Om j , j =

1, . . . , r.

Theorem 1.4 In the above situation suppose that for j ≤ r with m j < +∞ and for

some ξo ∈ R
l j +···+lr , we have for a suitable constant c

(1.4) 〈ξo, hI j
〉 > 0 for w1 in a sector S of angle at least π/m j and for |xIi

| < c|w1|mi .

Then ξo /∈ W F( f ) for all f ∈ CRM .

(If mr = +∞ in (1.4), the condition |xIr
| < |w1|mr means |xIr

| < |w1|m for all m.)

The proof follows in §2. If hI j
= PI j

+ Om j +1, then clearly the components of hI j
have

the same sign as those of PI j
under the constraint |xIi

| ≤ c|w1|mi ; hence the second of
(1.3) implies (1.4). This shows that Theorem 1.1 is a particular case of Theorem 1.4.

There are two main streams of CR extension: unspecified extension through min-
imality; extension in Levi or higher type directions. As for the first, it was completely

solved by Tumanov [13] (see Trepreau [12] in case M is a hypersurface). He intro-

duced the notion of minimality of M as the absence of proper submanifolds S ⊂ M
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with the same CR structure as M, that is, TCS = TCM|S. Note that if M is of finite
type, then it is minimal. (First, finite type, in the sense that mr < +∞ in a system of

normal equations, is equivalent to finite bracket type according to the subsequent dis-
cussion of §3. But then the presence of S as above would force all brackets to belong

to C ⊗R TS.) He then proved that if M is minimal, then there exist arbitrarily small

discs of defect 0 and hence endowed with infinitesimal deformations which span all
normal directions to M. Collecting all these directions by the edge of the wedge theo-

rem of [1], he got a common wedge W to which all CR functions are forced to extend.

As for the necessity of minimality for such an extension, this is a simpler result (and
even elementary if M is a hypersurface). However, a precise description of W has not

yet been found. Our paper aims at this attempt and deals with extension in directions
produced by higher type commutators. Let us briefly recall the related literature. The

first theorems go back to Ajrapetyan–Henkin [1] and Boggess–Polking [10] and state

extension in directions of the Levi cone. Next, Boggess–Pitts [9] proved extension in
directions shown by iterated brackets up to the first Hörmander number. More re-

cently, in collaboration with Zaitsev, the authors obtained generalizations to the case

of CR functions not defined on the whole M but, instead, on a subwedge V ⊂ M.
Let us point out the main novelties of the present paper. In (1.2) the weighted ho-

mogeneity degrees m1 < m2 < · · · are calculated with respect to w1 and not to the
complex of the variables. Also, m j is not the smallest among the mi ’s. On the con-

trary, most of the other classical CR extension criteria concern the first Hörmander

number in all w directions as in [9], or at least in one selected direction as in [5, The-
orem 11]. (Let us point out that it seems that the method of [9] also can be adapted to

treat this second situation though this is absent from their statements.) The paper by

Baouendi and Rothschild, whose conclusions are the closest to ours, does indeed give
an extension also related to further Hörmander numbers [5, Theorem 8]. But in this

case its method, founded on Fourier calculus, requires an assumption of semirigidity
in the complex of the equations and of the arguments w. To explain the difference,

let us consider, for instance, the manifold M in C
4, with coordinates (z1, z2, w1, w2)

defined by

y1 = |w1|2 + |w2|2 + f1(x1, x2, w1, w2), y2 = |w2|4 + x1|w1|2 + f2(x1, x2, w1, w2),

where f j = O2 j+1. Extension in direction v1 ∼ (1, 0) is clear according to all au-

thors. For extension in directions with non-trivial y2-component, we notice that
the method in [5] fails because of the lack of semirigidity. (Also, [9] and [5, The-

orem 11] cannot be applied because w2 appears in the second equation in a higher

homogeneity degree than in the first.) However our Theorem 1.1 applies for sectors
in the w2-plane, and yields extension in direction v2

= (1 + σ(η), η2 + o(η2)) with

σ(η) infinitesimal with η. Our generalization goes also in another direction (though

this was already achieved in [6]). We are able to obtain extension in more general sit-
uations and to a larger set of directions. Thus, for instance, let M be the manifold in

C
3 defined by (y1 = |w|4 + a|w|2 Re w2, y2 = |w|4). Boggess–Pitts [9] gives extension

for a > 2 in directions which satisfy y1 > −|y2|( a
2
− 1). On the other hand, by the

proof of our Theorems 1.1 and 1.4, we have extension when a >
√

2 in directions

satisfying y1 > −|y2|( a√
2
− 1). We refer to §4 for a complete proof of these claims.
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2 Proof of Theorems 1.1 and 1.4

2.1 Preliminaries on Fα Spaces

Let 0 < α < 1 and denote by τ = reiθ the variable in the standard disc ∆. Let

us recall [15–17] some basics about attaching analytic discs to M in the subclasses
Fα of the Hölder classes Cα. These are the spaces of real continuous functions σ(θ),

θ ∈ [−π, π], that are C1,α out of 0 and for which the following norm is finite:

‖σ‖Fα := ‖σ‖C0 + ‖θσ(1)‖Cα .

(Here σ(1) denotes the first derivative of σ.) We remark that for σ ∈ Fα we must have

θσ(1)|θ=0 = 0, for otherwise θσ(1) → c 6= 0, which implies |σ| ≥ log
|c|
2

+ log |θ|,
contradicting the boundedness of σ. This shows that Fα is continuously embedded

into Cα. It is easy to check that Fα is a Banach algebra. Also, if σi ∈ Fαi i = 1, 2,

then σ1 · σ2 ∈ Fα1+α2 for α1 + α2 < 1, resp. σ1 · σ2 ∈ C1,β with β := (α1 + α2) − 1
for α1 + α2 > 1. In both cases the multiplication is continuous with values in the

respective spaces.

Let T1 denote the Hilbert transform normalized by the condition T1( · )(1) = 0;

it is easy to see that T1 is a bounded operator in Fα. We come back to our mani-

fold M. We write coordinates in C
N ≃ C

l × C
N−l as (z, w) with z = x + i y, choose

a distinguished direction, say w1, and describe M̃ := M ∩ (C
l
z × C

1
w1

× {0} × · · · )

by the system of equations yIi
= hIi

(x, w) with hIi
= Omi . (The Bloom–Graham

normal form is not needed.) We consider in C
N analytic discs A(τ) = (z(τ), w(τ)),

τ ∈ ∆, (the standard disc in C) attached to M̃, that is, satisfying A(∂∆) ⊂ M̃. If

we prescribe an analytic function w1(τ) τ ∈ ∆, the so called CR component, and a
point p = (z, w1) with y = h(x, w1), and look for an analytic completion z(τ) for

A(τ) = (z(τ), w1(τ)) with A(1) = p, we are led to Bishop’s equation

(2.1) u(τ) = −T1h(u(τ) + x, w1(τ)) τ ∈ ∂∆.

In fact if u(τ) solves (2.1), then if we set z(τ) = u(τ) + iv(τ) + z, we obtain that

A(τ) = (z(τ), w1(τ)) is holomorphic, v(τ) = h(u(τ), w1(τ)) for all τ ∈ ∂∆, and
finally A(1) = p. We consider equation (2.1) in the spaces Fα, Fmiα, and C1,β for

which T1 is bounded. We also use the composition properties of hIi
for i ≥ j with

functions in the above classes as stated in [6]. To take advantage of this composition
we assume m jα > 1 (and, to be sharp, α(m j − 1) < 1). Here is our main technical

tool.

Proposition 2.1 Let hIi
be of class Cmi +3 and satisfy hIi

= Omi . Then for any ǫ there

is δ such that if ‖hIi
‖C1,α < δ, ‖w1‖Fα < δ, |x| < δ, then equation (2.1) has a unique

solution u ∈ Fα with ‖u‖Fα < ǫ. Moreover, uI1
∈ Fm1α, . . . , uI j−1

∈ Fm j−1α, and

(uI j
, . . . , uIr

) ∈ C1,β for β = m jα − 1. If w1 depends on some parameter λ ∈ R
d so

that λ 7→ w1λ, R
d → Fα is Ck for k ≤ mi , then also λ, x 7→ (uIi

)λ x, R
d+l → C1,β is Ck.

In particular, there exist mixed derivatives in λ, x, and r up to order k and 1 respectively,

and they commute, that is, ∂r∂
k ′

λ xu = ∂k ′

λ x∂ru for all k′ ≤ k.
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Proof One first solves Bishop’s equation (2.1) in the Fα-spaces by the aid of the im-
plicit function theorem. To this end one considers the mapping F : (λ, x, w1, u) 7→
u − T1h(u + x, w1), R

d × R
l × Fα × Fα → Fα. Then for the partial Jacobian ∂uF

with respect to u, one has ∂uF : u̇ 7→ u̇ − T1∂xhu̇. In particular, if we evaluate at

(λ, x, w1, u) = (0, 0, 0, 0), then this is invertible since ∂xh|0 = 0. The differentiability

with respect to the parameters in the space Fα is also clear in view of [16, Proposi-
tion 11].

We show that the components uIi
, i ≥ j, of the solution to Bishop’s equation,

as well as their harmonic conjugates vIi
, are in fact in Fmiα for i < j (resp. C1,β

for i ≥ j) with β := m jα − 1. We also prove differentiability in the parameters

with values in this space. The key point is that the composition ϕ((1 − τ)α), and in
bigger generality ϕ(w1) for w1 ∈ Fα, w1(1) = 0, with ϕ = Omi , belongs to Fmiα for

i < j (resp. C1,β for i ≥ j). We put z(τ) = u(τ) + iv(τ) + z with v = T1u and

z = x + ih(x, w), and also write τ = eiθ on ∂∆. We can check that if zIi
(τ) ∈ Fkα

for k ≤ mi − 2, then in fact z(τ) ∈ F(k+1)α. In fact, v gains regularity at each step

because hIi
= Omi together with the fact that if σ(θ) ∈ Fkα and σ(0) = 0, then

|θ|ασ(θ) ∈ F(k+1)α due to

∣∣ (|θ|ασ(θ))(1)
∣∣ =

∣∣ |θ|α−1σ(θ) + |θ|ασ(1)(θ)
∣∣ ≤ c|θ|(k+1)α−1.

But the Hilbert transform interchanges the F(k+1)α regularity from v to u and thus

z(eiθ) ∈ F(k+1)α. This completes the proof when i < j. On the other hand, when
i ≥ j, in order to pass from F(mi−1)α to C1,β we must prove that (θαu)(1)

= θα−1u +

θα−1(θu(1)) belongs to Cβ . But in fact, since both u and θu(1) are in C(mi−1)α and

are 0 at θ = 0, then their product by θα−1 is in Cβ as one can easily check by the
Hardy–Littlewood Lemma. It follows that (θαu)(1) ∈ Cβ and hence θαu ∈ C1,β .

Thus u(eiθ), and hence z(eiθ) itself, is in C1,β . As for the differentiability on x and on
the parameters, it is a variant of [6, Proposition 15] by the same feed-back argument

as above.

We can think of the family of discs produced by the above statement as a defor-
mation of the disc A(τ) ≡ 0 which is a trivial solution to Bishop’s equation. By the

next statement we show how it is possible to make infinitesimal deformations of discs
which are no longer assumed to be small.

Proposition 2.2 Let hIi
∈ Cmi +3 satisfy hIi

= Omi , let w̃1(τ) ∈ C1,β , w̃1(1) = 0

be small in Fα (not necessarily in C1,β), and let ũ(τ) ∈ Fα be a solution of Bishop’s
equation ũ = −T1h(ũ, w̃); in particular ũIi

∈ C1,β for any i ≥ j according to Proposi-

tion 2.1. Then for any w1(τ) with ‖w1− w̃1‖C1,β < δ, |x| < δ, there is a unique solution

u ∈ Fα with uIi
(τ) ∈ C1,β for all i ≥ j of Bishop’s equation with ‖uIi

− ũIi
‖C1,β <

ǫ for all i ≤ j. Moreover, if λ 7→ (w1)λ is Ck, k ≤ mi , then also λ, x 7→ (uIi
)λ is Ck.

Proof In the present situation we define F : R
d × R

l × C1,β similarly as in the proof

of Proposition 2.1 and wish to prove that ∂uF is still invertible. For this purpose
it is enough to show that ∂uhIi

(ũ, w̃) is small in C1,β-norm. But in fact recall that

|∂xhIi
(u, w)| = O(|w|2) and therefore ‖∂xhIi

(ũ, w̃)(1)‖Cβ ≤ c‖w̃1‖Cβ‖w̃(1)
1 ‖Cβ ≤ ǫ.
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2.2 Construction of a Singular Disc Attached to M with Controlled Normal
Component

Let us suppose that (1.4) is fulfilled. It is not restrictive to assume that the sector
Cw1

where g ≥ 0 contains (1 − τ)αiel+1, τ ∈ ∆. (Here el+1 is the unit vector of the

w1-plane.) Let α satisfy αm j > 1, α(m j − 1) < 1. For a small real parameter η > 0
we define w1(τ) = (w1)η(τ) := η(1 − τ)αiel+1. We attach to M̃ a family of Fα-discs

A(τ) = Aη(τ) whose w1-component is w1(τ). We recall from Section 2.1 that for

i ≥ j, the function R → C1,β , η 7→ (zIi
)η(τ), is Cmi . We also write zIi

(τ) instead of
(zIi

)η(τ), zIi
(τ) = uIi

(τ) + iT1vIi
(τ), and finally A(τ) = (z(τ), w(τ)). We note that

we have ∂s
ηvIi

|η=0 ≡ 0, and ∂s
ηuIi

|η=0 ≡ 0, for all s ≤ mi −1. This is clear for s = 0, 1.

If it is true for any s ≤ mi − 2, then it is also true for s = mi − 1, due to hIi
= Omi by

a feed-back procedure. If we then Taylor-expand ∂rvIi
at η = 0, we get

(2.2) ∂rvIi
=

∂mi
η ∂rvIi

|η=0

mi !
ηmi + o(ηmi ).

By a similar argument we can also prove that

(2.3) |vIi
| ≤ c|w1|mi , |uIi

| ≤ c|w1|mi .

In fact, in the classes Fkα regularity and vanishing order are coincident. Thus the

equation vIi
= hIi

gives control of the vanishing order of vIi
which is transferred as

regularity to uIi
through the Hilbert transform, and again as vanishing order to vIi

. In

this way we can prove that each vIi
and uIi

belongs to Fmiα (and also to C[miα],{miα})

where [miα], resp. {miα}, is the integer, resp. fractional, part of miα. Recall that if
ξo is, say, the unit vector in the l ′ := l1+···+l j−1+1-direction, we have 〈ξo, h〉 ≥ 0 if w1

is in a sector S of angle greater than
m j

π and |xIi
| ≤ c|w1|mi . We first observe that this

latter condition |xIi
| ≤ c|w1|mi is automatically fulfilled by the components xIi

= uIi

of our discs A(τ), due to (2.3). We show now that ∂rvl ′ < 0. In fact we have in this

situation

〈ξo, ∂
m j
η vl ′〉|η=0 ≥ 0 for all τ ∈ ∆̄.

Hence (1.4) yields, through Hopf ’s Lemma,

(2.4) 〈ξo, ∂r∂
m j
η vl ′〉|τ=1η=0 = −c < 0.

By (2.2) we conclude 〈ξo, ∂rvl ′ 〉|τ=1 = −c ′ηm j < 0, for any η sufficiently small.

We fix such a small η and, by rescaling, we even suppose η = 1, and we define

vo = ∂rv|τ=1. According to (2.4) we have 〈vo, ξo〉 < − c
2
.

2.3 Polynomial Approximation of (1 − τ)α in Fγ(∆̄) for γ < α

We have the Taylor expansion

(1 − τ)α
= 1 − ατ − α(1 − α)

2!
τ 2 − α(1 − α)(2 − α)

3!
τ 3 + · · ·

= 1 −
+∞∑

n=1

∣∣∣
(

α

n

)∣∣∣τn.

(2.5)
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We call SN = SN(τ) the partial sum of the series (2.5) for 1 ≤ n ≤ N. Our goal is to
prove the following.

Theorem 2.3 We have SN(τ) → (1 − τ)α in Fγ(∆̄) for any γ < α.

Before giving the proof of Theorem 2.3, let us recall that

‖σ‖Fγ = ‖σ‖C0 + ‖(1 − τ)σ ′‖Cγ .

Hence we must prove that

SN → (1 − τ)α in C0(∆̄), (1 − τ)S ′
N → −α(1 − τ)α in Cγ(∆̄).(2.6)

To prove the first of (2.6) we note that since

|S ′
N(τ)| ≤

N∑

n=1

∣∣∣
(

α

n

)∣∣∣n|τ |n−1 → α(1 − |τ |)α−1,

then in particular the partial sums |S ′
N(τ)| are bounded on ∆, uniformly over N, by

α(1 − |τ |)α−1. In particular, the sequence of the SN ’s is uniformly continuous in ∆̄,

which yields at once the first of (2.6). As for the second of (2.6) we note that

|S ′′
N | ≤

∑

n

∣∣∣
(

α

n

)∣∣∣n(n − 1)|τ |n−2 → α|α − 1|(1 − |τ |)α−2.

It follows that

|((1 − τ)S ′
N) ′| ≤ |S ′

N | + |1 − τ ||S ′ ′
N |

≤ α(1 − |τ |)α−1 + α|α − 1|(1 − |τ |)α−1
= c(1 − |τ |)α−1.

To conclude the proof of Theorem 2.3 it suffices to use the following one real variable

lemma.

Lemma 2.4 Let { fN} be a sequence of real functions such that for any ǫ, fN → 0 in

C0([0, 1 − ǫ]), and

(2.7) | f ′
N | ≤ c(1 − t)α−1 in [0, 1),

with c independent of ǫ. Then fN → 0 in Cγ([0, 1]) for any γ < α.

Proof We have by integration | fN(x) − fN(y)| ≤ c|x − y|α (for a different c). It
follows that for any ǫ and for suitable δ = δǫ we have, when |x − y| < δ

| fN(x) − fN(y)|
|x − y|α |x − y|α−γ ≤ |x − y|α−γ < ǫ.

On the other hand, if |x − y| ≥ δ, then

| fN(x) − fN(y)|
|x − y|γ ≤ δ−γ| fN(x) − fN(y)| ≤ δ−γ(| fN(x)| + | fN(y)|).
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Hence it suffices to prove that fN → 0 in C0([0, 1]). By (2.7) { fN} is equicontinuous.
Given ǫ, we thus have | fN(x) − fN(ξ)| ≤ ǫ uniformly on N for any ξ such that

|x − ξ| ≤ δ, in addition to sup[0,1−δ] | fN | < ǫ for any N ≥ Nǫ. In conclusion, given
x, we take ξ ∈ [0, 1 − δ] with |x − ξ| < δ and then get for any N ≥ Nǫ

| fN(x)| ≤ | fN(x) − fN(ξ)| + | fN(ξ)| < ǫ.

This concludes the proof of the lemma. The proof of Theorem 2.3 is also complete.

2.4 Construction of a Smooth Disc Transversal to M and of Its Infinitesimal
Deformation

We put wN(τ) = Sα
N(τ) − SN(1), let uN be the solution in Fγ to Bishop’s equation

uN = −T1h(uN , wN), and let zN = uN + ivN for vN = T1uN . Let u be the solution to
u = −T1h(u, (1 − τ)α), and set z = u + iv for v = T1u. Since

wN(τ) → i(1 − τ)α in Fγ(∆̄),

and since wN(1) ≡ 0 for all N, (zI j ,...,Ir
)N(τ) → zI j ,...,Ir

(τ) in C1,β ′

(∆̄) by Proposi-

tion 2.1. (Clearly we are supposing γ close enough to α so that β ′ := m jγ − 1 > 0.)

In particular for any ǫ and for large N the discs AN = (zN , wN) are in C1,β ′

and satisfy

∂r(vI j ,...,Ir
)N (1)) = v ′

o for |v ′
o − vo| < ǫ,

uniformly in N. Let Ã = (z̃, w̃) be one of these discs. We are ready to construct

a half-space M+
1 in a manifold M1 which contains M and gains one more direction

by a deformation of the disc Ã such that CR functions extend to M+. For this we

consider Bishop’s equation u = −T1h(u + x, w + w̃), for x ∈ R
l, w ∈ C

n with |x| < δ,

|w| < δ. According to Proposition 2.2, for any ǫ and for suitable δ = δǫ there is a
unique solution u which satisfies ‖u − ũ‖C1,β ′ < ǫ for β ′ < β := kα − 1. We write

p = x + ih(x, w), w) with v = T1u, and define Ap(τ) = p + (u(τ) + iv(τ), w̃(τ). We

also write Ip = Ap|[−1,+1] and define M+
1 =

⋃
p Ip([1 − ǫ, 1]).

Proposition 2.5 M+
1 is a half space in a manifold M1 of codimension l − 1 with

boundary M and inward conormal v ′
o for v ′

o close to vo.

Proof We consider the mapping

Φ : C
n × R

l × [1 − ǫ, 1] → V ′, (w, x, r) → Ip(r) for p = (x + ih(x, w), w).

By Proposition 2.1, Φ is C1,β ′

in the complex of its arguments (w, x) and r up to
r = 1, and we have

Φ
′
(0,0,1)(C

n × R
l × [1 − ǫ, 1]) = TpM + R

+v ′
o.

In particular, Φ extends as a C1,β ′

mapping to C
n × R

l × [1 − ǫ, 1 + ǫ] whose image

defines a manifold M1 = Φ(C
n ×R

l × [1− ǫ, 1 + ǫ]) which contains M+
1 and satisfies

TpM+
1 = TpM + R

+v ′
o.

https://doi.org/10.4153/CJM-2008-052-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-052-x


1228 L. Baracco and G. Zampieri

2.5 End of Proof of Theorems 1.1 and 1.4

First, we recall again that it suffices to prove Theorem 1.4. In fact, for hI j
= PI j

+Om j +1

we have that 〈ξo, PI j
〉 > 0 for w1 ∈ S implies 〈ξo, hI j

〉 > 0 for w1 ∈ S and |xIi
| ≤

c|w1|mi . Hence (1.4) is a consequence of (1.3). Thus, let f be a CR function on M. By

the celebrated Baouendi–Trèves approximation theorem [4], f is the uniform limit
of polynomials on compact subsets of M. By the maximum principle it extends to

all analytic discs whose boundary is contained in this compact set. In particular, it

extends to the half-space M+
1 of §2.4, for this is defined as the union of discs attached

to M. On the other end, by [13] it extends to a wedge W with edge M and directional

cone, say Γ, since we are assuming that M is of finite type. Thus by [1] it extends

to a larger wedge Ŵ whose directional cone Γ̂ is the convex hull of Γ and v ′
o with

〈ξo, v ′
o〉 > 0. In particular, for any F holomorphic in Ŵ , we have ξo /∈ W F(b(F)).

This completes the proof of Theorem 1.4 and hence also that of Theorem 1.1.

We discuss some complements of our Theorems 1.1 and 1.4. We keep our choice

of the w1-direction, select an index i, suppose PIi
= PIi

(w1) and (1.3), or suppose

(1.4), and define Γw1 ,i = convex hull{v ′
o}, where v ′

o ranges through the family of
directions produced by Theorem 1.1 or Theorem 1.4 for different directions ξo and

sectors S. Now we use the Ajrapetyan–Henkin edge of the wedge theorem. In our
setting it allows us to state that all different directions of extension produced by The-

orem 1.1 or Theorem 1.4, and even those obtained as their convex combinations, can

be collected to generate the directional cone of a wedge of extension. Precisely, for any
ǫ there is a wedge V ′ with edge M and directional cone Γ

′
w1

satisfying Γ
′
w1

⊂ (Γw1
)ǫ

and Γw1
⊂ (Γ ′

w1
)ǫ such that CR functions extend from M to V ′. (Here ( · )ǫ denotes

the ǫ conical neighborhood of ( · ). Also, in the above situation we will say that the
cones Γw1

and Γ
′
w1

are ǫ-close.) We can also play with different directions of the

w-plane, say wk. Thus, if we have equations of type ywk ,Ii
= hwk ,Ii

with hwk,Ii
= Omi ,

then through Theorems 1.1 and 1.4 we get directions v ′
wk ,i

, which we collect in a cone

Γ :=
∑

k,i

Γwk,i .

For this cone Γ we have the following.

Proposition 2.6 For any ǫ there is a wedge V ′ with edge M and directional cone Γ
′

which is ǫ-close to Γ, such that CR functions extend from M to V ′.

As already mentioned, the proof is an immediate consequence of Theorems 1.1

and 1.4 with the aid of the Ajrapetyan–Henkin edge of the wedge theorem. Now
we want to discuss the dimensions of Γwk

and Γ. Since we are dealing with various

directions wk, we write mi,wk
, li,wk

from now on. We have the following.

Proposition 2.7 Assume that the equations ywk,Ii
= hwk ,Ii

of M̃ = C
l × C

1
wk

satisfy

hwk,Ii
= Omi and that hwk,Ii

is not M̃-harmonic. Then dim(Γwk
) =

∑
i lwk ,i .

Proof We first prove that dim(Γwk,1) = lwk ,1. We write hwk,1 = Pwk,1(x, wk)+Omwk
,i +1

and know from the hypotheses that for any ξo ∈ R
lwk ,1 , 〈ξo, hwk,I1

(τwk, x)〉 is non-

harmonic. In particular it is divisible by |τ |2 and hence, being of degree mwk,1, it
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has at most 2(mwk,1 − 2) zeroes on the unit circle |τ | = 1. In particular, there is a
sector of angle at least π/(mwk,1 − 1) where it keeps constant sign and thus gives rise

to a direction vo such that 〈ξo, vo〉 6= 0. If we play with all ξo and all corresponding
sectors, we conclude that these directions vo cannot be contained in any proper plane

of R
lwk ,1 .

Now we prove the statement in full generality. For any i we take a system of lwk,i

independent vectors ξ ∈ R
lwk ,i and of corresponding sectors

Sξ = ηie
iθξ (1 − τ)α1 wk, for τ ∈ ∆, with α1 satisfying

1

mwk,i − 1
> α1 >

1

mwk,i
.

We assume η1 ≪ η2 ≪ · · · ≪ 1. This gives rise to a set of extension directions

v ′
= v ′

wk ,i,ξ,Sξ
of the type v ′

= (ηm1

i v ′
I1
, ηm2

i v ′
I2
, . . . , ηmi

i v ′
Ii
, η), η ≪ ηi for all i, with

the property that for each fixed i:

dim
(

Spanξ,Sξ
{v ′

wk,i,ξ,Sξ
}
)

= lw1 ,i .

It is also clear, taking all i and playing with different ηi , that

dim(Spani,ξ,Sξ
v ′

i,ξ,Sξ
) =

∑

i

lwk ,i .

Again, if we play with different directions wk we have the similar result as Proposi-

tion 2.7, that is

(2.8) dim
(∑

k,i

Γwk ,i

)
=

∑

i

(rank{v ′
wk,i

}k).

(In this context the assumption that M is of finite type, that is, mr < +∞ for a system

of equations in Bloom–Graham normal form for the whole M, and not just for its

(l + 1)-dimensional sections M̃, because Proposition 2.7 and formula (2.8) mean
precisely that dim Γ = l.)

3 Hörmander’s Numbers of Submanifolds of C
N

Let T1,0M and T0,1M denote the bundles of vector fields tangent to M which are

holomorphic and antiholomorphic respectively. Let TCM = TM ∩ iTM be the
complex tangent bundle to M; note that its complexification verifies C ⊗R TCM =

T1,0M ⊕ T0,1M. Note that C ⊗R TM is integrable, that is, closed under Lie brackets,
but C ⊗R TCM is not, in general. We introduce a finite interpolation between C ⊗R

TCM and C ⊗R TM. We set L1
= C ⊗R TCM and denote by L j the distribution of

vector spaces spanned by Lie brackets of holomorphic and antiholomorphic vector
fields of length ≤ j. Suppose that for an integer m1 ≥ 2 we have

(3.1) L
j
po

= T
1,0
po

M ⊕ T
0,1
po

M for all j ≤ m1 − 1, L
m1
po

% T
0,1
po

M ⊕ T
1,0
po

M.
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Let dim L
m1
po

/L1
po

= l1; in this situation it is usual to refer to m1 as the first Hörmander

number of M at po, and to l1 as its multiplicity. In case L j
= L1 for any j, we set

m1 = +∞ with multiplicity l1 = l. Next we look for m2 > m1 such that

L
j
po

= Lm1
po

for all j < m2, Lm2
po

6= Lm1
po

,

and set l2 = dim
(
L

m2
po

/L
m1
po

)
; again m2 is possibly +∞. We continue the above

process. We will call M of finite type when commutators span the full C ⊗R TC

po
M.

Thus the above chain will end with a number mr < +∞ or mr = +∞ according
to whether or not the type is finite. Now we want to discuss in greater detail the

first Hörmander number. By the properties of linearity of commutators, one obtains

easily the equivalence of (3.1) to

[X1, [X2, . . . , [X j−1, X j] · · · ]] ∈ T1,0M ⊕ T0,1M

for all Xi ∈ T1,0M ⊕ T0,1M, for all j ≤ m1 − 1

(3.2) [Xǫ1
o , [Xǫ2

o , . . . , [Xo, X̄o] · · · ]] /∈ T1,0M ⊕ T0,1M

for some Xo and some choice of Xǫi
o = Xo or X̄o.

One proves that commutators [X1[X2, . . . , [X j−1, X j] · · · ]po
only depend, modulo

C ⊗R TCM, on the initial values X1(po), X2(po) . . . and not on the choice of the

extended sections. This property is referred to as tensoriality of the iterated brackets
of vector fields. We take a basis of equations y j = h j , j = 1, . . . , l, for M at zo = 0

with h(0) = 0 and ∂h(0) = 0, and also set r j = −y j + h j and r = (r j). We identify
TM

TCM

∼→ TM C
N by the complex structure J, and TM C

N ∼→ R
l by the dual basis to

∂r j . We look closely at Xo in (3.2); assume, say, Xo(po) = wo∂w, and denote by p ′
o

the projection of po on the plane of (x, w). We denote by n − 1 (resp. m − 1) the
occurrences of Xǫ j = Xo (resp. X

ǫ j
o = X̄o) in (3.2). We can prove that

(3.3)

{
J 1

2i
[Xǫ1

o , . . . , Xǫ j , [Xo, X̄o], . . . ](h)(p ′
o) = 0 for all j < m1 − 2

J 1
2i

[Xǫ1
o , . . . , Xǫm1−2 , [Xo, X̄o . . . ](h)(p ′

o) = −∂n
wo

∂̄m
wo

h(p ′
o).

This is a special case of Proposition 3.3. The above relation, together with the fact

that harmonic terms can be removed by change of coordinates, makes (3.3) equiva-
lent, in suitable coordinates, to

(3.4)

∂α
w ∂̄β

wh(p ′
o) = 0, for all |α| + |β| ≤ m1 − 1,

∂α
wh(p ′

o) = 0, ∂̄α
w h(p ′

o) = 0, for all |α| ≤ m1,

∂n
wo

∂̄m
wo

h(p ′
o) 6= 0 for Xo(po) = wo∂w and suitable n + m = m1.

We also write ∂wo
instead of wo∂w and consider the homogeneous term of lowest

degree in the Taylor expansion of h in the wo-plane:

g(τwo) =

∑

m+n=k
m≥1 n≥1

∂m
wo

∂̄n
wo

h(p ′
o)τmτ̄n.
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The above polynomial is real homogeneous and has some non-null coefficient on
account of the third of (3.4). Hence it has only a discrete set of zeroes for |τ | = 1,

that is, for all θ ∈ [0, 2π] but a discrete set, we have
∑

∂m
wo

∂̄n
wo

h(p ′
o)ei(m−n)θ 6= 0.

Sometimes we prefer to use the notation w̃o = eiθwo and then write in this notation

(3.5)
∑

m+n=m1
m≥1 n≥1

∂m
w̃o

∂̄n
w̃o

h(p ′
o) 6= 0.

We also denote by vo the vector in (3.5). We remark that if ξo ∈ R
l verifies 〈ξo, vo〉 6=

0, then

〈ξo, g(wo)〉 ≷ 0 in a sector of the plane Cwo
of width ≥ π

m1 − 2
.

In fact, each gi(τwo) is divisible by |τ |2, and hence |τ |−2〈ξ, g(τwo)〉 has at most m1−2

zeroes for |τ | = 1. Hence (3.3), or its equivalent version (3.4), implies our condition
(1.2).

To go further with our discussion, we need to fix better our notations. We fix num-

bers m1 < · · · < mr (perhaps mr = +∞) and multiplicities li with
∑

i li = l. We take
multiindices I1 = (1, . . . , l1), . . . , Ir = (

∑
i<r li , . . . , l), give weight mi to the xIi

vari-

ables, and define the weighted vanishing order for a function f = f (. . . , xIi , . . . , w)

by putting f = O+∞ when mr = +∞ and f contains some monomial in the xIr
, and,

otherwise, putting f = Om when f (. . . , tmi xIi
, . . . , tw) = O(tm). We then suppose

that the equations of M are presented according to increasing vanishing orders

yI1
= hI1

,

...

yIr
= hIr

,

(3.6)

with hIi
= Omi for any i. We point out that this is not necessarily the normal form

in the Bloom–Graham sense. In fact we are not assuming that each hIi
is in the

form hIi
= PIi

(xI1
, . . . , xIi−1

, w) with 〈ξ, PIi
〉 non M-pluriharmonic for any i and

any ξ ∈ R
li . (In this situation, weighted homogeneity does not serve any purpose.)

To carry on our discussion, we need a description of a basis {X j} of vector fields for
T1,0M. We put rIi

= −yIi
+hIi

, r =
t (r1, . . . , rl), define an (N− l)× l matrix A = (a jh)

by A = −t(∂wr) t (∂zr)−1, and set X j =
∑l

h=1 a jh∂zh
+ ∂w j

. We have

(3.7)
∑

h

a jh∂zh
(rIi

) + ∂w j
(rIi

) = 0 for all i = 1, . . . , r.

Derivation of (3.7) yields

(3.8)






∂β
ww̄∂α1

xI1
· · ·∂αi−1

xIi−1
(a j,Ii

) = 0 for |β| +
∑

j≤i−1

m j |α j| ≤ mi − 2,

∑
h

∂β
ww̄∂α1

xI1
· · · ∂αi−1

xIi−1
(a j,h) = −2i∂β

ww̄∂α1
xI1

· · ·∂αi−1
xIi−1

∂w j
(rIi

)

for |β| +
∑

j≤i−1

m j|α j | ≤ mi − 1.
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Once the equations are ordered as in (3.6), we can introduce for any i ≤ r a
diagram

(3.9) TM
TCM

ϕ1

//

��

R
l

��

TM
Lmi−1

ϕ2

// R
li +···+lr ,

where ϕ1 is defined by [v] 7→ J(v)(∂r) and ϕ2 by [v] 7→ ( Jv)t (∂rIi
, . . . , ∂rIr

). We

have to show that ϕ2 is well defined (in which case the diagram (3.9) is commuta-
tive). To see this, we preliminarily remark that, just by the vanishing condition in

(3.6), we have {∂rIi
, . . . , ∂rIr

}⊥C = Span
R
{∂w, ∂̄w, ∂I1

, . . . , ∂Ii−1
} (normal form be-

ing unessential for this conclusion). Thus our claim is a consequence of the following.

Proposition 3.1 We have Lmi−1 ⊂ Span{∂w, ∂̄w, ∂xI1
, . . . , ∂xIi−1

}.

Proof We must show that

J[Xǫ1
o , . . . , [X

ǫmi−3

o , [Xo, X̄o] · · · ]](rI j
)(po) = 0 for all j ≥ i and for any ǫ.

We recall (3.7) and (3.8) and fix j = i. We use the notation [ · , · ]k to denote brackets

of Xo or X̄o performed k − 1 times. We assume, for instance, Xǫ1
o =

∑
h a1h∂zh

+ ∂w1
,

and begin by remarking that

[ · , · ]mi−1
=

[ ∑
h

a1h∂zh
+ ∂w1

, [ · , · ]mi−2
]

= [∂w1
, [ · , · ]mi−2],

due to a1h(po) = 0 and [ · , · ]mi−2(a1h) = 0. Continuing in this way we end up with

(3.10) 〈[∂β
w1w̄1

, [
∑

h

a1h∂zh
+ ∂w1

,
∑

h

ā1h∂̄zh
+ ∂̄w1

]], ∂̄rIi
〉

= ∂β
w1w̄1

(∑
h

a1h∂zh
(ā1Ii

) − i

2
∂w1

(ā1Ii
) +

∑
h

a1h∂zh
∂̄w1

(rIi
) + ∂w1

∂̄w1
(rIi

)
)

+ · · ·

where β is a biindex of length |β| = mi − 3 and the dots denote similar terms as the
four in the right-hand side of (3.10). Now

∂β
w1w̄1

∂w1
(ā1Ii

) = 0 (by (3.8)),

∂β
w1 ,w̄1

(∑

h

a1h∂zh
∂̄w1

(rIi
)
)

=

∑

γ+δ=β

∑

h

∂γ
w1 ,w̄1

(a1h)∂δ
w1,w̄1

∂zh
∂̄w1

(rIi
).
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Thus, if h ∈ I j for j ≥ i, the above term is clearly 0. Otherwise, either |γ| ≤ mh − 2
and hence ∂γ

w1w̄1
(a1h) = 0, or else |δ| ≤ mi − 2 − mh and hence ∂δ

w1w̄1
∂zh

∂̄w1
(rIi

) = 0.

By the same reason, we have for the remaining term in (3.10):

∂β
w1w̄1

(∑

h

a1h∂zh

)
(ā1Ii

) = 0.

Finally, ∂β
w1w̄1

∂w1
∂̄w1

(rIi
) is also 0, again by (3.8). The proof is complete.

Remark 3.2. Note that ϕ2 is an isomorphism precisely when we have equality in

Proposition 3.1. But this is equivalent to asking that the equations (3.6) be in normal

form.

Let us choose a vector field Xo ∈ T1,0M with Xo(po) = wo∂w; we will also use the

notation ∂wo
instead of wo∂w. We have the following.

Proposition 3.3

J[Xǫ1
o , . . . , [X

ǫmi−2

o , [Xo, X̄o] · · · ]](rI j
)(po) = 0 for all j > i and any ǫ.

If moreover 〈ξo, hIi
〉, restricted to Cwo

× R
l
x, is in the form P + Omi +1 for P = P(wo)

homogeneous of degree mi with mi < +∞, then

J[Xǫ1
o , . . . , [X

ǫm1−2

o , [Xo, X̄o] · · · ]]〈ξo, rIi
〉(po) = −2∂n

wo
∂̄m

wo
(〈ξo, hIi

〉)(p ′
o).

Proof The first statement is a variant of Proposition 3.1. As for the second, in the
same way as in the proof of Proposition 3.1, we get for a suitable |β| = mi − 2

〈[Xǫ1
o , . . . , [X

ǫm1−2

o , [Xo, X̄o] . . . ], ∂̄rIi
〉

= 〈
[
∂β

w1w̄1
,
[∑

h

a1h∂zh
+ ∂w1

,
∑

h

ā1h∂̄zh
+ ∂̄w1

] ]
, ∂̄rIi

〉

= ∂β
w1w̄1

(∑
h

a1h∂zh
(āIi

) − i

2
∂w1

(āIi
) +

∑
h

a1h∂zh
∂̄w1

(rIi
) + ∂w1

∂̄w1
(rIi

)
)

+ · · · ,

(3.11)

where the dots denote similar terms. Now the fourth term disappears by elimination

with the terms in the dots (where it appears with opposite sign). The first and third
terms are not 0, in general. However, they vanish if we apply vector fields not to the

whole rIi
but just to 〈ξo, rIi

〉, because of the hypothesis of semirigidity contained in

the second statement of the proposition. Thus, for the third term, we have

∂β
w1w̄1

(∑

h

a1h∂zh
∂̄w1

)
〈ξo, rIi

〉 =

∑

γ+δ=β

∂γ
w1w̄1

(∑

h

a1h∂
δ
w1w̄1

∂zh
∂̄zh

∂̄w1

)
〈ξo, rIi

〉.

Again, if |γ| ≤ mh − 2, then ∂γ
w1w̄1

aih = 0. If, instead, |δ| ≤ mi − 1 − mh, then

∂δ
w1w̄1

∂zh
∂̄w1

〈ξo, rIi
〉 = ∂δ

w1w̄1
∂zh

∂̄w1
(P + Omi +1) = 0. In the same way one proves that
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the first term in the second line of (3.11) is 0. The only term which survives is the
second (which also appears with the same sign in the dots terms). We thus have

J[Xǫ1
o , . . . , [X

ǫm1−2

o , [Xo, X̄o] · · · ]]〈ξo, rIi
〉 = − i

2
(∂β

w1w̄1
∂w1

〈ξo, ā1Ii
〉 + · · · )

= − i

2
(∂β

w1w̄1
∂w1

∂̄w1
〈ξo, rIi

〉2

i
+ · · · )

= −2∂β
w1w̄1

∂w1
∂̄w1

〈ξo, rIi
〉.

This completes the proof of the proposition.

We assume now that for some vector field Xo with Xo(po) = ∂wo
, for some ǫ =

(ǫ1, . . . , ǫmi−2), and for some ξo ∈ R
li , we have

(3.12) [Xǫ1
o , . . . , [Xǫmi−2 , [Xo, X̄o] · · · ]] /∈ Span{∂w, ∂w̄, ∂xI1

, · , · , ∂xIi−1
}

and

(3.13) 〈ξo, hIi
〉|Cwo×Rl

x
= P(wo) + Omi +1.

It follows that P(wo) = |wo|2Q(wo) with Q real homogeneous of degree mi − 2. Since

Q has at most mi − 2 zeroes on the circle |wo| = 1,

P ≷ 0 for wo in a sector of width >
π

mi − 2
.

Hence we enter in the hypotheses of Theorem 1.4 and conclude that CR functions

on M extend to a new direction vo satisfying 〈ξo, vo〉 ≷ 0. Note that in that theorem
normal equations as in (1.3) are not needed. What is really needed for equations such

as (3.6), is to assume 〈ξo, hIi
〉 = P(wo)+Omi +1 and P ≥ 0 (or P ≤ 0) in a sector > π

mi
.

Naturally, if the equations are normal, we have the significant simplification that
Lmi = Span{∂w, ∂w̄, ∂xIi

, . . . , ∂Imi−1
}. Thus vector fields Xo which satisfy (3.12) do

exist. If for one of them with, say, Xo(po) = ∂wo
, and for some ξo ∈ R

li , (3.13) is also

satisfied, then Proposition 2.6 yields CR extension to some vo with 〈ξo, vo〉 ≷ 0.

4 Comparison with Boggess–Pitts

Let M be a manifold of class Ck+2 which satisfies (1.1) with g homogeneous of degree

k and non M-harmonic (in particular whose first Hörmander number is m1 = k.
Remember that in this situation (1.2) is also satisfied. Let v be the direction normal

to M given by the formula

v =

∑

ǫ

Cǫ J[Xǫ1
o , Xǫ2

o , . . . , [Xo, X̄o] · · · ]](r)(po) where Cǫ :=
1

ǫ+!ǫ−!

with ǫ+ and ǫ− denoting the occurrences Xǫi
o = Xo and Xǫi

o = X̄o, respectively. Note

that the last two occurrences are fixed as X
ǫk−1
o = Xo and Xǫk

o = X̄o. Let Xo(po) =
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∂wo
. By tensoriality of brackets and by the combinatorial remark that the number of

choices of ǫ’s which give rise to the same pair of occurrences m, n is
(

k−2
m−1

)
, one gets

(4.1) v =

∑

m+n=k
m≥1 n≥1

(
k − 2

m − 1

)
1

m!n!
∂m

wo
∂̄n

wo
h(p ′

o).

Again, once the complex plane of Xo(po) is fixed, in our case the wo-plane, there

might be many vectors v = vϕ produced through (4.1) just by replacing wo by eiϕwo.
The result by Boggess–Pitts [9] is that for each of these vectors v, one obtains CR

extension from M to M ′ where M ′ points to a direction v ′ close to v. We first discuss

this extension in case M is a hypersurface of C
N defined, in coordinates (z, w) ∈

C
1×C

n, w = (w1, w ′), for a pair of even integers k and p with p ≤ k−2, for a choice

of a coefficient a ≥ 0, and with the notation wo = (1, 0, . . . ), by an equation

(4.2) y1 = |w1|k + a|w|k−p Re w
p
1 + O(|x1|2 + |w1|k+1 + |x1||w1| + |w||w ′|).

We denote by g = g(w1) the homogeneous polynomial in the right side of (4.2). With

po = 0 and Xo = ∂w1
and with the notation k − 2 = p + 2q, we have extension in

directions vϕ = (icϕ, 0, . . . ) for

cϕ =

(
k − 2
k
2
− 1

)
+ a cos(pϕ)

(
k − 2

p + q

)
.

In particular, if we look for extension down, that is for vϕ with negative first compo-

nent, we have to require k ≥ 4, p ≥ 2. Then vϕ < 0 will occur exactly for ϕ =
π
p

(which yields cos(pϕ) = −1) and

a ≥ (p + q)!q!

( k
2
− 1)!(k − 1 − k

2
)!

.

We compare the above condition with that which is given by sector property. We

consider the restriction of g on the unit circle w1 = eiθ given by g(eiθ) = 1+a cos(pθ).
It is clear that for any choice of a we have g ≥ 0 in a sector of width bigger than π

p

which is in turn bigger than π
k

. Hence by Theorem 1.1 we get holomorphic extension
up.

If we search, instead, for extension down, we can use the following result which

generalizes similar conclusions by Baouendi–Trèves [3] concerning the case k = 4.

Proposition 4.1 We have g < 0 in a sector of width > π
k

if and only if

a >
1

cos
(

pπ
2k

) .

Proof Let a > 0; it is clear that 1 + a cos(pθ) attains its minimum at θ =
π
p

. It is

also clear that in order that the sector where g < 0 have an angle bigger than π
k

, it is

necessary and sufficient that a cos(π+
pπ
2k

) < −1, which is equivalent to the condition

in the statement of the proposition.
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We also have the following statement, which shows necessity of sector property
for holomorphic extendibility.

Proposition 4.2 Let p divide k and a ≤ 1/cos(
pπ
2k

). Then for b =
p
k

tg(
pπ
2k

) we have

that the trigonometric polynomial g1 = 1− a cos(pθ) + b cos(kθ) verifies g1 ≥ 0 for all
θ. In particular, if in addition the plane of the w variables has dimension 1, by adding

another harmonic term ǫ sin(kθ) we can achieve g1(w1) ≥ c1|w1|k for c1 > 0.

Proof Since a ≤ 1/cos(
pπ
2k

t), for g1 ≥ 0 it will suffice that

(4.3) b cos(kθ) ≥ 1

cos( pπ
2k

)
cos(pθ) − 1.

It is clear that it will suffice to take b such that

(4.4) b

·︷ ︸︸ ︷
cos(kθ)|− π

2k
=

1

cos
(

pπ
2k

)
·︷ ︸︸ ︷

cos(pθ)|− π
2k
.

In fact this choice of b will imply that the derivative on the left of (4.4) dom-

inates (respectively is dominated by) the one on the right in the interval [− π
2k

, 0]

(respectively in [− π
k
,− π

2k
]). Hence (4.3) holds in the interval [− π

k
, 0] and also, by

symmetry, in the whole interval [− π
k
, + π

k
]. It also holds trivially in the remaining

part of [− π
p
, + π

p
]. On the other hand, this is a complete cycle of the trigonometric

function 1 − a cos(pθ) + b cos(kθ), due to the assumption that p divides k.

Corollary 4.3 Let M be a hypersurface in C
N defined by (4.2), and assume that p

divides k. If a ≤ 1/cos(
pπ
2k

), then there are CR functions f ∈ CRM which do not extend

down.

Proof In new complex coordinates we can arrange that M ⊂ {y1 > 0}. Since

{y1 > 0} is pseudoconvex, the conclusion follows.

The comparison between the conditions of [9] and the sector property is expressed
by the following.

Lemma 4.4 Let k − 2 = p + 2q. Then

(4.5)
(p + q)!q!

( k
2
− 1)!( k

2
− 1)!

>
1

cos( pπ
2k

)
.

Proof The most delicate case is when p = 2. In this case (4.5) becomes

k
2
!( k

2
− 2)!

( k
2
− 1)!( k

2
− 1)!

>
1

cos( π
k

)
,

or else
k
2

k
2
− 1

>
1

cos( π
k

)
.
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Hence the method of sectors is sharper than that of [9]. In particular it yields
extension down for an extra range of values of a that is for

1

cos(
pπ
2k

)
≤ a <

(p + q)!q!

( k
2
− 1)!( k

2
− 1)!

.

The above conclusions are generalizations of former results by Baouendi–Trèves [3].

We pass now to the higher codimensional case. We discuss CR-extension for M ⊂
C

3 defined in coordinates (z1, z2, w) by the system

(4.6)
y1 = |w|k + a|w|2 Re wp + O(|x|2 + |w|k+1 + |x||w|),

y2 = |w|k + O(|x|2 + |w|k+1 + |x||w|).

We also denote by g = (g j) j , j = 1, 2 the vector with polynomial entries on the

right of (4.6) and, for ξ ∈ R
2, we use the notation gξ = 〈ξ, g〉. We can express the

extension directions vϕ by [9] as

vϕ =

((
k − 2
k
2
− 1

)
+ a cos(p)

(
k − 2

p + q

)
,

(
k − 2
k
2
− 1

)) t

,

where ( · )t denotes transposition. Let us search for vϕ whose first component is < 0.

The first occurrence, which takes place for ϕ =
π
p

is when a > (p+q)!q!

( k
2
−1)!( k

2
−1)!

. In this

case extension to directions arbitrarily close to

v =

((
k − 2
k
2
− 1

)
− a

(
k − 2

p + q

)
,

(
k − 2
k
2
− 1

)) t

holds according to [9]. If we look, instead, to our sector property and search for v
whose first component is < 0 and the second is, say, > 0, we are led to the sector

property of gξ for suitable ξ with ξ1 < 0 and ξ2 < 0. The condition reads in this case

gξ(θ) = ξ1(1 + a cos(pθ)) + ξ2 > 0 in a sector of angle >
π

k
,

that is

1 + a
ξ1

ξ1 + ξ2
cos(pθ) < 0 in a sector with angle >

π

k
.

We write aξ = a ξ1

ξ1+ξ2
. Then the sector where gξ > 0 is centered at θ =

π
p

and

its angle is > π
k

if and only if aξ > 1/cos( pπ
2k

). Now the first such occurrence is

for a > 1/cos(
pπ
2k

) and for ξ close to (−1, 1 − a cos(
pπ
2k

))t . Hence we get extension
to vectors v with 〈v, ξ〉 > 0 according to Theorem 1.1. Direct inspection of the

second equation of M shows that v2 > 0. Also, extension to directions of a conic

neighborhood of the diagonal is evident. In conclusion, using also the edge of the
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wedge theorem, we get extension to all intermediate directions, among which some
are close to v = (−a cos( pπ

2k
) + 1, 1)t . We now write

a1 = a
( k

2
− 1)!(k − 1 − k

2
)!

(p + q)!q!

and a2 = a cos(
pπ
2k

). According to Lemma 4.4 we always have a1 < a2. (In the

simplest cases we have a2/a1 = 2/
√

2 when k = 4, p = 2 and a2/a1 = 3 for
k = 6, p = 4.)

Summarizing, we get:

(1) Extension for an extra range of values of a, that is, a1 < a ≤ a2 which were not

taken care of by [9]. For this purpose the higher codimension is not really needed;
the examples by Rea and Baouendi–Trèves would suffice as well.

(2) Extension to a wedge V ′ with bigger directional cone Γ
′ even for common

values of a > a1. (Here codimension > 1 is really essential.) In fact in [9] the cone is

Γ = {(y1, y2) : y1 > −|y2|(a1 − 1)},

whereas in our case it is

Γ = {(y1, y2) : y1 > −|y2|(a2 − 1)}.
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