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ApsTRACT. Different statistical methods have been tested to answer the challenging problem of forecasting
avalanche activity, For each approach, the theoretical background is briefly described, and the main
advantages and drawbacks are discussed. The first method consists of a simple discriminant analysis applied
to a sample of avalanche days against a sample of non-avalanche days. The second approach tries to take
into account different types of avalanche phenomena associated with different types of snow and weather
situations. It requires the development of an avalanche typology compatible with the available variables,
and leads to a two-stage decision model, A given day is first allocated to a weather type, within which the
proper model avalanche-non-avalanche is then processed. A third method, a local non-parametric one,
consists of drawing, for the day under study and in an appropriate predictor space, its nearest neighbours
from the sample file in order to get an estimate of the probability of avalanche occurrence. For cach approach,
the explanatory variables may be processed directly as quantitative continuous data or as qualitative
categorized data. This removes the problems associated with the very asymmetric distribution of half of them,
at the cost of a moderate loss of information. As a rule, the methods were calibrated and then applied to
the winters 1972-73 and 1973-74 used as a test sample, thus allowing comparison of their respective potentials
in operational forecast.

REsumit. Récents dévellopements en matiére de prévision statistique des avalanches : une revue methodologique el quelques
applications dans le massif de la Parsenn (Davos, Suisse). Pour tenter de résoudre le délicat probléme de la
prévision d’avalanche, différentes méthodes statistiques ont été appliquées. Pour chacune d’elles, les aspects
théoriques sont briévement rappelés, ainsi que les principaux avantages et inconvénients. La premiére
méthode consiste simplement en une analyse discriminante classique sur un échantillon de journées
avalancheuses d’une part, non avalancheuses d’autre part. La seconde approche suppose l'existence de
plusieurs phénomeénes avalancheux associés 4 différentes situations nivométéorologiques. Elle nécessite la
construction préalable d’une typologie des avalanches, compatible avec les variables disponibles, et débouche
sur un modéle décisionnel & deux niveaux: un jour donné est d’abord affecté a un type de temps, au sein
duquel on applique le modéle avalanche-non avalanche associé. Une troisitme méthode, locale et non
paramétrique, consiste 4 sélectionner pour le jour donné, et dans un espace convenable, les situations les
plus voisines dans le fichier climatologique, de fagon & obtenir une estimation de la probabilité d’occurence.
Pour chaque méthode, on a effectué le traitement a la fois directement sur les variables explicatives considérées
comme continues et quantitatives, et sur les mémes données transformées en variables qualitatives discrétes.
Moyennant une légére perte d’information, on évite les problémes diis aux distributions parfois trés
dissymétriques de prés de la moitié des variables. Par principe, les méthodes ont été mises au point sur un
échantillon d’ajustement, puis appliquées aux deux hivers 1972—73 et 1973—74, autorisant ainsi la comparaison
de leurs potentiels respectifs en prévision opérationnelle.

.. ZUSAMMENFASSUNG. Neuere Enbwicklungen der Lawinenvorhersage mil statistischen Verfahren: ein methodischer
Uberblick und einige Anwendungen auf das Parsenn-Gebiet (Davos, Sehweiz). Zur Losung des anspruchsvollen
Problems der Vorhersage der Lawinentitigkeit wurden verschiedene statistische Methoden erprobt. Fur
Jjede Methode werden die theoretischen Grundlagen behandelt sowie die wesentlichen Vor- und Nachteile
diskutiert. Die erste Methode besteht aus ciner einfachen Trennanalyse, angewandt auf eine Stichprobe von
Lawinentagen gegeniiber einer solchen von Tagen ohne Lawinenabgang. Die zweite ist darauf gerichtet,
verschiedene Typen von Lawinenphinomenen, die mit verschiedenen Schneearten und Wetterbedingungen
zusammenhiingen, zu beriicksichtigen. Sie erfordert die Aufstellung einer Lawinentypologie, dic von den
verfiigharen Kennwerten ausgeht, und fithrt zu einem zweistufigen Entscheidungsmodell. Einem bestimmten
Tag wird zuerst ein Wettertyp zugeordnet, innerhalb dessen dann das geeignete Modell fiir Abgang oder
Nichtabgang einer Lawine durchgespielt wird. Ein dritter Versuch, der sich auf lokale, nicht parametrisier-
Unterscheidungsmethoden stiitzt, besteht aus der Ermittlung der niichsten Nachbarn in einem Stichproben-
verzeichnis zum untersuchten Tag innerhalb eines geeigneten Vorhersageraumes, um einen Schitzwert
fir die Wahrscheinlichkeit von Lawinenahgingen zu erhalten. Grundsitzlich wurden die Methoden mit
einer Trainingsstichprobe kalibriert und dann auf die Winter 1972-73 und 1973-74 als Versuchsstichprobe
angelwandt; dadurch war ein Vergleich ihrer jeweiligen Leistungsfahigkeit fiir die operationelle Vorhersage
maoglich.
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LisT OF SYMBOLS

Xiv  Vector of all the variables characterizing the ith day
X, Vector of all the observations of the {th variable
N Number of samples
P Number of variables
RY  Samples space
R? Variables space
R!  Subspace of R?
X; Usually refer to the jth elaborated variable
Zj Usually refer to the jth principal component
¥; Dependent variables in multiple or canonical correlation (usually, avalanche
activity)
F; Factor axis associated with principal component g
K Number of classes or groups
Cr kth class when a continuous variable is being made discrete
X% Boolean variable indicating whether or not the ith measurement of the variable
X; belongs to the kth class
p1 Serial correlation coefficient of lag [
AG, NG Avalanche and non-avalanche groups
AGy, NGy kth avalanche and non-avalanche groups when partitioned in different weather
types
ut  Transpose of vector or matrix u
W, B Within group and between group covariance matrix

1. INTRODUCTION
Historic

This paper reviews the evolution and development of various methods for establishing
objective avalanche-forecast schemes. Some of the models grouped here have already been
presented elsewhere. Models called type I in this text have been presented at Grindelwald
(Bois and others, [1975]) and subsequently at Cambridge (Féhn and others, 1977). A
preliminary version of the type II model was published in La Houille Blanche (Bois and Obled,
1976) and the type 11T model is a new and still different approach.

In this paper, the set of explanatory variables is reviewed and extended, and all the models
have been recalibrated on the same adjustment samples, and evaluated for the same test
periods in order to allow proper comparisons.

Formulation of the problem

Following the reasoning of LaChapelle (1977), our work leads to an evaluation of the
avalanche potential, given the current meteorological and field observations, rather than an
actual forecast. A problem, however, is encountered in the definition of avalanche hazard;
it is not clear whether an avalanche 400 m long is twice as dangerous as one 200 m long, or
if a day with ten observed avalanches is twice as dangerous as one with only five. It could
also be argued that, in a tourist area, one avalanche on a clear day is potentially more
dangerous than several during stormy weather. Furthermore, the problem may be posed for
different scales of time and space. The methods will vary significantly if the hazard is to be
evaluated for an entire state (e.g. Colorado), a particular itinerary (e.g. the Trans-Canadian
Highway), or for a small region (e.g. a ski area). In this last case, if one avalanche occurs,
it may be assumed that all similar slopes, or even the whole region, are suspect. It may
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therefore be considered that for an area which is not too small the region is either globally
avalanche prone or not. For the time scale, one may be interested in following the change
in the amount of hazard throughout the day, however, observational data are often limited
to a daily basis. Here, the forecast will be presented as the percentage probability that at
least one avalanche may occur during the coming 24 h in the area concerned.

The Parsenn area (Davos, Switzerland) with roughly 100 km?, was selected as a study area,
since it is here that the Eidgendssisches Institut fiir Schnee- und Lawinenforschung is located
(Fig. 1). Simultaneous observations of snow and meteorological data as well as avalanche
activity have been recorded there for more than 30 years. The selected area contains both
gullies and avalanching slopes of various sizes, aspect, and steepness, and the number of
potential paths is large compared with the daily avalanche activity (up to 18 avalanches per

Fig. 1. Davos, Switzerland. Observed area with @ Eidg. Institut fiir Schnee- und Lawinenforschung Weissfluhjoch
(by permission of Eidg. Landestopographie).
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day). So, as noted by Bovis (1977), it may be assumed that the activity during any given day
does not lower the danger for the following day, except at the end of the winter season.

Finally, it should be noted that we are trying to develop methods which are flexible
enough to evaluate the hazard under all weather situations. Such a method must be able to
evaluate the decrease in danger with time after a heavy snow-fall, as well as a possible isolated
increase in a long period of relative stability. This distinguishes our approach from others
which are entirely based on storm periods, neither do we use methods designed to study only
one process at a time.

Similar work is in progress in other research groups (see Grigoryan, [1975]) but little has
been published so far.

2. INPUT DATA AND VARIABLES

Before dealing with methodological aspects of forecasting, the information available and
the input variables will be described.

Table I lists the raw input data from daily field measurements covering the winter periods
between 196061 and 1973—74. These data are considered to be representative of the potential
starting zone of avalanches (2 000—3 000 m a.s.l.) because they were measured at an
approximate altitude of 2 500 m.

TaBLE 1. INPUT DATA USED TO CHARACTERIZE METEOROLOGICAL
AND SNOW CONDITIONS

Number Description of raw data Unit
1 Water equivalent of snow precipitation bet- mm
ween 08.00h on day i—1 and 08.00h on
day ¢
2 Fresh snow deposited between o8.00 h on day cm

i—1 and 08.00 h on day ¢

3 Maximum precipitation for a three-hour period  mm
between day ¢ and day i+1
4 Maximum windspeed for day i e 01
5 Global radiation flux for day ¢ Jm=
6 Temperature at 07.00 h of day i (corresponds °C
approximately to the minimum temperature)
& Temperature at 13.00h of day ¢ (Corresponds i &
approximately to the maximum tempera-
ture)
8 Number of hours of sunshine for day i h
9 Cloudiness of day i (on a scale o-100)
10 Total snow depth on day i m
11 Penetration depth of penetrometer under its cm
own weight placed on the snow surface on
day ¢
12 Snow temperature 10 cm below the surface on %G
day ¢
13 Water equivalent of precipitation on day i as mm

recorded by the totalizer
14 Azimuth associated with maximum windspeed  deg
e Index of snow drift (1—4)

Explanatory variables

A given day 7 was characterized by a set of variables (see Appendix 1). This stage con-
stitutes an attempt to introduce physical knowledge about the assumed underlying
phenomena; it is worthwhile noting that the change from raw data to evaluated variables is
supposed to involve a substantial increase of information. For example, day 7 is characterized
by its daily amount of precipitation, however, the quantity of fresh snow accumulated during
a storm sequence (2, 3, ..., d) is not redundant information as is, for example, the duration
of the current dry period (i.e. since the last storm period).
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I't must be emphasized that derived or threshold variables may also represent non-linear
effects rather than linear phenomena.

The meteorological situation is described by a large number of variables; thermal effects,
for instance, are well defined, whereas this is not so evident for mechanical effects like snow-
drift. On the other hand, the description of the snow cover is oversimplified, systematic data are
lacking and the variables involved are only indices of stability or instability of the snow-pack.

Avalanche data

Every observed avalanche, natural or artificial, of the area under investigation is on file
with a code number describing the morphological aspects as well as the date of occurrence.
If the latter is presumed rather than observed, a number of uncertainties may be introduced,
especially during storm conditions. The true data for the avalanche occurrence may have
been missed, and the time lag between occurrence and observation may be as much as two
days. This is one of the reasons for working on a daily basis even though some of the other
variables are available on a finer time scale.

Ideally it would be advantageous to enter the information about artificially-triggered
avalanches. This would be possible if avalanche control was performed systematically every
day at a sufficient number of representative locations. In our case, however, avalanche
control was not systematic and therefore we have only considered natural releases. Further-
more, it is also dangerous to use the recorded number of natural avalanches on a given day as
the degree of avalanche hazard, because the uncertainty can be as high as 1009,. Even a
stratification of avalanche days according to the number of observed avalanches, as suggested
by Bovis (1977) can be deceptive.

These are the reasons why avalanche activity has been characterized as days when at
least one avalanche is observed.

Remaoval of seasonal trends

It is clearly not feasible to consider the winter season (November to June) as an homo-
geneous period. Different variables such as air temperature, solar radiation, etc., show
important seasonal trends. In order to cope with this problem without having to work on
avalanche samples which are too small, the input information (1961—74) has been subdivided
into bi-monthly periods. For research purposes, the two marginal periods (November—
December and May—June) were neglected because of the difficulty in defining the exact
beginning and end of winter. The remaining periods yield from the 14 winters:

January—February period: A total of 829 days including 154 avalanche days,
March—-April period: A total of 854 days including 159 avalanche days.

Data from winters 1961-72 were used as adjustment samples whereas winters 1973 and
1974 were considered separately as a check on the models.

3. PRELIMINARY ANALYSIS

There exists a real danger at this point of being overwhelmed by the large quantities of
data contained in a sample of 50 variables x 800 d, and in attempting to be exhaustive there
is a risk that some variables may be redundant. A certain condensation of the information
is therefore required. Further, the use of discriminant models was not obvious at first, but
through various methods of treating the observations, we were eventually led to this
conclusion.

A first method consists in looking at each variable separately (Fig. 2), but this does not
take into account intercorrelations between the variables.
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Fig. 2. Histograms for three raw variables and three different weather types.

Intrinsic analysis of the variables
Let every day ¢ be characterized by a set of p variables (p = 50) such that

XiV:{XiI,l=l,---,P}, P=5os

may be considered as a point in the space R?. Conversely, each variable [ is given by N
observations:

Xﬂl == {Xﬂs i = I ey N}: N= 750,

is a point in the space R¥.

The above set of variables contains either absolute, interval, or ordinal variables and their
values may either be continuous or discrete (Anderberg, 1973). Assuming that standardiza-
tion provides us with variables which carry the same information as before, their linear
correlation coefficient will be considered meaningful. A somewhat cruder but sometimes more
realistic coding will be presented later (p. g21).

The redundancies in our set of variables will be investigated in order to determine which
information is independent. This kind of analysis has to be performed because, in a subsequent
step, squared distances in R? will be evaluated between days or groups of days.

As a two-dimensional example, let us assume that R? corresponds to two strictly
independent variables. The distance between 4 and B depends as much on X, as on X,

d(4, B) = (X,a—X,p)*+ (X,4—Xap)? = dit+d.

https://doi.org/10.3189/50022143000010522 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000010522

AVALANCHE FORECASTING BY DISCRIMINANT ANALYSIS 321

Adding a new variable X which is either strongly correlated with, or identical to X,, and
then putting in the same way X, X, ..., X}, the usual distance becomes

!
@*(4, B) = (Xi4a—X,5)*+ ) (Xja—X;p)? = d2+d,'>
j=2

The relative influence of 4,* compared to d*(4, B) is markedly reduced, although it is
actually the only d due to an independent effect. Small perturbations such as measurement
noises on the variables X; (j > 1) may cause non-significant deviations in d,'2 of the order of
di%. 'Thus, the standardization of variables is not able to resolve completely the problem of the
comparison of different data units, Even though scaling effects will disappear, dimensionality
effects remain. To overcome these problems, a redundancy analysis may be performed either
visually by graphical construction, or by using computer algorithms.

A first step consists in performing a principal-component analysis to determine the most
likely number r of significant orthogonal factors. Various methods, mostly heuristic, agree on
a number in the range 15 to 17. Unfortunagely, each factor is not associated with only one
variable and vice versa,so it becomes necessary to optimize the number of variables between
r= 17 and p = 50.

Different techniques presented by Jollife (1972) were applied using a number of refine-
ments. A different, but theoretically more sound approach was proposed by Miller (un-
published) and generalized by Robert and Escoufier (1976). They define the redundancy of a
set of variables given another set as the proportion of variance of the first set which is explained
by the second. This method was implemented in an iterative manner, looking first for the
variable that best correlates with the other 49. The next step sought the two variables that
best correlate with the remaining 48, i.e. which redundancy with the other 48 is maximized,
and so on till the number of variables of the second set has been properly reduced. This
led us to keep 35 variables from amongst the 50 proposed, and those retained are indicated
by an asterisk in Appendix I. They will be used to develop the typology associated with type I1
models and for the working space of type 111 models.

Visualization of observations

The principal-components analysis permits the display of the observation points in the
factorial planes F,/F,, F,|F,, ... . These reference axes are not original variables but indepen-
dent linear combinations of them. So, in order to allow their interpretation, the projections
of these original variables which are most correlated with F,/F, are displayed in this plane.
In this way, the avalanche variable may be taken into account only in an exogeneous way;
every day, represented by a point, is coded differently whether an avalanche occurred or not.
In Figures 3 and 4 the avalanche days show a somewhat different distribution from the non-
avalanche days. There is no significant separation, but rather there are density changes
suggesting a possible partition into two or three groups. Another example of this is the
segregation in relation to the precipitation values in Figure 5.

Such preliminary analyses, although not conclusive, are of essential importance to the
choice of any forecasting model in that they provide a first insight into the appropriate type
of model to be selected and into the available forecasting power. A preliminary analysis also
shows that if there were different avalanche processes, the classification into dry- and wet-
snow avalanches is not necessarily the most appropriate but is simply a starting point and
could be affected by observational uncertainties (some of them can be detected in Figure 5).

Discrete coding of the variables and associated analyses

At first, a simple technique to display the differences between avalanche and non-
avalanche days was as follows: the histograms of a variable X; in a sample ol non-avalanche
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Fig. 3. Principal component analysis of the January-February sample.

(a) Days with observed avalanches.
(b) Days without observed avalanche.
(¢) Interpretation of factor axes Fy and F, (in Figures 3a, 3b, 5, and 13).

days was compared with its histogram in a sample of avalanche days (Fig. 2). The distance
between the two distributions might be measured by a y*-test which quantifies the relationship
between the avalanche phenomenon and the variable under consideration. It showed,
however, that we would probably be led to compare not only the differences between the
means of the distributions (of avalanche versus non-avalanche days) but differences between
the whole distributions because of the asymmetry of many of them. One way to avoidthisis to
transform some of the variables.

Application to the analysis of variables, including the avalanche variable

A more sophisticated technique for the comparison of histograms is a multidimensional
expansion of the comparison, i.e. a correspondence analysis (see, for example, Lebart and
Fenelon, 1971). The correspondence analysis is applied to the whole set of variables (X,
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Fig. 4. Principal component analysis of the March—April sample.
(a) Days with observed avalanches.
(b ) Days without observed avalanche.
(¢) Interpretation of factor axes Iy and F, (in Figures ga, 4b, 5, and 15).
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MARCH - APRIL

FAGTOR')
[

J =1, ..., p), plus an exogeneous variable which is added to describe the number of avalanches

on day 1.

From a theoretical standpoint, the correspondence analysis is only applicable to contin-
gency tables. Additional problems arise when used with data other than frequency data.
To cope with this drawback, Nakache (1972) and Hill (1974) proposed the merging of data

into K classes:

and

Xuk =
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Xg > {Xob k=1, .., K},

1 if Xy € class Cy of variable [ for day 4,

0 otherwise.
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Fig. 5. Avalanches occurring with and without precipitation in factor axes of Figure 4.

Thus a table with Km (m = p-+1) variables may be drawn up, assuming values of either
oor 1. Performed like this, the correspondence-factor analysis displays each variable, usually
in the plane of the first two factors, as & instead of only one point. For our purpose, £ will be
limited to the three classes which are illustrated by the following examples:

Variable temperature (maximum): C; = {<—10°C},C, = {—10t0 —4°C},C, = {>4°C}
Variable precipitation: C, = omm, C, ={o.5to 15 mm}, C; = >15mm
Variable avalanche: t; =1, €, =1ora, Ci= 23

For theoretical reasons, the three classes should fulfil equal membership, but a number of
variables can meet this requirement only approximately.

In the factorial plane F,/F,, each variable X, ..., Xp is then displayed by a trajectory of
three points. The distance between two trajectories associated with any two variables gives
an index of their statistical dependence (Nakache, 1972).

The values of the two variables considered may prove either to be strong, medium, or
weak at the same time and over the complete set of N observations. Figure 6 illustrates two
examples, for January and March. In March, the division of the avalanches into two groups
(dry-snow and wet-snow avalanches) is relevant, the variable “dry-snow avalanche” correlates
well with the fresh-snow depth, whilst the variable “wet-snow avalanche™ is strongly correlated
to the cumulated, positive temperatures (degree days). Displaying the relation between two
variables by classes in this way is rather similar to creating a rank-order correlation and is
called regression by ‘“‘correspondence analysis” (Brenot and others, 1975).

Application to the treatment of observations

Instead of looking for relationships between variables, we can use the above transformation
as an alternative way of standardizing the variables. Each observation is characterized by
pK Boolean variables, indicating in which class of each original variable the observation falls.
At this stage, only the explanatory variables will be used and the avalanche variable will not
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Fig. 6. Visualization of relations between avalanches and elaboraled variables by correspondence analysis.
(a.) Fanuary. (b.) March.

be considered. A theoretical justification for such a coding, consistent with type I and II
models, will be given in the next sections. It must also be pointed out that all these Boolean
variables now have a similar distribution dependent on the number of classes (see Fig. 7).
In this paper, only three classes will be considered.

A correspondence analysis may also be applied to this modified data array to concentrate
the information on the first few factor scores which may represent the observations satis-
factorily. These factor scores are, like principal-component scores, continuous data, rather
symetrically distributed and appropriate to the approach used in models of type II1.

In spite of the above technical considerations the basic underlying question in choosing
such a coding is: Is it informative to know that there is 118.5 mm of water equivalent, or
Jjust to know that the snow-fall was greater than 8o cm in two days? Do we need a minimum
temperature with three figures or just “low, around 0°C, above 0°C” ... ?

If the second approach is sufficient, as suggested by Yefimov and Kozik (1974), our
developments are simply objective and automated versions of their manual treatment. A
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similar approach involving Boolean variables has also been attempted by Grakovich (1974).
All these analyses are, however, descriptive, in that they attempt to display the information
in a more objective way, and they help in choosing how to set the decision problem.

f(X) f(X)
4 IP
VARIABLE:
a
CLASSk: | 2 3 | 2 3
T i
' St & i kT
K B Kk &
Xor Xor
b /'(: ;-;x
X\ =
‘; ‘)( e ;‘“: ; A —
0 | 0 | 0 |
k=1,2 k= |,2:3 k=1,2,3,4
Fig. 7.

(a) Example of the discrete coding of any continuous variable into k classes Xjt (I = 1, ..., k) ; k = three classes.
(b) Resulting distributions of any Boolean variable X, yl < k; k = two, three, or four classes.

4. TypE I MODELS
Discrimination between two groups (avalanche days|non-avalanche days)

The forecast problem may initially be approximated by considering only two event
categories (avalanche versus non-avalanche days) and then secking the best associated
discriminant variables. This may be supported by considering the first factorial plane for the
January-February period, where two populations are likely to differ despite the plane being
non-optimal for discrimination (Fig. 3).

Theoretical considerations

The theory of discriminant analysis will not be given here in full (see Anderson, 1958;
Rao, [¢1973]; Romeder, [¢1973]). However, a few of the problems which may be encountered
will be mentioned, and these refer mostly to the simplified two-group case.

The selection of variables and associated problems have been discussed in a previous paper
(Bois and others, [1975]). The backward selection of variables, starting with the complete
set of all 50 variables, was abandoned in favour of an upward, stepwise selection because of
computer time requirements. First, it was necessary to determine the number of variables to
be introduced. Because of the non-normal distribution of the variables, the usual tests such as
Wilks A-test (for BMD) or the Mahalanobis D? (related to Hotellings 72test) have been
cautiously applied, even though Hotellings T>test is rather insensitive to the multi-normality
requirements (Mardia, 1975).

A first method could consist of using normalized variables to transform the input variables
X into their principal components Z. Alternatively, either a discrimination method suited to
non-normally distributed populations (logistic discrimination, e.g. Anderson (1974)) or other
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methods using exponential laws may be applied. Unfortunately, owing to the large variety
of distributions encountered amongst the variables, no distribution may be preferred over
another.

Thus, because the usual tests based on probabilistic assumptions could not be fulfilled,
non-parametric methods were used. One for them consists of calibrating the model against
a calibration sample and then applying it to a test sample. The introduction of new variables
ceases when the misclassification rate of the test sample may no longer be decreased. However,
the discriminant model obtained in this way is still slightly biased, in that it has been optimized
for a given test sample.

Another problem is related to the selection of the group of non-avalanche days as their
relative number is larger than 809, of all the days. When taking them all into consideration,
the resulting selection could be biased in favour of the larger group (Miller, 1962). In order to
give equal weight to the non-avalanche days and equal a priori probabilities to both groups,
one non-avalanche day out of five was selected. The selection of these days was not random,
as proposed by R. G. Miller, but taken every fifth day so long as this day was not itself, or did
not precede, an avalanche day. This has to be done because most of the variables taken on
contiguous days inside each bi-monthly period, appeared strongly autocorrelated. Since some
of the variables were strongly discontinuous as well, some values of the autocorrelation
coefficients are given for the first principal components in Table II.

TaBLE II. SERIAL CORRELATION OF THE FIRST THREE PRINCIPAL COMPONENTS OF THE 50

VARIABLES
zl zﬁ ZJ ZI ‘Zﬂ- ZB
over the whole period 196172 082 o471 0.76 080 0.68 o090
Pr minimum 0.53 044 0.38 060 0.36 o0.6g9
over two months
maximum 087 o080 o0.80 086 o072  0.97
January—February March—April

pr indicates serial correlation with one-day lag.

It is known, both from regression analysis (which applies to the case of discrimination
between two groups) and from discrimination analysis (Basu and Odell, 1974), that the effect
of intra-class correlation among calibration samples has considerable influence on the sample
variances of estimates. This may be accommodated in the non-avalanche group since the
serial correlations collapse almost to zero after about five days. However, most of the avalanche
days appear in sequences and, given the small number of avalanche occurrences, the with-
drawal of any one day is not acceptable.

The last problem arises if the initial samples themselves are misclassified. Lachenbruch
(1974) demonstrated that, although the Mahalanobis D? discriminant function as well as the
error rates on the calibration samples are appreciably affected, the error rates for the test
samples are only slightly altered, even if the rates of a priori misclassification are different for
the two groups. In the case considered, it is essentially the avalanche group which is subject
to those observational errors.

One possible way which was tried in an attempt to overcome this problem consisted of
using weighted avalanche samples. For example, the days during which there was uncertainty
about the recorded avalanche occurrence received a weight equal to one, whereas the days
when there was no doubt about avalanche occurrence were given a double weight by adding
such days into the sample of avalanche days twice. A similar method may also be used to take
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into account the level of avalanche activity; the weight being equal, then, to the number of
avalanche occurrences for the day considered. Unfortunately, this approach still increased
the intraclass correlation discussed above.

Most of the problems mentioned above still exist in the multiple-groups case, although
they will not be mentioned further.

Survey of results based on continuous data
The samples used for calibrating and testing the models are shown in Table III.

Tasre ITI. SAMPLES USED FOR TESTING AND CALIBRATING TYPE I MODELS

Fanuary—February March—April

All avalanche days 131 127

Calibration samples
Non-avalanche days selected 117 105
Test sample ~ Winters 1973 and 1974 118 122

Various indices may be used to interpret the results. Since there is only one discriminant
axis, corresponding to the first eigenvector u; associated with the first eigenvalue y; of the
matrix product W-1B (W: within; B: between groups variance-covariance matrices), the
quantity

_Ha
I+ py

may be considered to be the discriminant power of the new variable 13 = u,?X;y. The correla-
tion structure of this discriminant axis may also be studied in terms of the original, elaborated
variables (see Bois and others, [1975]).

However, these total correlations must not be considered in an absolute sense if the
variables are intercorrelated. In the case of two groups this is more easily seen by considering
the discrimination between the two groups as equivalent to a multiple regression with an
artificial variable ¥

Aj =

A/ (nzfny) if individual 7 € group 1,
25 =
— 4/ (ny/n,) if individual 7 € group 2,

where n, and n, are the respective numbers of individuals in each group. The set of regression
coefficients is easily deduced from the coefficients of the two discriminant functions and may
be interpreted in terms of partial correlations using a convenient standardization. Some of
these results are given in Appendix I1.

Results from test samples are presented in Figures 8a and ga. These will be considered
subsequently to be reference outcomes, given that discrimination in two groups is the simplest
treatment which may be envisaged.

It may be concluded that in January and February avalanches occur when there is a
large amount of fresh snow and a low air temperature. It can be observed that on the calibra-
tion sample, misclassification is essentially due to avalanche days (37 out of 131 against 15
out of 177 for non-avalanche days) showing that some of them do not fit the previously-defined
type. In March and April, the interpretation is less simple, since two competing effects are
clearly present. For example, warm, sunny weather favours avalanching whilst warm yet
snowy weather prevents it. Partial correlations therefore have to be considered carefully.
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All this suggests that a classification into avalanche and non-avalanche days is insufficient,
but a more refined approach, used in previously published models, leads to similar conclusions.
Avalanche days may be subdivided into two groups (wet- and dry-snow avalanches), as
opposed to one group only of days with no avalanches recorded. One disadvantage lies in the
fact that numerous misclassifications and uncertainties appear in the original avalanche data.
The second disadvantage is that all the days without avalanches are considered to form a
homogeneous population. Thus it seemed more appropriate to ask why warm days may
cause avalanches or not and why cold days with fresh snow available either produce avalanches
or not. This will be discussed later.

Survey of results based on categorized data

If, in the two-groups case, linear discriminant analysis on continuous data may reduce to a
multiple correlation, as seen in the previous section, there is another possible interpretation,
which may also be generalized to the multiple-groups case. This considers the method to be a
canonical correlation analysis between a first set of variables ¥y, k = 1, ..., N, indicating
the group, and a sccond set formed by the variables Xj,j = 1, ..., P.

The 17 variables take Boolean values: 23 = 1 or o depending on whether the ith obser-
vation belongs to group £ or not. It may thus seem consistent to treat in the same discrete
way the second set of variables, using the discrete coding described in Section 3. The dis-
criminant function will be defined as usual in the space of the discrete data RPk, but instead
of a linearly varying continuous function, the result is a step function. When transferred
in the space of the original variables R?, it provides, instead of an hyperplane, a surface
made of independent facets. This shows that the loss of information about the variables is
compensated by the possibility of including non-linear effects.

The discrete results shown in Figure 8a (dotted lines) appear to be slightly different from
the continuous ones, partly because the selected variables are not exactly the same in the two
cases. Some avalanches detected by one technique are missed by the other, but the reverse is
also true. The results are on the whole less satisfactory, although the response of the qualitative
data is sharper but sensitive to the class boundaries used in the coding of the continuous
variables.

5. Type I1 MODELS
Use of an objective avalanche classification

This technique is significantly different from the previous one since it attempts to enter
some information about triggering mechanisms. The basic assumption is that avalanche days
may be subdivided into different types, mostly related to the prevailing weather and snow
conditions. A similar classification has already been proposed (Quervain and others, 1973),
but it attempts to be exhaustive and therefore considers types of avalanches which are not
likely to occur in the Davos area. Furthermore, it may also call for information not available
from the limited, though numerous variables which were used. It was, therefore, decided to
seek an intrinsic “objective’ classification, using only the available data (observed avalanche
days as characterized by the set of our variables), and numerical algorithms. Thus, the
classification does not tend to depend on any a priori assumptions introduced by the physicist,
and it may be reproduced without further changes by anybody.

Non-hierarchical clustering methods

A description of clustering methods is given by Anderberg (1973), although the “dynamic
clusters method”, developed by Diday (1974), was finally chosen mainly because of its
probabilistic implications and its mathematical basis.
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A brief description of the algorithm to illustrate the principal steps and iterations (z):

N =1
——1. NK training samples are selected randomly as initial kernels for each of the NG
clusters required (NIth random initialization)
—2. (¢) The remaining days (NV—NGNK) are assigned to the kernels of the previous
step (1 or i—1) according to a prescribed allocation rule
3. (f) The stability of the solution is tested and compared with the assignment of the
previous step (2 or i—1). If improvement, go to step 5 otherwise
—4. (¢) New kernels are selected for each current group (NG) containing NK indivi-
duals and return to step 2 for iteration (i-}-1) until convergence is reached
5. The results of the previous converging classifications are compared. The sets of
individuals that remain together in the different groups and for the different
iterations comprise strong patterns (Formes fortes)
——=6. Return to step 1 if a new initialization is wanted. NI = NI+41

It should be noted that parameters must be chosen before processing the algorithm:

(a) NI, the number of random initializations wanted. This number was limited to ten;
it is evident however that the number of strong patterns increases and the number of
individuals in each decreases, for increasing N1.

(b) WK, the number of calibration samples (between 10 and 15 for each kernel).

(c) NG, the number of kernels and therefore the number of groups wanted.

Problems encountered. ‘T'he first problem, already mentioned in Section 3 concerned the
choice of the sample space R! where clusters are sought. Dimensionality effects may introduce
either deliberate or non-intentional weighting of variables which will change the existing
clusters completely. The choice of the appropriate number of clusters poses an additional
problem which will not be discussed extensively in this paper (see Vogel and Wong, unpu-
lished ; or Fromm and Norhouse, 1976). In the case considered, experience was gained by
applying the method with known numbers of generated clusters, usually Gaussian but more
or less separated, and heuristic rules were derived by simulation to detect the true number
of clusters. However, obvious results from simulated samples become fuzzy when applied
to real data. Some additional experience also emerged from hierarchical-classification
trials.

In the case considered, the avalanche days were described by the reduced set of g5
variables, further transformed into / (15 << [ < 35) principal components scores, or scores of
correspondence analyses (as described in Section g). The scores were either standardized to
4/ Ak, their corresponding eigenvalue, or to 1.0, in order to try different weighting effects.
Thus, only the more stable patterns were considered.

The clustering programmes are usually performed in a R? or R! space with an Euclidian
measure associated to the identity matrix I. Trials with adaptative measures of distance (i.e.
which attempt to fit the proper variance—covariance matrix of each cluster) have not proved
satisfactory since they are too sensitive to a few outlying clusters.

Thus, it was preferable to consider only the strong patterns obtained from the dynamic
clusters method as kernels for a discriminant analysis. This last treatment classifies all the
data units by taking into account either their mean distance structure (pooled within group
variance—covariance matrix W-!) or the proper measures of each group separately (W1,
k=1,..., NG). It may be seen in the discriminant planes (Figs 10a and 11a) that the density
functions of these clusters are somewhat different, thus substantiating the use of quadratic
discrimination (Romeder, 1973). This re-allocation provides the following groups outlined
below.

https://doi.org/10.3189/50022143000010522 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000010522

AVALANCHE FORECASTING BY DISCRIMINANT ANALYSIS 333

DF,
4° 5000 JANFE - 3 GROUPS

DF,
4~ 6-000 JANFE - B GROUPS AG/NG

AGZ2

Fig. 1o.
(a) Three groups of avalanche days ( Fanuary-February) in the first discriminant plane.
(b) Six groups of avalanche and non-avalanche days.
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DF>
4 65-000 MARAV - 4 GROUPS

4
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AG1 NG 1 NG 2

6.000

Fig. r1.

(a) Four groups of avalanche days (March—April) in the first discriminant plane.
(b) Eight groups of avalanche and non-avalanche days.
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Results. In January three or possibly four groups were detected and may be represented
by their projections in the first two discriminant axes. Another attempt of interpretation is also
given by the following classification tree:

ALL AVAII.ANCHE DAYS

With recent precipitation With no recent precipitation

Heavy daily snow-falls, strong Fresh snow available Rather high and rising maximum

mtensities Prolonged bad weather with rather temperature

Strong winds (5.W. or S.E. regimes) light daily snow-falls Sunny weather
blowing snow Blowing snow since end of snow-
falls (mostly N.E. regimes)

Pronounced daily settlement

Cold but increasing snow tempera-

Low and decreasing air tempera-
ture, cold and cooling snow

ture
Overcast sky Strong winds, blowing snow
Rather high air temperature Changing sky conditions
Rising snow temperature Drop of minimum air tem-

perature
Cold and cooling snow
Pronounced internal snow-

pack effects
In March-April, four or (less likely) five groups were detected:

ALL AVALANCHE DAYS
\

4 |
With precipitaiion With no precipitation
(on the last few days)
|

¥ ¥
Heavy daily snow-falls Rather light snow-falls Changing weather, over- High Temperature

Strong winds (S.E.— and winds cast sky (maximum and mini-
S.W. regimes) Low and falling tem-  Wind and blowing snow mum)
Low and falling air- perature (N.E.-N.W. regimes) Sunny weather
temperature Rising temperature but Strong radiation
cold snow

The fourth group is easily understood as this bimonthly period allows for maximum
temperatures greater than 0°C; such values are rarely observed in January—February.
Groups 1 and 2 correspond quite surprisingly well to the respective groups of January—
February. Group 3 is, however, different as prolonged periods without precipitation in
March-April usually favour positive temperatures.

In Table IV, the number of avalanche days is given for each group, but, as avalanche
days may be contiguous, the corresponding number of avalanche sequences is also given in
parentheses.

TapLe IV. NUMBER OF INDIVIDUALS (DAYS) IN THE
DIFFERENT GROUPS

Avalanche groups (AG) @ @ €Y @
January—February 34 75 45
(23) (42)  (34)
March—April 27 43 42 41
(14) (34)  (22) (22)
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Conclusions. It appears that avalanche days may roughly be clustered in three to five
groups which mostly correspond to the prevailing weather situations. However, because of
the relative continuity between the different types or groups, and because of uncertainties of
actual dates of occurrence of some avalanches, the proposed classification tends to be fuzzy.
The stability should also be increased by adding new samples. Nevertheless, the classification
obtained, in general corresponds well to the propositions made by the Commission Inter-
national des Neiges et Glaces.

Development of type II models

The next problem consists of determining, whether the avalanche triggering phenomena
are similar within each group or if they differ.

Assuming that the previous classification of avalanche days may be applied to each day,
whether avalanching or not, the avalanche groups AGy were used as calibration samples to
allocate all the other days (x650) to these groups. Thus a given day ¢, although without
avalanches, may appear to be of the same type as the avalanche days of group AGy.

Thus, the question arises of why, on similar days, some days are avalanche prone whilst
others are not. From the non-avalanche days associated with group AGy (Table V), a reduced
sample of days without avalanches NG} was taken, and discriminant analysis was applied to
it (k =1, ...,3 or 4) (Figs 1ob and 11b).

TABLE V. CLASSIFICATION OF ALL THE DAYS INTO AVALANCHE GROUPS AG

January—February March—April
Groups @ @ @ @ @ @ @
Avalanche days 34 75 45 29 43 42 41
Non-avalanche days 48 299 328 65 275 144 217

As a result, the following two-stage procedure is proposed:

1. Allocate a given day ¢ to a snow—meteorological type AGr (kK = 1, ..., 3 or 4) using a
first set of variables (ten or eleven seem sufficient). -

2. If day ¢ belongs to group k&, operate the kth discriminant model AGg/NGy in order
to decide whether avalanches will occur or not. When performing this second step,
the proper variables (usually four to six) associated with the £th model are used and
their influence may be interpreted physically.

These models have been implemented in an interactive mode on a small computer. First,
experience was gained by processing the winters 1961 to 1972 from the calibration data set.
Afterwards, the winters 1975 and 1974 were run in simulated operational conditions (Figs
8b and gb, continuous line).

This two-stage approach appeared to be very tutorial in addition to producing a proba-
bility index. First, it associates the day on hand with a given weather type, which may be
checked by the forecaster. Further, the avalanche-non-avalanche model, only valid for a given
weather type, displays in a separate way the influences which are most related to hazardous
conditions. However, this presupposes clear-cut separations between the different weather
types, and rather poor connections between the variables defining the weather type and the
avalanche triggering mechanism inside this type of weather. Unfortunately, the real world is
less predictable. Another possible approach, therefore, consists of considering only one level
of discrimination between the six or eight groups of avalanche and non-avalanche days.
It thus provides a unique model which attempts to allocate any given day to one of them, i.e.
AG,, or NGy, or AG,, or ..., NGg. It is not easily interpreted, due to partial covariance effects,
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but compared with the two-stage approach, and allowing a similar number of variables, this
direct approach gives results (Figs 8b and gb, dashed lines) slightly inferior for the January—
February periods, but somewhat more sensitive for the March-April ones.

The two-stage approach thus gives a slight, but not definite, advantage.

Use of categorized variables

A similar discriminant analysis between all avalanche and non-avalanche groups has been
performed using the qualitative version of our explanatory variables and a one-stage approach.
The comparison between models using continuous or discrete data is shown in Figure 12.
For the March-April period (respectively dashed and dotted lines) the model based on
qualitative data reacts well, is less damped, and sharpens the detection of some avalanche days,
but unfortunately other avalanche days are completely missed.

8 GROUPS AT THE SAME LEVEL: —-—- CONTINUOUS VARIABLES
R < = CATEGORIZED VAgiSABLES
JgT M HER VR LAY L Tt T
%%l.ll'.l | i ,& ‘ i fm IR LR R I ‘ |
: : i ! AR ! i i Y :: h
6°‘|:}1“|".;'.:"'; I 1‘1'\; b h-,,p i f'. so —gHT— it ".’;“' it ST
it e LR L R [l TV A R
< Wlﬁ]‘;\ i T [l 2N TRy AR T
B AV R i A RN AR
0\ 5 10 15 20 25 301 5 1O |15 20 25 0 0I 5 0 15 20 25 301 5 10 15 20 25 30
| R L m 1 me ot |
L MARCH L APRIL | L MARCH | APRIL |
1973 1974

Fig. 12. Comparison of the one-stage mulliple types discriminant models using continuous or categorized data.

Additional theoretical work is required about an optimal choice of boundaries to split a
continuous variable into & qualitative ones. Further, when one qualitative variable has been

selected, the question remains whether or not all the others coming from the same original
variable should be forced into the model.

6. Type III MODELS
Non-parametric, local dynamic models

As mentioned in Section 3 and verified in Section 5 when presenting the days in the first
discriminant plane, the density of avalanche days varies almost continuously although some
regions are more dense than others. The strict classification of type 11 models, however,
allowing a given day to belong strictly to one weather type may seem too rigorous and does
not allow for the relative overlapping between different types.

Theorelical considerations

One approach, termed a “neighbourhood™ method, consists of assuming that there is no
definite separation between groups but rather a continuously changing relative density of
avalanche days (Fig. 13).

Having chosen an appropriate predictor space R!, and given a new day 7, the method
consists of extracting its nearest neighbours, no matter whether with or without avalanches, to
obtain an estimate of the local density, i.e. the conditional probability at the point under
consideration

n
Pr {avalanche on day i} = TA ’
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Fig. 13. Relative density of avalanche and non-avalanche days in factor axes of Figure 3.

According to Fix and Hodges (1951), the number n of neighbours selected, among which n4
were avalanching, must be sufficiently large to give an accurate estimate but must remain
small compared to the size of the calibration file. The authors provide an heuristic rule for
appreciating n.

Another problem concerns the number of dimensions to be used. In spite of recent
developments (Collomb, unpublished), theoretical results tend to be either very poor or to
have no practical application. One main result is that the standard error of estimate grows
with power 4([4+4)~" of a given parameter functionally related to the size of the calibration
file. This feature considerably limits the number of dimensions [ to be considered.

A further step may consist in examining the local discrimination among those n points,
distinguishing the ones with avalanches from those without. This is a valuable procedure
.only if new information is added. As an example, let us consider discrimination between two
Gaussian groups in R2. This may be done either globally, by linear discrimination (global
method), or by the above, local method. A day i will be correctly classified by both approaches
(Fig. 14). However there is no purpose in trying to discriminate further within the spherical
neighbourhood using the same variables, since no further underlying distribution may be

assumed. However, by the introduction of new variables X;,;, ..., not already included in
the R? space, the adjustment of a local linear discriminant model may appreciably improve the
results.

Practical application to avalanche daia

Let each day be characterized by its [ = 17 first principal component scores, standardized
either to 4/ Ax or 1.0, carrying not all but about 859, of the variance of all the variables. For
each day of the test period, 1973 and 1974, its 40 nearest neighbours in the 196172 period
were examined. The a priori probability indicates n4 = 7 avalanches as a climatological
value. To make n,/n comparable with the results from type I and IT models, the ratios were
rounded to four levels (0%, 30%, 609%,, 90%). The radius of the sphere required to gather the
40 neighbours of the given day also provides an index of the quality of the estimate for that day.
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!

local method
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Fig. 14. Distinction between local and global discrimination.

Although physically less meaningful, type IT1T models gave equivalent performances at a
much lower computation cost than type I and II models. In addition, a careful look at the
closest neighbours of the past was also very instructive.

The results obtained for winters 1973 and 1974 are shown in Figures 8c and gc.

Avalanche-prone situation or evolution ?

The day i has so far only been considered as an isolated point, either in R? or in R!,
assuming its positioning to be related to avalanche activity; hence, mention has been made of
avalanche-prone situations. However, the phenomenon may depend not only on the situation
of day ¢ but on what it was on days i—1,i—2, ... . In order to examine this in the plane of
the first two principal factors only (as interpreted in Section 3), the avalanche days were
considered first, and each one of them was connected with its three predecessors (Fig. 15).
Some peculiar trajectories resulted which appeared to be non-random and possibly to have
some physical significance. This suggests that the phenomenon not only depended on the

s MARGCH - APRIL
v Wet snow avalanche e

X Dry snow avalanche
e Day without avalanche

L

\W%EE;:// e
M

v

Fi

Fig. 15. Evolution of avalanche situations : trajectories of days culminating in avalanche occurrences.
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situation of day 7 but also on the evolution which led to day i. However, it has to be demons-
trated further that it differs from the case of days without avalanches.

This has been more extensively studied by Bois and Obled (1976). Summarily, their
conclusions are the following:

the running weather situations in winter time tend to follow a well established cycle:

temperature precipitations

increase ——— 2toj5d
1togd

fine and cold temperature
weather «——  decrease
g to15d 1tozd

this holds true in springtime, except that clear weather may lead to warm afternoons;

a number of avalanches (usually recorded as “dry”) need first precipitation, with a
following secondary effect such as temperature change or wind action. They are
obviously related to dynamic processes;

on the other hand, the avalanches occurring during long sequences of clear weather are
associated with more static, cumulative effects.

Such information might be used in a multidimensional, non-parametric model where
not only the closest neighbours of the given day would be sought, but also a search would be
made for the closest profiles or sequences.

7. DISCUSSION AND CONCLUSIONS

The statistical approach has proved useful in coping with the problems of avalanche
forecasting, at least for a given homogeneous region. Nevertheless, the closer the statistical
model relates to the physical mechanisms, the more efficient it may be supposed in actual
forecast. However, all the avalanche-triggering processes are still not fully understood or do
not appear in our data due to the lack of appropriate measurements.

Various methods have been proposed and applied in order to try to bring out the main
underlying phenomena. A number of points still remain unclear and need further considera-
tion despite extensive study. The first concerns the explanatory variables used, the dimen-
sionality of their set, and the proper measure to be used in the appropriate predictor space.
The characterization of avalanche activity is also debatable, but is highly subordinate to the
quality of the available data.

As for the models used, they all show a fairly good agreement with the observed avalanche
activity. However, the type I models, which treat the avalanche-non-avalanche phenomena
in an approximate way only, provide smaller probabilities, yet appear to be very robust
owing to the large samples. Type IT models are not considerably better than type I models,
though they tend to be more explanatory and instructive in that they provide a comprehensive
classification which can be easily interpreted and checked by the forecaster. This seems more
satisfactory to the physicists, but the strength of the modelling should be increased by incor-
porating larger samples. This also holds true for type 111, which appears promising but
requires further development.

The use of qualitative data also appears promising but needs further refinement. It could
allow the use of rough data (e.g. wind data on the Beaufort scale) which are more usually
available than continuous measurements.
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It should also be kept in mind that the results displayed were mostly obtained in blind
tests during the 1973 and 1974 periods. Nevertheless, the comparison between the models
appears difficult, since many criteria should be considered (such as overall efficiency, parsi-
mony in the variable requirements, usefulness of sophisticated methods, etc.). No definite
conclusions can be drawn, except that type 1T and I1T models probably fit the variety of actual
phenomena better than type I models. However, a saturation level was reached regardless of
the sophistication of the models used, and new developments should be expected to involve
the actual use of models in operational forecasting.

The main drawback of these statistical approaches is their sensitivity to errors in the
avalanche data. This suggests that more effort should be made to collect very accurate data
on at least a daily basis. Another suggestion is that a given day should not be considered alone
in an isolated way, but as the result of the past. The problem is that methods are available to
study one time-dependent process at a time, whereas here different processes are running
together, with different time lags, and very different relative importances—the delineation
in well-defined successive weather types is only a first and crude approach.

In conclusion, one may wonder at the quantity of statistical considerations required by a
problem apparently so simple as that of the short-term forecasting of avalanche hazards.
However,. despite sampling problems, unverified statistical hypotheses, and questionable
physics, statistical models still remain the only feasible method. The lack of knowledge
concerning the elementary phenomena and their mutual interactions is likely to delay, for
some years, the use of deterministic forecasting models.
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APPENDIX 1

THE EXPLANATORY VARIABLES USED

Variable

Precipitation between 08.00 h on day i—1 and approximately 08.00 h on day i, expressed in water
equivalent

2 As 1 but expressed in cm of fresh snow

3 Maximum intensity of precipitation (averaged over 3 h) during day i

4% Estimated density of the surface layer

5 Precipitation accumulated over the last 5 d

6% Maximum daily wind

Difference between the snow-fall measured by the rain gauge and the snow board, expressed in water

equivalent

8* Snow-drifts recorded on days i—1 and i

9* . Maximum wind component in the S.W.-N.E. direction

10* Maximum wind component in the S.E.-N.W. direction

r® Increase in the wind speed after snow-fall

2" Air temperature at 13.00 h

13* Temperature change between 13.00 h on day i—1 and 13.00h on day {
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14 Temperature at 13.00 h if above —3°C, else o

15 Temperature at 13.00 h if below —3°C else o

16 Air temperature at 07.00 h

1y Temperature change between 07.00 h on day i— 1 and 07.00 h on day i
18 Daily hours of sunshine

19 Daily incoming solar radiation

20% Daily average cloudiness

) Percentage of the potential radiation actually observed on day i

g2% Number of storm sequences since the beginning of the snow season

23" Amount of precipitation since the end of the last sequence

24* Number of days without precipitation since the end of the last sequence
25* Number of days without precipitation before the last sequence

of* Largest sequence of days without precipitation since the beginning of the snow season
27 Number of snow-drift occurrences reported since the beginning of the current storm sequence
28* Number of days with snow-drift during the current storm sequence

29 Weighted cumulated precipitation of the sequence

30 Fresh snow depth

g™ Observed settlement since last maximum snow depth

go N Relative settlement

33* Settlement between days i—1 and ¢

34* Rammonde penetration depth at the snow surface

35% Surface hardening between day i—1 and i

36 Sunshine hours cumulated over the last 5d

- Incoming solar radiation cumulated over the last 5 d

38% Positive degree-days cumulated over the last 5 d

39%* N.E. wind component cumulated over the last 3 d
40* S.W. wind component cumulated over the last 3 d
41* N.W. wind component cumulated over the last 3 d

42% S.E. wind component cumulated over the last 3 d

43 Snow temperature 10 cm below the surface

44% Snow-temperature change between day i—2 and ¢

45% Snow-temperature change between day i—1 and ¢

46* Relative variation of the snow temperature between day i—2 and ¢

47* Snow surface temperatures cumulated over the last 7 d

48% Weighted variation of the air temperature at 07.00 h between day i—2 and i
49* Number of avalanche days in test area since beginning of winter

50* Number of avalanche days in test area per number of precipitation sequences

APPENDIX II

Tyre I MODELS
Fanuary-February ~ March-April

Number of variables selected 10 12
Discriminant power 37% 39%
Variables used 36(—) 37(—)
(according to the numbering of Appendix I) 39(+) 50(+)
25(+) 30(+)
46(—) 25(—)
30(+) 36(+)
5(+) 3(—)
21(+) 16(+4)
16(—) 46(—)
35(+) 5(+)
33(+) 38(+)
26(+)
Misclassification rate on the calibration samples 21% 7%

The variables selected are ordered according to their F-values. The sign displayed in parentheses indicates
increasing () or decreasing (—) hazard when the variables increase, assuming that all the others remain
constant (partial correlation).

Performances on the test sample

Number of days processed 240 = 2 X (January to April)
Warnings ( probability level of 60%,) 88
Recorded avalanche days 41

Avalanche days misclassified (computed probability level of 60%) 7
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Tyee II moDELS
First level
Discrimination between the different groups of avalanche days:

January-February — March—April

Number of groups 3 4
Number of variables selected 11 10
Diseriminant power :
First axis 77% 87%
Second axis 64% 62%,
Third axis — 40%
Variables used 32 42
23 10
8 5
30 14
20 37
2
32 38
45 18
10 23
21 41
31
Misclassification rate on the calibration samples 3% 495

Second level
Discriminant models between avalanche and non-avalanche inside each class of avalanche days:

Fanuary—February
Class @  Class @  Class (3

Sample size
avalanche 34 75 45
non-avalanche ot 72 71
Number of variables selected 5 6 6
Discriminant power 67% 39% 47%
Variables used 50(+) 44(—) 41(+)
9(+) 8(+) 50(+)
35(+)  ra(+)  36(—)
46(+) 5(+)  11(+)
so(+)  30(+)  33(+)
12(+)  34(+)
Misclassification rate of the calibration samples 9% 229, 16%,
March—April

Class @) Class @  Class @ Class @

Sample size

avalanche 84 43 42 41
non-avalanche 31 56 43 59
Number of variables selected 6 4 6 9
Discriminant power 689, 389, 55% 41%,
Variables used 30(+) 37(—) 21(+) 25(—)
47(+)  30(+)  43(—) 11(—)
13(+) 14(—) 19(—) 13(—)
31(—)  s0(+)  24(—) 38(+)
42(—) 30(+) 47(+)
35(+) 50(+) 41(+)
32(+)
46(—)
14(—)
Misclassification rate of the calibration samples 129%, 25% 16%, 27%
Performances on the test sample
Number of days processed 240
Warnings ( probability level of 60%;) 8o
Recorded avalanche days I

4
Avalanche days misclassified (computed probability level of 60%) 7
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Performances on the test sample

Number of days processed
Warnings ( probability level of 60%,)
Recorded avalanche days

Avalanche days misclassified (computed probability level of 60%,)

240
54

41
13

The lower number of avalanche days forecast, and yet the greater number of avalanche days missed, show
that the coding chosen to express the results in terms of estimated probability is not exactly comparable to the one
used with type I or II models. A search should be made for a suitable homogenization.

THPE 1 MODEL
fa) Development of the model

APPENDIX III

Tyre tmooLL
{a) Development of the model
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