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We model linear, inviscid, internal tides generated by the interaction of a barotropic
tide with one-dimensional topography. Starting from the body-forcing formulation of
the hydrodynamic problem, we derive a coupled-mode system (CMS) using a local
eigenfunction expansion of the stream function. For infinitesimal topography, we solve
this CMS analytically, recovering the classical weak topography approximation (WTA)
formula for the barotropic-to-baroclinic energy conversion rate. For arbitrary topographies,
we solve this CMS numerically. The CMS enjoys faster convergence with respect to
existing modal solutions and can be applied in the subcritical and supercritical regimes
for both ridges and shelf profiles. We show that the non-uniform barotropic tide affects the
baroclinic field locally over topographies with large slopes and we study the dependence
of the radiated energy conversion rate on the criticality. We show that non-radiating or
weakly radiating topographies are common in the subcritical regime. We also assess
the region of validity of the WTA approximation for the commonly used Gaussian
ridge and a compactly supported bump ridge studied here for the first time. Finally, we
provide numerical evidence showing that in the strongly supercritical regime, the energy
conversion rate for a ridge (respectively shelf) approaches the value obtained by the
knife-edge (respectively step) topography.

Key words: internal waves, topographic effects, computational methods

1. Introduction

Internal tides (ITs) are internal waves generated in the interior of a stratified and rotating
ocean through the interaction of the astronomically induced barotropic tidal flow with
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the seafloor. They are oscillatory perturbations of the baroclinic flow at the tidal frequency,
propagating away from bottom irregularities such as ridges or continental shelves (Garrett
& Kunze 2007). ITs are considered to be one of the main sinks of energy for the barotropic
tide, and an important contributor to ocean mixing on a global scale (Garrett 2003; Wunsch
& Ferrari 2004; Whalen et al. 2020). An accurate description of the IT flow and the
associated barotropic-to-baroclinic energy conversion is necessary for reliable ocean and
climate modelling. Climate models often implement internal-wave-driven mixing through
parametrisations involving idealised estimations of the local energy conversion rate at the
IT generation sites. Moreover, the dissipation of ITs is also parametrised by using a modal
description of the flow (Klymak et al. 2013; MacKinnon et al. 2017).

The problem of IT generation, even in its linearised time-harmonic version considered
herein, is quite complex. Simplifications are commonly based on smallness assumptions
on the relative topographic height or the so-called criticality, defined as the ratio of the
maximum topographic slope and the characteristic slope of internal waves at the tidal
frequency (Garrett & Kunze 2007).

Bell (1975) linearised the bottom boundary condition around a flat bottom and
introduced a uniform barotropic background flow, that is, a barotropic flow that does not
depend on the variable topography. This approach, also known as the ‘weak topography
approximation’ (WTA) is formally valid for topographic features of small relative height
and criticality (Llewellyn Smith & Young 2002; Khatiwala 2003; Vlasenko, Stashchuk
& Hutter 2005). Another idealised configuration of opposing nature is to consider
discontinuous (infinitely steep) topographies such as one with zero elevation everywhere
except at a single point (‘knife edge’) (Larsen 1969; Laurent et al. 2003; Llewellyn Smith
& Young 2003; Nycander 2006), or top-hat, linear ramp and step functions (Prinsenberg,
Wilmot & Rattray 1974; New 1988; Laurent et al. 2003). An attractive feature of the above
simplifications is that they can lead to computationally inexpensive methods of calculating
the radiating energy, which can be applied on a global scale, see e.g. Nycander (2005) and
Falahat et al. (2014).

The first solution to the full two-dimensional (2-D) linear problem is due to Baines
(1973), who proposed what is now called the body-forcing formulation. In this approach,
the baroclinic flow appears as a response to a non-uniform barotropic flow. That is, a
flow with horizontal and vertical velocities that depend on the variable topography and its
slope. The spatial part of the response stream function is governed by a hyperbolic partial
differential equation (PDE) with variable forcing and homogeneous boundary conditions
at the natural boundaries. Baines (1973) proposed a numerical technique based on an
integral equation derived from the normal form of this PDE and calculated the radiated
energy for simple topographies. He noted, however, that this technique becomes rather
involved for complex topographies and proposed in Baines (1982) a perturbative method
for small-scale topographies. Gerkema, Lam & Maas (2004) obtained numerical solutions
of the formulation of Baines (1973) in the time domain by treating the radiation conditions
with sponge layers. Garrett & Gerkema (2007) showed that the body-forcing term in the
formulation of Baines (1973) is inconsistent with non-hydrostatic conditions and derived
a consistent formulation. We also adopt this formulation.

An equivalent formulation is also possible where the governing hyperbolic PDE
on the total flow is homogeneous and the forcing appears as a non-homogeneous
Dirichlet condition on the bottom boundary (boundary forcing approach) (Sandstrom 1975;
Stashchuk & Cherkesov 1991; Vlasenko et al. 2005); see also Garrett & Gerkema (2007)
for the relation with the body-forcing formulation. The numerical techniques developed
for this formulation are also based on the normal form of the PDE and its characteristics.
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Internal tide generation from barotropic body forcing

They are rather technical, and the treatment of supercritical topographies requires
additional attention. Moreover, to obtain the flow fields in the physical domain, an
additional transformation is required.

Semi-analytical methods have also been developed by using the Green’s function of free
internal waves corresponding to a radiating source in a flat-strip domain (Robinson 1969;
Pétrélis, Llewellyn Smith & Young 2006; Echeverri & Peacock 2010; Mathur, Carter &
Peacock 2016). By construction, this approach excludes shelf and trench geometries and
has been applied only to ridges. Moreover, it is characterised by numerical singularities
associated with the solution of an integral equation, as we develop in § 7. Balmforth &
Peacock (2009) developed a variant of this approach in the infinite-depth case with lateral
periodic conditions.

In this work, we develop a new semi-analytical IT model based on the body-forcing
formulation of Garrett & Gerkema (2007). The analytical step is the exact reformulation
of the hydrodynamic problem as an infinite coupled-mode system (CMS) of equations
accomplished by means of an exact, local eigenfunction expansion of the stream function.
This approach, also called coupled-mode theory, has been applied to various non-uniform
waveguide problems in acoustics (Brekhovskikh & Godin 1992; Desaubies & Dysthe
1995; Maurel, Mercier & Félix 2014; Ivansson 2021), elasticity (Maupin 1988; Pagneux &
Maurel 2006; He et al. 2019) and water waves (Porter & Staziker 1995; Athanassoulis
& Belibassakis 1999; Papoutsellis, Charalampopoulos & Athanassoulis 2018) among
other disciplines. In the context of ITs, Griffiths & Grimshaw (2007) derived a CMS
from Euler’s equations using a local vertical mode decomposition and calculated 2-D
ITs over a shelf topography. Similar systems are derived by Kelly (2016) and Lahaye &
Llewellyn Smith (2020). The principal difference with the present approach is that we
work with the stream function. This has the advantage that every term in our local modal
expansion satisfies exactly the bottom boundary condition for arbitrary topography, and
the solution enjoys faster convergence. We use this CMS to calculate the flow and the
barotropic-to-baroclinic energy conversion rates for two types of ridges for a wide and
finely resolved range of maximum slopes and heights. To our knowledge, the present work
is the first attempt to perform such an extensive set of calculations in the context of the
body-forcing formulation.

The paper is organised as follows. In § 2, we present the body-forcing formulation
and derive its energy balance equation. In § 3, we introduce the modal decomposition
of the stream function and derive our CMS. In § 4, we present numerical convergence and
accuracy results, and in § 5, we visualise our solutions. In § 6, we consider the conversion
rates for various topographies. In § 7, we discuss the differences of the proposed CMS
with the Green’s function method and, finally, in § 8, we present our conclusions.

2. Governing equations

2.1. Posing the problem
In a 2-D Cartesian coordinate system Oxz, with the vertical axis z pointing upward, we
consider a horizontally infinite layer of a density-stratified fluid bounded from above by
the ocean surface, modelled as a ‘rigid lid’ {z = 0}, and from below by the impermeable
bottom {z = −h(x)} with h > 0. We assume that the topography is asymptotically flat, that
is, its slope vanishes at infinity, limx→±∞[hx] = 0, and we define limx→±∞ h = h±. The
latter requirement allows us to take into account fluid domains with different depths at
infinity. The parameters associated with the topography are the characteristic depth h0, the
characteristic height Λ and the characteristic horizontal scaling length L. We do not limit
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ourselves to small heights; i.e. Λ does not have to be much smaller than h0 or any other
characteristic vertical length scale.

In static equilibrium, the fluid velocity is zero and the background density profile
ρeq(z) weakly departs from a constant reference density ρ0 so that the Boussinesq
approximation applies. We further assume that ρeq(z) decreases linearly with z such that
the Brunt–Väisälä frequency N = √(−g/ρ0) dρeq/dz is constant. The hydrostatic pressure
p0(z) is then defined by its vertical gradient p0,z ≡ dp0/dz = −ρ0g. The hydrodynamic
problem is posed on the f -plane, with f the Coriolis parameter. Our aim is to find
perturbations of this state driven by the interaction of a background barotropic tidal flow
with the bottom topography. The barotropic flow oscillates with an angular frequency
ω ∈ ( f ,N) for N > f and is associated with a volume flux of constant amplitude Q
corresponding to a uniform current Q/h± cos(ωt) at x → ±∞.

Under the Boussinesq approximation, our set-up is characterised by eight dimensional
parameters (h±, L, Λ, f , N, ω and Q), which we summarise in figure 1, measured in
combinations of metres and seconds. In the case of an isolated ridge, h0 is the depth as
x → ±∞, and Λ is the maximum height of the ridge, Λ = max{h0 − h}. For a shelf, we
assume that h− > h+ (h− is the oceanward depth) so that the maximum height is Λ =
max{h0 − h}, where we have also chosen h0 = h− as the characteristic depth. A complete
dynamical description of our system therefore requires five non-dimensional numbers.
First, we introduce a ‘funnelling ratio’ that measures the reduction in cross-section of the
flow,

δ = max{h0 − h}
h0

∼ Λ

h0
. (2.1)

The second and third parameters are the non-dimensional frequency ω/f and the
characteristic slope of the internal wave,

μ−1 =
√
ω2 − f 2

N2 − ω2 = tan θ, (2.2)

θ being the angle of the free internal wave group velocity with respect to the horizontal
plane (see (2.8a–c)). Note that internal waves are hydrostatic to a good approximation
when ω � N, or equivalently, μ � 1. Our fourth and fifth parameters are the relative
steepness ε,

ε = μmax{|∂xh|} ∼ μΛ

L
, (2.3)

and the tidal excursion τ defined by

τ = Q
(h0 −Λ)ωL

. (2.4)

The parameter ε represents the ratio tanα/ tan θ , where α is the maximum inclination of
the topography with respect to the horizontal plane. Its purpose is to measure the criticality
of the topography, with ε < 1 (> 1) corresponding to the subcritical (supercritical)
regime. The parameter τ compares the typical displacement amplitude of a water parcel
above topography, Q/[(h0 −Λ)ω], with the horizontal scale L. If τ is finite, the curvature
of the particle trajectories at the bottom generates internal waves with frequencies other
than ω (Bell 1975). To ensure monochromatic disturbances, we therefore assume τ � 1. In
the ocean, for the lunar semi-diurnal tide M2, the tidal excursion over flat bottom Q/(ωh0)
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z = –h(x)

–gẑ

f ẑ

z = –h+

Q

L

x

z = –h0 = –h_

Rigid lid

Slope μ–1 = tan θ 

z = 0

cos(ωt)

cos(ωt)

h+

Q
h–

Λ

Figure 1. Sketch of the set-up and summary of several parameters used in this article. We use a supercritical
topography (ε > 1) for purposes of illustration, although our model can also be applied to subcritical ones.

is O(100 m) (Bell 1975), and therefore even a moderate topographic width L = O(10 km)
would satisfy this so-called ‘acoustic limit’.

Of the five parameters defined above, ω/f = O(1) corresponds to a tidal component
at mid-latitudes, and we will keep μ−1 fixed to a small value (for illustration purposes,
f = 10−4 s−1 is the value around latitude 45 ◦N, ω/f = 1.4 for the M2 component and
we will use N = 1.5 × 10−3 s−1, which implies μ ≈ 15). Starting in § 4, ε and δ are
the parameters that we vary primarily. Finally, we adopt a standard fixed value for
Q = 120 m2 s−1 corresponding e.g. to a barotropic velocity amplitude at x → −∞ of
U0 = Q/h0 = 4 cm s−1 and a depth h0 = 3 km. As ε and δ vary, the value of τ therefore
varies between calculations while remaining small.

With the parameters defined above, we can discuss the linearity of our equations.
A first way to define it is to estimate the susceptibility of radiated internal waves to undergo
instabilities, which, in the τ � 1, ε � 1 regime, is small when ετ � 1 (e.g. Balmforth,
Ierley & Young 2002; Garrett & Kunze 2007). In other words, the τ � 1, ε � 1 regime
is linear by construction. However, regardless of the value of τ , linearity breaks down
as ε increases, implying that this parameter is a better measure of linearity (Bühler &
Muller 2007; Garrett & Kunze 2007; Grisouard & Bühler 2012). In this article, we adopt
the common approach of letting ε be significantly supercritical in some cases while
always solving a linear set of equations (Pétrélis et al. 2006; Griffiths & Grimshaw 2007;
Balmforth & Peacock 2009; Echeverri & Peacock 2010; Mathur et al. 2016). Indeed, we are
primarily interested in predicting conversion from a given large-scale barotropic forcing to
a topography-scale response. The subsequent nonlinear evolution of this response, which
could take the form of different instabilities (see Dauxois et al. (2018) for a review), could
be addressed by separate parametrised procedures such as that of Muller & Bühler (2009),
but would be beyond the scope of this article.

Based on the discussion above, we neglect nonlinear effects and diffusion of momentum
and buoyancy, and we model the flow by the linearised, inviscid Boussinesq equations.
Introducing the buoyancy b = −g(ρ/ρ0 − 1), where ρ is the total density field, the
governing equations are

ut − fv = −px, vt + fu = 0, (2.5a)

wt = −pz + b, (2.5b)

bt + N2w = 0, (2.5c)

ux + wz = 0, (2.5d)
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where (u, v,w) are the velocity components, p is the associated pressure perturbation
divided by ρ0 and subscripts denote partial derivatives. On the boundaries z = −h and
z = 0, we have the impermeability conditions

hxu(x,−h)+ w(x,−h) = 0 and w(x, 0) = 0, (2.6a,b)

and we also assume that the total flux through a vertical cross-section is oscillating with
frequency ω and constant amplitude Q,∫ 0

−h
u dz = Q cosωt. (2.7)

Introducing the time harmonic stream function ψ = Re{φ(x, z) exp(−iωt)}, with u =
−ψz, w = ψx, where φ is a complex amplitude and Re stands for the real part, (2.5)–(2.7)
lead to a hyperbolic boundary value problem (BVP) on φ,

Lμφ :=
(
∂2

x − μ−2∂2
z

)
φ = 0, φ(x, 0) = 0 and φ(x,−h) = Q, (2.8a–c)

where μ is defined in (2.2) (Vlasenko et al. 2005; Garrett & Gerkema 2007). Equation
(2.8a–c), also known as the boundary forcing formulation, is completed by the requirement
that φ has the form of a barotropic flow plus a flow radiating away from the topography in
the form of internal waves. We introduce the barotropic flow in the following subsection.

2.2. Barotropic flow
The barotropic velocity components U, V , W and scaled pressure P satisfy (2.5)–(2.6a,b),
where the buoyancy in the vertical momentum equation (2.5b) is absent and (2.5c) acts as
a diagnostic equation for the induced buoyancy B, see (A1) in Appendix A. Introducing a
barotropic stream function Ψ = Re{Φ exp(−iωt)} for some time independent function Φ
with U = −Ψz and W = Ψx, we obtain from (A1),

Φxx + μ−2
0 Φzz = 0, Φ(x, 0) = 0 and Φ(x,−h) = Q, (2.9a–c)

with μ−2
0 = 1 − f 2/ω2 (Garrett & Gerkema 2007), where the boundary conditions ensure

that the total mass transport through any vertical cross-section is solely due to the
barotropic flow. Note that the PDE (2.9a) is elliptic and is also obtained by (2.8a) with
N ≡ 0. The solution of (2.9a–c) can be written as

Φ = Φ(0) +Φr, with Φ(0) = −Qz/h, (2.10)

where Φ(0) represents the hydrostatic part of the barotropic flow. It is obtained by
neglecting Wt in (A1b) and, consequently, Φxx in (2.9a); see Appendix A for a detailed
derivation. Here, Φr represents the residual non-hydrostatic part which solves

Φr
xx + μ−2

0 Φr
zz = −Φ(0)xx , Φr(x, 0) = 0 and Φr(x,−h) = 0. (2.11a–c)

Note that Φ is spatially non-uniform, that is, it depends on z and h(x). Also note that
Φr vanishes at x → ±∞. We obtain a general semi-analytical solution of (2.11a–c)
that is valid for arbitrary smooth h by means of a modal decomposition (§ 3.2). In
Appendix A, we derive a perturbative solution that is valid if h0/L � 1. In fact, Φ(0)
coincides with the leading order part of this solution. The corresponding velocities are
given by [U(0),W(0)] = [Q/h,Qz(1/h)x] cos(ωt). As x → ±∞, W(0) = 0 and U(0) =
Q/h± cos(ωt) coincide with the spatially uniform (depth-averaged) barotropic currents far
from the topography. In the IT model of Griffiths & Grimshaw (2007), U(0) is also used
as a forcing in the case of a shelf without coastline.
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2.3. The internal tide generation problem
Introducing φ# = φ −Φ, we obtain from (2.8a–c) the BVP

Lμφ# = −LμΦ, φ#(x, 0) = 0 and φ#(x,−h) = 0, (2.12a–c)

which shows that the barotropic flow Φ forces a purely baroclinic response φ#.
Alternatively, introducing φ† = φ# +Φr and exploiting the linearity of Lμ, the BVP
(2.12a–c) becomes

Lμφ† = −LμΦ(0) = −Φ(0)xx , φ†(x, 0) = 0 and φ†(x,−h) = 0, (2.13a–c)

which shows that the hydrostatic part of barotropic flow,Φ(0), forces a baroclinic response
plus a non-hydrostatic barotropic one (Garrett & Gerkema 2007). This formulation is
referred to as the body-forcing formulation since the forcing appears only in the wave
equation (Garrett & Gerkema 2007; Garrett & Kunze 2007). An advantage of working with
such a formulation is that the unknown field satisfies homogeneous Dirichlet conditions
that make the application of a coupled-mode approach straightforward (§ 3). Here, we shall
proceed with (2.13a–c) mainly because Φ(0) is given by the simple explicit expression
(2.10); Φr can be computed independently to extract the purely baroclinic field φ# =
φ† −Φr if needed. Also,Φr results in a spatially trapped correction to the flow; namely, it
vanishes as x → ±∞ and thus does not influence the far-field energy. Equation (2.13a–c)
is supplemented with radiation conditions ensuring that waves generated in the interior of
the domain propagate outward as plane waves. Thus, we have

φ† =
∞∑

n=1

c±
n exp(±ik±

n x) sin
(

nπz
h±

)
, with k±

n = nπ

μh±
, c±

n ∈ C, as x → ±∞.

(2.14)
It is useful to write down expressions for the flow fields in terms of the amplitudes of
the stream functions. From the above analysis, φ = Φ(0) +Φr + φ# = Φ(0) + φ† and we
may introduce the corresponding definitions

ξ = Ξ(0) +Ξ r + ξ# = Ξ(0) + ξ†, (2.15)

where ξ is a placeholder for any of u, v, w, b or p, and Ξ is a placeholder for any of U, V ,
W, B or P. The flow components appearing in (2.15) satisfy the relations

(
U� V� W� B�
u� v� w� b�

)
= Re

⎧⎪⎨⎪⎩
⎛⎜⎝−Φ�

z
if
ω
Φ�

z Φ�
x − iN2

ω
Φ�

x

−φ�z
if
ω
φ�z φ�x − iN2

ω
φ�x

⎞⎟⎠ exp(−iωt)

⎫⎪⎬⎪⎭ , (2.16)

where the superscript � stands for either † or #, and the superscript � stands for either (0) or
r. The relations for v�,V� (respectively b�,B�) follow from the second equation in (2.5a)
(respectively (2.5c)) and the assumption that all fields have the same time periodicity.
A similar expression can be derived for the pressure containing additionally boundary
terms. For easy reference, we summarise the notation for the different flow fields in
table 1. Plugging the second equality of (2.15) into (2.5)–(2.6a,b) and taking into account
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Notation Field type and equations Related definitions

φ, ξ Total, (2.8a–c), (2.5)–(2.6a,b) ξ = ξ# +Ξ

Φ, Ξ Barotropic, (2.9a–c), (A1)–(A2a,b) Ξ = Ξ(0) +Ξ r

Φ(0), Ξ(0) Hydrostatic barotropic, (2.10), (A15)–(A18a,b)
Φr, Ξ r Non-hydrostatic barotropic, (2.11a–c) Ξ r = Ξ −Ξ(0)

φ†, ξ† Baroclinic-barotropic(non-hydrostatic), (2.13a–c), (2.17)–(2.20a,b) ξ† = ξ# +Ξ r

φ#, ξ# Baroclinic, (2.12a–c), (2.17a), (2.21), (2.18)–(2.20a,b)

Table 1. The notation for the fields we use. The symbol ξ stands for u, v, w, b, p and Ξ for their capitalized
versions. The relations in the third column hold for ξ and Ξ replaced by φ and Φ.

(A15)–(A18a,b) with i = 0, we obtain

u†
t − fv† = −p†

x, v
†
t + fu† = 0, (2.17a)

w†
t = −p†

z + b† +
(

1 − ω2

N2

)
B(0), (2.17b)

b†
t + N2w† = 0, (2.18)

u†
x + w†

z = 0, (2.19)

hxu†(x,−h)+ w†(x,−h) = 0, w†(x, 0) = 0. (2.20a,b)

In deriving (2.17b), we used the relation B(0) = N2W(0)
t /ω2, which itself is derived from

(2.16). In terms of ξ#, the above equations stay the same except for (2.17b), which becomes

w#
t = −p#

z + b# + B, (2.21)

showing that the baroclinic flow is forced by the buoyancy force created by the barotropic
flow (Garrett & Gerkema 2007).

2.4. Energy equation and conversion rate
We derive here the energy equation for the above IT generation problem and use it to
define the energy conversion rates.

The dot product of (2.17)–(2.18) with (u†, b†/N2) ≡ (u†, v†,w†, b†/N2) gives

E†
t + ∇ ·

(
p†u†
)

=
(

1 − ω2

N2

)
B(0)w†, with E† = 1

2
(u†)2 + 1

2
(b†)2

N2 , (2.22)

where we have used (2.19) and where ∇ ≡ (∂x, 0, ∂z). Integrating (2.22) over the domain
Ω = [−∞,+∞] × [−h, 0], using the divergence theorem and (2.20a,b), we obtain(∫

Ω

E† dΩ
)

t
+
[∫ 0

−h
p†u† dz

]+∞

−∞
=
(

1 − ω2

N2

)∫
Ω

B(0)w† dΩ, (2.23)

with [ · ]+∞
−∞ = limx→∞(·)− limx→−∞(·).
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Internal tide generation from barotropic body forcing

Applying the time-average operator 〈 · 〉 = 1/T
∫ T

0 · dt, with T = 2π/ω, and taking into
account the periodicity of E†(t), we find

C+ − C−
def=
[∫ 0

−h
〈p†u†〉 dz

]+∞

−∞
=
(

1 − ω2

N2

)∫
Ω

〈B(0)w†〉 dΩ def= Cint, (2.24)

where we have defined the energy conversion rates C± that represent the rates at
which energy is radiated at ±∞, and the total energy convergence rate Cint given as
a volume integral. Note that the non-hydrostatic barotropic flow does not contribute in
(2.24) because u† = u# + Ur → u# as x → ±∞ and 〈B(0)w†〉 = 〈B(0)w#〉 + 〈B(0)Wr〉 =
〈B(0)w#〉 since B(0) and Wr are out of phase by π/2 (2.16). Thus, (2.24) remains valid with
† replaced by #.

We proceed by expressing C± and Cint in terms of φ† and Φ(0). Using integration by
parts and the fact thatψ†(x, 0) = ψ†(x,−h) = 0, we obtain

∫ 0
−h〈p†u†〉dz = ∫ 0

−h〈p†
zψ

†〉dz.
Then, expressing p†

z from (2.17b) using (2.16), we find

〈p†
zψ

†〉 = ω2 − N2

ω
〈Re{iφ†

x exp(−iωt)}Re{φ† exp(−iωt)}〉 as x → ±∞. (2.25)

Writing exp(−iωt) = cosωt − i sinωt and noting that 〈cosωt sinωt〉 = 0, 〈cos2 ωt〉 =
〈sin2 ωt〉 = 1/2, we obtain

C± = ω2 − N2

2ω

∫ 0

−h
Im{φ†φ

†
x } dz, as x → ±∞, (2.26)

where the overline denotes the complex conjugate and Im the imaginary part. Similarly,

Cint =
(

1 − ω2

N2

)
N2

2ω

∫
Ω

Φ(0)x Im{φ†
x } dΩ. (2.27)

Using the radiation conditions (2.14) in (2.26), we see that C+ ≥ 0 (respectively C− ≤ 0)
as x → +∞ (respectively x → −∞). Equations (2.26) and (2.27) provide us with two
ways of calculating the total conversion rate, either by using the the far-field baroclinic
flow or by using a barotropic–baroclinic interaction term defined in the entire fluid domain.
This fact will be used in § 4 for validation purposes.

3. Modal decomposition

3.1. Stream function modal representation
We reformulate the IT generation problem (2.13a–c)–(2.14) by representing φ† as

φ†(x, z) =
∞∑

n=1

φn(x)Zn(z; x), (3.1)

where {Zn(z; x)}∞n=0 are prescribed vertical basis functions with a parametric dependence
on x and {φn(x)}∞n=0 are unknown complex modal amplitudes to be determined. For the
expansion (3.1) to be exact, the set {Zn(z; x)}∞n=0 must be complete. In the present constant
stratification case, this set is obtained as the set of eigenfunctions of a Sturm–Liouville
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problem parametrised by x, also called the ‘reference waveguide’ (Brekhovskikh & Godin
1992),

Zn,zz + n2π2

h2 Zn = 0, Zn(0; x) = 0, Zn(−h; x) = 0. (3.2a–c)

The eigenfunctions Zn are given by

Zn(z; x) = sin
(nπz

h

)
, (3.3)

and satisfy the orthogonality relation
∫ 0
−h ZnZm dz = hδnm/2, where δnm is the Kronecker

delta. Note that (3.1) satisfies exactly and term by term the boundary conditions in
(2.13a–c). It follows from (3.1) and (3.3) that the φn are defined by

φn = 2
h

∫ 0

−h
φ†Zn dz = 2h2

π3n3

([
φ†

zzYn

]0
−h

−
∫ 0

−h
φ†

zzzYn dz

)
, (3.4)

where Yn = cos(nπz/h) and the second equality is obtained after integrating by parts
three times, which is allowed provided φ† is sufficiently smooth, and using the boundary
conditions in (2.13a–c). This shows that ‖φn‖∞ := max |φn| = O(n−3) and that (3.1)
converges uniformly in this case. Similar estimates are obtained for ‖φn,x‖∞ and ‖φn,xx‖∞
by adapting the procedure developed in Athanassoulis & Papoutsellis (2017, § 4) and
suffice to establish the term-wise differentiability of (3.1) required for the exact modal
reformulation of (2.13a–c).

Griffiths & Grimshaw (2007) use a similar expansion for u and derive a series
representation for w by using the incompressibility and the bottom-boundary conditions.
The maximum decay rate in this case is O(n−2) due to the non-vanishing of u on the
boundaries. Note also that in contrast to (3.1), the truncated version of this expansion does
not satisfy term by term the bottom boundary condition. Kelly (2016) uses two sets of
eigenfunctions: one for u and p, and the other for w and b. In this approach, w vanishes
identically on the bottom which is not the case for arbitrary h. Consequently, this approach
should be regarded as an approximation, see the discussion by Kelly & Lermusiaux (2016)
for more details. Despite (3.1) being limited to 2-D flows, its major advantage is that it
satisfies the bottom boundary condition in (2.13c) exactly and term by term, and exhibits
faster convergence in comparison with existing approaches.

3.2. The coupled-mode system
We proceed by projecting (2.13a–c)–(2.14) onto (3.3). Substituting (3.1) into (2.13a),
multiplying with Zn and integrating over the interval [−h(x), 0], we find that {φn(x)}∞n=1
solves the following CMS, for m ≥ 1:

φm,xx + m2π2

μ2h2 φm +
∞∑

n=1

[
bmnhx

h
φn,x +

(
cmnh2

x

h2 + dmnhxx

h

)
φn

]
= 2gmh

(
1
h

)
xx
, (3.5)

where bmn, cmn, dmn are x-independent coefficients given in Appendix B, and gm =
Q(−1)m+1/(mπ). Substituting (3.1) into (2.14), we obtain

∞∑
n=1

φn(x)Zn(x; z) =
∞∑

n=1

c±
n exp(±ik±

n x) sin
(

nπz
h±

)
as x → ±∞. (3.6)
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Multiplying both sides by Zq, q ≥ 1, integrating over [−h, 0] and taking into account that
Zn → sin(nπz/h±) as x → ±∞, we obtain φn = c±

n exp(±ik±
n x), and therefore

φn,x ∓ ik±
n φn = 0, as x → ±∞. (3.7)

Thus, (2.13a–c)–(2.14) are exactly reformulated as the CMS (3.5)–(3.7). Solving the latter,
we may reconstruct the solution of the former by using (3.1). The energy conversion rates
C± are evaluated by (2.26):

C± = ω2 − N2

2ω
h
2

∞∑
n=1

Im{φ†
nφ

†
n,x} = ±N2 − ω2

4ωμ
π

∞∑
n=1

nφ†
nφ

†
n as x → ±∞, (3.8)

where (3.7) and the definition of k±
n in (2.14) have been used to obtain the second equality.

The purely baroclinic field φ# is computed using φ# = φ† −Φr. For the computation of
Φr, we apply the same modal decomposition to (2.11a–c). The resulting CMS is given
by (3.5) with μ2 replaced by −μ2

0 and vanishing conditions at infinity, instead of (3.7);
if h0/L � 1, one could use instead the approximate asymptotic expression in (A8a,b). In
the following subsection, we derive a perturbative solution of the CMS (3.5)–(3.7) for
infinitesimal topography. For arbitrary topographies, we solve the CMS numerically (see
§ 3.4).

REMARK 1. The body-forcing formulation (2.12a–c) and its coupled-mode reformulation
(3.5) are valid for non-hydrostatic conditions. If the hydrostatic approximation (HA) is
invoked for both the baroclinic and the barotropic flow (ω2 � N2 and h2

0 � L2), (2.12a–c)
becomes (2.13a–c) with μ2 replaced μ′2 = (ω2 − f 2)/N2 and φ† is interpreted as a purely
baroclinic response, that is, Φr = O(h2/L2) may be neglected (Appendix A) (Garrett &
Gerkema 2007). The CMS (3.5) changes accordingly. Under this assumption and using
(2.16), (2.24) reduces to the energy equation derived by Gerkema et al. (2004) starting from
the hydrostatic governing equations. If instead we assume ω2 � N2 and h2

0/L
2 = O(1),

then Φr is not negligible but does not affect the energy flux at infinity. In the reverse
situation, ω2 < N2 and h2

0/L
2 � 1, (2.12a–c) and (3.5) hold as is but, once again, φ† is

interpreted as a purely baroclinic response. For more details on the relevance of the HA,
we refer to the discussion by Garrett & Gerkema (2007). Unless otherwise stated, we do
not invoke the HA because the obtained mathematical simplification is minute and the
precise quantification of the induced error for different values of μ is out of the scope of
this work.

3.3. Infinitesimal topography solution
Let h(x) = h0 − εr(x) with |ε| � 1 and r = O(1), for some characteristic depth h0.
Introducing the asymptotic expansion φm =∑K

i=0 ε
iφ
(i)
m and Taylor-expanding 1/h in

(3.5), we deduce that φ(0)m = 0 and that φ(1)m solves

φ(1)m,xx + �2
mφ

(1)
m = 2gm

rxx

h0
for m ≥ 1, (3.9)

with �m = mπ/(h0μ) and the radiation conditions in (3.7) with k+
m = k−

m = �m.
Substituting the solution (C3) in (2.26), we obtain the conversion rate for weak topography,

CWTA = F0

h2
0

∞∑
n=1

|r̂(�n)|2 nπ2

(μh0)2
with F0 =

[
(N2 − ω2)(ω2 − f 2)

]1/2
2πω

U2
0h2

0, (3.10)
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where r̂(ξ) = ∫ +∞
−∞ exp(−ixξ)r(s) ds is the Fourier transform of r (Appendix C). This

is the formula given by Laurent et al. (2003) (up to multiplication with ρ0), which was
first derived by Llewellyn Smith & Young (2002) in the case of hydrostatic internal
waves. Khatiwala (2003) derived a different formula starting from a multi-frequency
representation of the response fields in terms of Bessel functions. In the acoustic limit
(recall discussion following (2.4)), the dominant contribution to the far-field energy comes
from the fundamental frequency, say, ω0 (Bell 1975). The quantity J1(U0kj1/ω0) appearing
in Khatiwala (2003, (28)), where J1 is the order-one Bessel function of the first kind, and
U0 and kj1 are his barotropic tidal amplitude and wavenumber for the jth mode of the
fundamental frequency, respectively, may be replaced by its asymptotic value U0kj1/(2ω0)
leading to our (3.10) with ω = ω0.

3.4. Numerical solution for arbitrary topography
We truncate the infinite CMS (3.5)–(3.7) by keeping the first M equations and replacing
the infinite domain by a finite interval X = [xL, xR] of length LX = xR − xL. We discretise
X with a uniform spacing δx, {xi, i = 1,NX} and we approximate the derivatives using
fourth-order finite differences up to the boundary points x = xL, xR. The corresponding
formulae can be found in Papoutsellis et al. (2019, Appendix C). We thus obtain a sparse
square linear system of dimension (NXM)2 for the grid values of each modal amplitude
φn(xi), i = 1, . . . ,NX , n = 1, . . . ,M, which we solve by means of a LU decomposition.
Using this solution, we reconstruct the field φ† by means of a truncated version of (3.1).
We then compute the baroclinic fields and conversion rates using (2.16) and (2.26). We
also provide an estimation of the free-surface elevation due to the IT motion given by
η = [p#]z=0/g, where [p#]z=0 is the pressure induced on z = 0 by the baroclinic flow
(Appendix D).

4. Convergence, accuracy and singularity formation

In this section, we introduce the topographic profiles we use in our calculations and present
results showing the good performance of our semi-analytical solution.

4.1. Topographic profiles
We consider two ridge profiles, namely the ‘Gaussian’ h = h0 − hG and the ‘bump’ h =
h0 − hB, where

hG = Λ exp
(

− x2

2L2

)
and hB = Λ exp

(
1 − 1

1 − x2/L2

)
1(−L,L), (4.1a,b)

with 1(−L,L) = 1 in (−L, L) and 1(−L,L) = 0 otherwise. Note that the ‘bump’ profile has
a compact support, in contrast with the Gaussian, and all its derivatives are continuous
at x = ±L; see figure 2. We also consider the case of a shelf connecting two different
constant depths. The shelf profile is the same as that in Griffiths & Grimshaw (2007, § 5),
namely, h = hS with

hS =

⎧⎪⎨⎪⎩
h− for x ≤ 0,

h− + (h+ − h−) sin2(πx/2L) for 0 ≤ x ≤ L, and
h+ for x ≥ L.

(4.2)

We recall from § 2.1 that two important parameters will be considered, namely, the
relative topography height δ and the criticality ε of the bottom slope. We also recall
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0–1–2–3 1 2 3

x/L

0

0.25

h/Λ 0.50

0.75

1.00 hG/Λ, Gaussian

hS/Λ, Shelf

hB/Λ, Bump

Figure 2. The three topographic profiles we consider (in the shelf case, we have used h− = 0, h+ = Λ).
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Figure 3. (a) Decay of ‖φn‖∞ in log-scale for the case of a bump topography with δ = 0.5 and ε = 0.7, 0.85,
0.90, 0.95 and 1.00. (b) Normalised absolute error of the energy balance equation, E = |C+ − C− − Cint|/F0,
in log-scale as a function of the order of truncation M and the spatial discretisation parameter s = LM/δx for
ε = 0.7 (blue surface) and ε = 1.0 (orange surface).

that, for illustration purposes, (ω,U0) corresponds to a typical M2 tide, i.e. (ω,U0) =
(1.4 × 10−4 s−1, 0.04 m s−1), and that the Brunt–Väisälä and Coriolis frequencies are
N = 1.5 × 10−3 s−1 and f = 10−4 s−1, respectively. For all ridges, the depth far from the
topography is h0 = 3000 m.

4.2. Results
We first examine the rate of decay of φn with n obtained by solving the CMS. It is known
that the baroclinic field becomes singular in the infinite-depth horizontally periodic case as
ε → 1 (Balmforth et al. 2002) and for a finite-depth shelf as ε � 1 (Griffiths & Grimshaw
2007). In these works, the presence of the singularity is identified by a decrease in the rate
of decay of the coefficients in the respective modal solutions. We verify that this is also
the case for the present CMS. We use the ‘bump’ profile with δ = 0.5, ε ∈ [0.9(0.05)1.5]
and solve the CMS for sufficiently large values of the parameters (M,NX, LX) (see § 3.4) to
ensure that the numerical solution does not depend on them. We show the results on ‖φn‖∞
in figure 3(a). We see that the decay rate drops from n−3, the theoretically expected rate in
the case of a smooth solution (§ 3.1), to n−3/2 as ε approaches 1. The latter rate suggests
the presence of a square root singularity on φ† and an inverse square root singularity on
its derivatives, i.e. on the velocities (Salem 1939; Raisbeck 1955).
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Next, we consider the normalised error of the energy equation (2.24), E = |C+ − C− −
Cint|/F0, where C± are calculated via (2.26) and Cint via (2.27). Here, C± depends only on
boundary values of φn, whereas Cint depends on their values in the entire computational
domain. For an exact solution, E would be zero. Therefore, monitoring E as a function of
(M,NX) is a good indication of the accuracy of the numerical solution. We use δx = LM/s,
where LM is the horizontal wavelength of the Mth internal wave mode over the ridge and
s = 4, 6, 8, 10 and 12. We show results for ε = 0.7 and ε = 1.0 in figure 3(b). We obtain
the expected s−4 decay in both cases, verifying the fourth-order accuracy of the spatial
discretisation scheme. For ε = 0.7, the error decays rapidly as M−4. As an example, we
mention that for (M, s) = (30, 6), E = 3.1 × 10−7. For ε = 1.0, the error decays as M−1/2

for s ≥ 6 and M ≥ 80, demonstrating the slower convergence of the modal solution when
the underlying field becomes singular. Nevertheless, the numerical solution accurately
satisfies the energy balance even in this case. For example, for (M, s) = (120, 10), E =
1.6 × 10−6.

A final issue that must be addressed is the truncation of the infinite domain. In other
words, we must ensure that the lateral boundary conditions applied at the ends of the
computational domain X are effective as radiation conditions and the size of X does not
affect the solution. If h (respectively, hx in the shelf case) is not compactly supported,
then the length of the computational domain, LX , is chosen so that hx at the boundaries
is negligible and further increasing LX does not change the calculated conversion rate.
For compactly supported h (respectively, hx), we have examined the sensitivity of the
conversion rate on the choice of LX and found that choosing X as the support is sufficient
for a convergent solution.

Concerning the choice of M and NX (or s), some remarks are in order. As δ

decreases for constant ε, the horizontal resolution must increase to adequately represent
the topography of the ridge. However, as δ increases, the topography becomes longer
and the computational domain must increase. Moreover, as ε increases beyond the
subcritical regime, both M and the horizontal resolution must increase to achieve a good
representation of the singular solution. Thus, the extent of the (ε, δ) values that can be
considered depends on the given computational resources. In this work, we let δ vary in
[0.1, 0.9], which is sufficient for our purposes. In this range, the choices (M, s) = (64, 6)
and (M, s) = (128, 12) lead to convergent solutions for ε ≤ 1 and 1 ≤ ε ≤ 2, respectively,
while for ε > 2, we increase (M, s) further until the solution becomes independent of
them.

5. Visualisation of flow fields

5.1. Gaussian ridge
Here, we consider solutions of the CMS for a subcritical (ε = 0.8) and a supercritical
(ε = 1.2) Gaussian ridge. In figure 4, we show the purely baroclinic stream function φ#,
the energy density E# = (u#)2/2 + (b#)2/2/N2, the reconstructed free-surface elevation
and the body-forcing term Φ

(0)
xx .

We clearly observe the beam-like structure of ITs, which is finer and more intense in the
supercritical case. In this case, the solution approximates a field that is continuous along
the beams, where the energy density attains very large values (theoretically infinite). The
free surface also transforms from smooth to cusp-like as ε exceeds 1. Such fine-scale
large-amplitude features are regularised in the ocean via nonlinearity and viscosity,
which are beyond the present theory. Nevertheless, such flow-field calculations are
readily obtained using the CMS and give us useful information for observable quantities.
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Figure 4. Gaussian ridges with δ = 0.5; (a–c) ε = 0.8 and (d–f ) ε = 1.2. From top to bottom,
non-dimensional baroclinic stream function ψ#/Q, energy density E#/U2

0 and body-forcing term ε2b2Φ
(0)
xx /Q.

Free-surface elevation 3 × 104η/h0 is also shown in light blue. Black lines correspond to iso-energy curves
of E#/U2

0 = 0.36. Magenta dashed lines correspond to characteristic lines of slope ±μ−1. Vertical dashed
lines correspond to the critical points of the topography. Insets show the field φ#

x + φ#
z /μ in the region

[−30,+7] × [−1.05, 0]. The colour maps used in this and the subsequent figures are from Thyng et al. (2016).

For example, in the supercritical case, the global maximum on the horizontal velocity is
attained at the point of intersection of the beams above the ridge. The following maxima
are attained at the first points of reflection at the free surface. Right at these points, the
free surface attains its maximum slope.

Interestingly, the solution varies considerably between the sloping regions and the flatter
regions. This is due to the body-forcing term in (2.13a), which couples the baroclinic
motion with the non-uniform barotropic current and scales with (1/h)xx (figure 4c, f ).
This effect becomes more apparent if we write the PDE (2.13a) as a first-order system,(

φ†
x ∓ 1

μ
φ†

z

)
x
± 1
μ

(
φ†

x ∓ 1
μ
φ†

z

)
z
= −Φ(0)xx . (5.1)

Note that the above equation also holds with φ† replaced by φ# and Φ(0) by Φ. Equation
(5.1) shows that the solution is not constant along a given characteristic unless Φ(0)xx = 0.
This is captured by our solution as an adjustment of the iso-energy curves near the ridge
crest (figure 4b,e). In the insets of figure 4(b,e), we also plot the field φ#

x + φ#
z /μ to

highlight the variation of the beams. This effect seems to have gone unnoticed in the
literature, although it is clearly present in the calculations of Stashchuk & Cherkesov
(1991). It can also be inferred from the calculations of Baines (1973), even though he
does not visualise flow fields in the physical domain.
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Figure 5. The non-radiating ridge of Maas (2011); Non-dimensional (a) exact baroclinic response φex and
(b) difference φex − φ†, where φ† is calculated using the CMS, (c) purely baroclinic response φ# calculated
with the CMS and (d) body-forcing term Φ

(0)
xx . All variables are dimensionless.

5.2. A non-radiating ridge
For further validation, we reproduce a case investigated by Maas (2011, § 4.2, ‘Ridge’).
Maas considered the dimensionless version of (2.13a–c), obtained by the scaling
(x, z, φ†, h) = (Lx̃, L/μz̃,Qφ̃†, L/μh̃), and showed that it has an exact solution, denoted
here by φex, that radiates no energy at infinity for a specially constructed ridge; see also
Wunsch & Wunsch (2022) for an alternative construction of non-radiating topographies.
For the case in Maas (2011, (4.15)), which is very similar to a Gaussian ridge with
Λ = 0.19 and L = e/

√
2 in our (4.1a,b), the exact non-radiating solution φex is shown

in figure 5(a). Our calculation, φ†, is in agreement with φex as shown in figure 5(b) where
the difference φex − φ† is plotted. The field φex (or φ†) is a combination of a baroclinic
and a non-hydrostatic barotropic response trapped near the ridge. The purely baroclinic
response is shown in figure 5(c). The hydrostatic body-forcing term is shown in figure 5(d).
The calculated non-dimensional energy conversion rate is of the order of 10−17.

6. Energy conversion rates

In this section, we calculate the total energy conversion rate C = C+ − C− (2.24) for the
topographies presented in § 4. Our primary objective is to examine the dependence of C
on ε. We also examine the region of validity of the WTA prediction (3.10).

We first consider Gaussian profiles with δ = 0.1, 0.5, 0.9 and ε ranging from 0.1 to
5. We show in figure 6(a) the non-dimensional calculated conversion rate C/F0, where
F0 is given in (3.10), using a log-log plot to capture large relative variations. In the inset,
we show C/CKE, where CKE is the knife-edge prediction of Llewellyn Smith & Young
(2003, (2.12)), using a linear plot to focus on the largest ε values. For δ = 0.1, C increases
rapidly up to approximately ε = 0.2 and more slowly afterwards. The WTA prediction is
in excellent agreement with the full solution in the entire subcritical regime. For δ = 0.5
and 0.9, we clearly observe abrupt drops in C for discrete values of ε. However, note
that C/F0 never strictly drops to zero. Nevertheless, calculations for values of ε closely
straddling a local conversion minimum in the case δ = 0.5 reached conversion values
approaching machine precision (not shown). The WTA presents strong qualitative and
quantitative differences and clearly fails to predict these abrupt drops. As ε exceeds 1,
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Figure 6. (a) Calculated non-dimensional energy conversion rate C/F0 in log-log scale as a function of ε (solid
lines) for δ = 0.1, 0.5 and 0.9, for a Gaussian ridge. Dashed lines correspond to the WTA prediction CWTA/F0.
Circles correspond to the results obtained by using the Green’s function method. The inset corresponds to the
same calculation in linear scale, normalised by CKE which denotes the knife-edge prediction of Llewellyn Smith
& Young (2003). (b) Relative error |(C − CWTA)/C| for (ε, δ) ∈ [0.1, 1.5] × [0.1, 0.9]. The same calculations
for the bump ridge are shown in panels (c,d). The hatched region in panel (b) corresponds to topographies for
which conversion is negligible for both the full solution and the WTA.

the transition looks smooth for all δ. For δ = 0.1, C is initially increasing until ε ≈ 2.0,
after which it remains very close to CKE. Khatiwala (2003) also reports this increase for
a small-height Gaussian profile up to ε = 1.6 in his nonlinear calculations. For δ = 0.5,
C monotonically increases with ε, approaching CKE. For δ = 0.9, a local minimum is
attained at approximately ε = 1.4, after which C increases, also approaching CKE (inset
of figure 6a). It should also be noted that we obtained a similar trend for the Witch of
Agnesi profile (not shown). In figure 6(a), we also show that the calculated conversion
rate is in overall agreement with that obtained by using the Green’s function method
(Echeverri & Peacock 2010; Mercier et al. 2012). The differences appearing for small ε
in the case δ = 0.9 are due to the domain truncation needed to avoid singularities in the
Green-function solution. Furthermore, the modal convergence being slower than the CMS
approach, these values are also less precise. The horizontal domain considered describes
between 99 % and 99.5 % of the variation of height of the topography. We refer to § 7 for
a further discussion.

We also performed the same calculations as above for the bump profile, figure 6(b). For
δ = 0.1, C/F0 reaches a single local minimum, which is adequately predicted by the WTA.
For larger δ, similarly as before, we observe local extrema in the full solution, although in
this case, there are many more in any given range of ε values. The WTA gives qualitatively
similar results, predicting certain local extrema with values comparable to the full solution,
but not at the right locations. A similar behaviour is also reported in (Vlasenko et al. 2005,
§ 2.3.1) in terms of the amplitude of the first mode for a small-height sinusoidal bump. As
in the Gaussian profile, the transition to the supercritical regime is smooth and for larger
ε and all δ, the conversion rates approach CKE. In the extreme case δ = 0.9, local extrema
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Figure 7. Non-dimensional conversion rates C−/Q2 (blue solid line) and C−/Q2 (blue dashed line) for the
shelf profile with h−/h+ = 0.5. Circles and crosses correspond to the calculations of Griffiths & Grimshaw
(2007). The inset corresponds to the same calculation in linear scale and the dotted dashed blue line shows the
total calculated conversion rate, C = C+ − C−, normalised by the prediction of Laurent et al. (2003) for a step
profile, Cst.

in C are obtained up to ε = 3.2. After this value, C increases slowly towards CKE. In this
case, we have extended our calculations up to ε = 11 and found that C/CKE ≈ 0.98.

To assess the region of validity of the WTA prediction, we performed more than 20 000
calculations per ridge in the parameter space (ε, δ) = [0.1, 1.5] × [0.1, 0.9] and calculated
the relative error |(C − CWTA)/C|. We show the results in the right panels of figure 6.
Note that in the case of the Gaussian ridge, there is a hatched region (figure 6(b), upper
left corner) that corresponds to a practically negligible conversion rate C/F0 of the order
of 10−8. The corresponding values obtained by the WTA reach machine precision. Based
on these figures, it is clear that in both cases, we may identify coherent regions in the
parameter space for which the WTA is valid according to some relevant criterion (e.g.
conversion rates that differ by less than 10 % with respect to the full solution). Interestingly,
these regions include unexpectedly large values of ε and δ. However, it should be stressed
that the region of validity of the WTA depends strongly on the type of the ridge and is
clearly smaller in the case of the bump profile.

We close this section by demonstrating the applicability of the CMS in the case of a shelf
profile. We consider the topography in (4.2) with h− = 2000 m and h+ = 1000 m (δ =
0.5) for which calculations based on another modal decomposition method are reported
by Griffiths & Grimshaw (2007), GG07, for ε ∈ [0.1, 4]. As in that work, we use the
hydrostatic version of the CMS (Remark 1). We plot our results on the conversion rates
C± for ε ∈ [0.1, 5] in figure 7, together with the results digitised from figure 11 of GG07.
The results from the two methods are in agreement for all ε. In the inset of figure 7, we
additionally compare, in a linear scale, our calculations with the conversion rate for a step
profile, Cst, obtained by using eigenfunction matching at the topographic discontinuity
(Laurent et al. 2003). We obtained this result from Laurent et al. (2003, (32)–(36)) for
2000 modes. Note however that for δ = 0.5, the matrix in (32) is singular and a value
δ = 0.500001 is used here. As is also noted in GG07, C is slowly increasing up to ε = 4.
This increase is also reported in the early calculations of Craig (1987) for a linear step up
to ε = 2. Our calculations for ε > 4 suggest that C slowly approaches the value Cst from
below. In fact, we have observed that C/Cst goes from 0.98 for ε = 5 to 0.99 for ε = 10.
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7. Discussion on the Green’s function method

We briefly discuss here how our method compares with an existing method for IT
calculations based on Green’s function of Robinson (1969) for the homogeneous internal
wave equation in a uniform strip (Pétrélis et al. 2006; Echeverri & Peacock 2010). This
approach is limited to domains of the same depth at infinity, say h0, and the starting point is
to write the total flow as φG(x, z) = Φ0(z)+ ϑ(x, z), where Φ0 = −Qz/h0 represents the
barotropic flow corresponding to the uniform strip [−∞,+∞] × [−h0, 0]. From (2.8a–c),
the field ϑ solves

Lμϑ = 0, ϑ(x, 0) = 0 and ϑ(x,−h) = Q(1 − h/h0), (7.1a–c)

together with conditions at x → ±∞. Next, to solve (7.1a–c), ϑ is expressed as an ansatz
defined as the integral of the product of the Green’s function evaluated at z = −h with an
unknown distribution γ (x),

ϑ(x, z) =
∫ a

−a
γ (x′)G(x, x′, z,−h(x′)) dx′, (7.2)

where it is additionally assumed that −h0 + h is supported on [−a, a]. Note that (7.2)
implies that ϑ is defined on [−a, a] × [−h0, 0]; therefore, trench topographies (for which
h ≥ h0) are also excluded. Expression (7.2) satisfies the first two equations in (7.1a–c) as
well as the radiation conditions as a → +∞. The third equation in (7.1a–c) yields∫ −a

a
γ (x′)G(x, x′,−h(x),−h(x′)) dx′ = Q(1 − h/h0), (7.3)

which must be solved for γ (x). Equation (7.3) is a Fredholm integral equation of the
first kind, which is known to be ill-posed (see e.g. Groetsch (1984, § 1.1), Groetsch
1990). This has unpleasant consequences, as is recognised by Pétrélis et al. (2006) and
Echeverri & Peacock (2010); the linear system obtained via the series representation
of the discontinuous Green’s function and the spatial discretisation of (7.3) becomes
ill-conditioned or even singular if a is large or if hx ≈ 0 in some region, among other
special cases (Echeverri et al. 2011). Moreover, as noted by Maas (2011), the physical
meaning of ϑ is clear only as x → ±∞, in which case ϑ(x,−h) → 0 and ϑ may be
interpreted as the far-field baroclinic response. Therefore, the present CMS is more general
and numerically advantageous. There exist, however, two issues that should be discussed
further.

The first issue concerns the local dynamics above the topography. As shown in § 5,
the baroclinic wave field varies significantly in regions where the body-forcing term is
important (recall (5.1)). However, the ansatz (7.2) postulates that ϑ can be represented
as a superposition of sources, all of which ignore the interaction between the baroclinic
and the non-uniform barotropic background flow. The intensities of the sources are instead
determined by an ill-posed equation stemming from the bottom boundary condition in
(7.1a–c). We can reconcile the two approaches by verifying that the purely baroclinic field,
satisfying (2.12a–c), is recovered by φ# = Φ0 + ϑ −Φ, with Φ = Φ(0) +Φr.

The second issue is associated with the the so-called ‘knife-edge limit’ established by
Pétrélis et al. (2006), see also Echeverri & Peacock (2010). The conversion rate obtained
via the ansatz (7.2) tends to this limit because (7.2) is actually a direct extension of the
knife-edge solution of Llewellyn Smith & Young (2003) in the smooth topography case.
In fact, Pétrélis et al. (2006) state that only in the knife-edge case is ‘the kernel of the
integral equation (. . .) so singular that the resulting linear system is well conditioned’. The
knife-edge solution corresponds to a discontinuous topography (ε = ∞) for which the
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body-forcing term in (2.13a–c) (or, equivalently, in (2.12a–c)) is not well defined because
(2.9a–c) requires the domain to be smooth. Moreover, in the knife-edge formulation, the
amplitude of the horizontal barotropic velocity is constant, say U0. This implies that the
total flux through a vertical cross-section is U0h0 everywhere except at the position of
the knife-edge where it equals U0(h0 −Λ), with Λ the height of the knife-edge. This is
not consistent with the key assumption in the body-forcing formulation that the barotropic
flow accounts for a constant total flux through any vertical cross-section. Therefore, the
present numerical evidence showing that the conversion rate, obtained by the body-forcing
formulation, approaches the knife-edge (or step) limit for large ε seems unexpected.
Although this limiting behaviour of the singular solution is interesting, its theoretical
analysis is beyond the scope of this paper and remains a topic for future investigation.

8. Conclusions

We developed a new infinite CMS describing the generation of linear ITs in 2-D using the
body-forcing formulation of Garrett & Gerkema (2007) and an exact, local eigenfunction
expansion of the stream function. In the weak topography limit, we recover from this CMS
the classical formula of Llewellyn Smith & Young (2002) for the conversion rate. For
general topographies, we solve the truncated CMS numerically using fourth-order finite
differences and demonstrate the convergence and accuracy of the semi-analytical scheme.
The formation of singularities is detected as a decrease in the rate of decay of the modal
amplitudes. We additionally derive the energy equation for the body-forcing formulation
and show that our solution verifies it with very good accuracy, even when the field becomes
singular. Further, we show how one can obtain the purely baroclinic response and also
propose a method to estimate the free-surface elevation induced by the baroclinic motion
within the rigid-lid approximation.

By reconstructing the flow field, we showed that the interaction between ITs and the
background non-uniform barotropic flow affects the dynamics locally around the sloping
topography. We calculated the conversion rate for two different ridges. For the commonly
used Gaussian profile, we find distinct points of practically zero energy radiation in the
subcritical regime for δ > 0.1. We have checked that similar null-points exist also for the
Witch of Agnesi profile (not shown). Our calculations verify the hypothesis of Maas (2011)
that non-radiating topographies are common and possible for subcritical topographies with
sufficiently large values of δ. For the compactly supported bump profile, local extrema of
the conversion rate exist for all δ and persist even in the supercritical regime for large
δ. These local minima do not correspond to null points, but rather to points of weak
radiation. These differences are due to the qualitative differences between a Gaussian and
a bump profile. The baroclinic response depends not only on the profile, but also on its
first and second derivatives through the body forcing term in (2.13a), which can differ
significantly for an infinite-support decaying topography and a compactly supported one.
In the context of the WTA approximation, the different behaviour of the conversion rates
can also be explained by the different decays of the Fourier transforms of the topographies.
We have also tested the Witch of Agnesi profile and a compactly supported polynomial
ridge and found that these two different behaviours persist. Thus, it appears that the
trend of the conversion rate for a Gaussian ridge (respectively bump ridge) is typical for
infinite-support (respectively compactly supported) ridges. We have also quantified the
error of the WTA with respect to the full linear solution. Our general conclusion is that
the WTA is adequate even for large ε for sufficiently small δ but the region of its validity
strongly depends on the type of topography. Similarly, our results show that the knife-edge
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limit agrees with the linear singular solution for sufficiently large ε, although the value of
ε for which this limit is attained depends on δ and the topography.

Our comparisons show that the CMS and the Green’s function methods yield the same
conversion rate for ridges. However, the CMS can be applied to more general domains and
is numerically more convenient. The solution fields of the two formulations differ over
sloping regions, and the solution obtained from the Green’s function method has to be
corrected to properly describe the purely baroclinic field. This may be of importance for
the horizontal phase propagation of internal tides above topographies, and could have an
influence for sea-surface observations and analysis. Our calculations in the case of a shelf
agree with the modal solution of Griffiths & Grimshaw (2007). The main advantage of the
present CMS is that it exhibits faster convergence, thus it is numerically more efficient.
By extending our calculations to the strongly supercritical regime, we have provided new
numerical evidence that the conversion rate approaches the one obtained in the case of a
step (Laurent et al. 2003).

The present CMS can be extended in several directions. It can be applied, for instance,
to the investigation of topographically trapped flows for arbitrary topographies extending
the study of Maas & Zimmerman (1989). The assumption of constant stratification can be
easily lifted, at the cost of using a set of local basis functions that is calculated numerically
in the case of smooth stratification. The linearised free-surface condition can be taken into
account by using basis functions defined in terms of a local transcendental equation. The
solution of the CMS for other topographies such as trenches, multiple ridges or realistic
topographic profiles is straightforward. A Matlab script implementing the solution of
the CMS is freely available through the following link: https://github.com/chpapoutsellis/
InternalTidesCMS.
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Appendix A. Asymptotic analysis of the barotropic equations

The barotropic flow solves the system (Baines 1973; Garrett & Gerkema 2007)

Ut − f V = −Px, Vt + f U = 0, (A1a)

Wt = −Pz, (A1b)

Bt + N2W = 0, (A1c)

Ux + Wz = 0, (A1d)
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where (U,V,W), P and B denote respectively the velocities, the scaled pressure and the
buoyancy induced by the barotropic flow. On the boundaries, we have

hxU(x,−h)+ W(x,−h) = 0, W(x, 0) = 0. (A2a,b)

As described in § 2.2, the above system reduces to the BVP (2.9a–c) in terms of Φ. To
derive an asymptotic solution for (2.9a–c), we introduce the scaling

z̃ = z/h0, x̃ = x/L, h̃ = h/h0, Φ̃ = Φ/Q, (A3a–d)

and the parameter σ = h2
0/L

2, where L is the horizontal scale of the topography. The
dimensionless version of (2.9a–c) is written as, after dropping the tildes,

σΦxx + μ−2
0 Φzz = 0, Φ(x, 0) = 0, Φ (x,−h) = 1. (A4a–c)

If σ � 1, we can solve (A4a–c) by using the asymptotic expansion Φapp =∑K
i=0 σ

iΦ(i),
for some K ≥ 0. Substitution of Φapp in (A4a) yields

K∑
j=0

σ j
(
Φ( j−1)

xx + μ−2
0 Φ( j)

zz

)
= O(σK+1), (A5)

where the convention Φ(−1) = 0 is used. By requiring the residual O(σK+1) to be
cancelled, we obtain the following recurrence relation:

( j = 0) : Φ(0)zz = 0, Φ(0)(x, 0) = 0, Φ(0)(x,−h) = 1

(1 ≤ j ≤ K) : Φ( j)
zz = −μ2

0Φ
( j−1)
xx , Φ( j)(x, 0) = 0, Φ( j)(x,−h) = 0.

}
(A6)

Solving the above BVPs, we obtain

Φ(0) = z
−h
, Φ( j) = zμ2

0
h

∫ 0

−h

∫ z′

−h
Φ( j−1)

xx dz′′ dz′ + μ2
0

∫ 0

z

∫ z′

−h
Φ( j−1)

xx dz′′ dz′.

(A7a,b)
Performing the computation for j = 1 and using (A3a–d), we find

Φ(0) = Q
z

−h
, Φ(1) = −Qμ2

0

(
1

−h

)
xx

1
6

(
z3 − h2z

)
. (A8a,b)

We turn now to the system (A1)–(A2a,b). Introducing the scaling t̃ = ωt and

Ũ = U/U0, Ṽ = V/U0, W̃ = W/W0, P̃ = P/(ωU0L), B̃ = B/g, (A9a–e)

with U0 = √
gh0 and W0 = U0h0/L, (A1)–(A2a,b) become, after dropping the tildes,

Ut − f
ω

V = −Px, Vt + f
ω

U = 0, (A10a)

σWt = −Pz, (A10b)

Bt + N2

ωg
W = 0, (A11)

Ux + Wz = 0, (A12)

hxU(x,−h)+ W(x,−h) = 0, W(x, 0) = 0. (A13a,b)
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Internal tide generation from barotropic body forcing

Plugging Ξapp =∑K
i=0 σ

iΞ(i), where Ξ is any of the fields U, V , W, B, P, into
(A10)–(A13a,b), we see that Ξ(i) satisfies (A10a), (A11)–(A13a,b) while (A10b) gives

K∑
i=0

σ i
(

W(i−1)
t + P(i)z

)
= O(σK+1). (A14)

Then O(σK+1) is cancelled if W(i−1)
t + P(i)z = 0, and in dimensional form, we have

U(i)
t − f V(i) = −P(i)x , V(i)t + f U(i) = 0, (A15a)

W(i−1)
t = −P(i)z , (A15b)

B(i)t + N2W(i) = 0, (A16)

U(i)
x + W(i)

z = 0, (A17)

hxU(i)(x,−h)+ W(i)(x,−h) = 0, W(i)(x, 0) = 0. (A18a,b)

For i = 0, (A15b) is P(0)z = 0, thus, at leading order, the flow is hydrostatic.

Appendix B. Matrix coefficients of the CMS

The matrix coefficients appearing in (3.5) are given by

bmn =
⎧⎨⎩4(−1)m+n mn

m2 − n2 , m /= n

1, m = n
, (B1)

cmn =

⎧⎪⎪⎨⎪⎪⎩
−4(−1)m+n mn(m2 + n2)

(m2 − n2)2
, m /= n

−1
2

− 1
3

n2π2, m = n

, (B2)

dmn =

⎧⎪⎨⎪⎩
2(−1)m+n mn

m2 − n2 , m /= n

1
2
, m = n

. (B3)

Appendix C. Infinitesimal topography solution of the CMS

For a ridge topography, we have that r → 0 as x → ±∞ and h0 is chosen as the far-field
depth. For a shelf, h is assumed as a depth transition from h0 − εr− to h0 − εr+, with
r → r± as x → ±∞ and r+ + r− = 0, and h0 represents the mean depth. Using the Taylor
expansion

1
h

= 1
h0 − εr

= 1
h0

+ 1
h2

0
εr + . . . , (C1)
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we note that the various h-dependent terms in (3.5) scale as follows:

hx

h
= −εrx

(
1
h0

+ 1
h2

0
εr + · · ·

)
= O(ε),

h2
x

h2 = O(ε2)

hxx

h
= −εrxx

(
1
h0

+ 1
h2

0
εr + · · ·

)
= O(ε), h

(
1
h

)
xx

= ε
rxx

h0
+ O(ε2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (C2)

Substituting the above expressions together with φm =∑K
i=0 ε

iφ
(i)
m in (3.5), we obtain

φ
(0)
m = 0 and (3.9) for φ(1)m . The solution of (3.9) satisfying the radiation conditions (3.7)

with k±
n = �n is

φ(1)n = gn

h0

[
An(x; r) exp(i�nx)− Bn(x; r) exp(−i�nx)

]
, n ≥ 1, (C3)

with

An(x; r) =
∫ x

−∞
exp(−i�ns)rs(s) ds, Bn(x; r) =

∫ +∞

x
exp(i�ns)rs(s) ds; (C4a,b)

see e.g. Gerkema & Zimmerman (2008, Chapter 7). The response field at first order is
reconstructed by (3.1) with φn given by (C3) and Zn by (3.3) with h = h0. The conversion
rate is obtained using (C3) and (2.26),

CWTA
± = ω2 − N2

2ω
h0

2

∞∑
n=1

Im
{
φ(1)n φ

(1)
n,x

}
, x → ±∞. (C5)

To compute CWTA− , we first note that as x → −∞, we have An → 0 and

φ(1)n = −gn

h0
Bn(−∞; r) exp(−i�nx)

= −gn

h0

(∫ ∞

−∞
exp(i�ns)rs(s) ds

)
exp(−i�nx)

= −gn

h0

(
[exp(i�ns)r(s)]+∞

−∞ − i�n

∫ ∞

−∞
exp(i�ns)r(s) ds

)
exp(−i�nx)

= −gn

h0

(
[exp(i�ns)r(s)]+∞

−∞ − i�n ¯̂r(�n)
)

exp(−i�nx), (C6)

where r̂(ξ) = ∫ +∞
−∞ exp(−ixξ)r(s) ds is the Fourier transform of r and r̂(−ξ) = ¯̂r(ξ), since

r ∈ R. Similarly, we find

φ(1)n,x = gn

h0
i�nBn(−∞; r) exp(−i�nx)

= gn

h0
(i�n[exp(i�ns)r(s)]+∞

−∞ + �2
n
¯̂r(�n)) exp(−i�nx), x → −∞. (C7)

Combining the above results, we compute

φ(1)n φ
(1)
n,x = −g2

n

h2
0
Πn, x → −∞, (C8)
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where

Πn = ([exp(i�ns)r(s)]+∞
−∞ − i�n ¯̂r(�n))(−i�n[exp(−i�ns)r(s)]+∞

−∞ + �2
nr̂(�n))

= −i�n[r2]+∞
−∞ + [exp(i�ns)r]+∞

−∞�
2
nr̂(�n)

+ �2
n
¯̂r(�n)[exp(−i�ns)r]+∞

−∞ − i�3
n
¯̂r(�n)r̂(�n)

= −i�n[r2]+∞
−∞ + [exp(i�ns)r]+∞

−∞�
2
nr̂(�n)

+ �2
nr̂(�n)[exp(i�ns)r]+∞

−∞ − i�3
n
¯̂r(�n)r̂(�n)

= −i�n[r2]+∞
−∞ + 2Re{[exp(i�ns)r]+∞

−∞�
2
nr̂(�n)} − i�3

n
¯̂r(�n)r̂(�n). (C9)

The first term of the above right-hand side vanishes for both the ridge and the shelf cases.
It then follows from (C5) that

CWTA
− = −N2 − ω2

2ω
h0

2

∞∑
n=1

g2
n

h2
0
�3

n
¯̂r(�n)r̂(�n). (C10)

Repeating the same procedure for x → +∞, we obtain CWTA+ = −CWTA− . Recalling that
gn = Q(−1)n+1/(nπ) and Q = Uh0, we easily find that CWTA = CWTA+ − CWTA− is given
by (3.10).

Appendix D. Reconstruction of the free-surface elevation

It is possible to reconstruct the free-surface elevation η induced by ITs within the rigid-lid
approximation by using the baroclinic surface pressure at z = 0, ps(x, t) = p#(x, 0, t); η =
ps/g. To find ps, we evaluate p#

x and p#
xx on z = 0, using (2.16),

[p#
x]z=0 = [ fv# − u#

t ]z=0 := g(x, t), [p#
xx]z=0 = [ fv#

x − u#
xt]z=0 := F(x, t), (D1a,b)

and we formulate and solve the following BVP on [xL, xR],

p#
s,xx = F(x, t), p#

s,x(xL) = g(xL, t), p#
s,x(xR) = g(xR, t). (D2a–c)
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