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STRICT TOPOLOGY ON SPACES OF CONTINUOUS 
VECTOR-VALUED FUNCTIONS 

SEKI A. CHOO 

1. In t roduc t ion . In this paper, X denotes a completely regular Hausdorff 
space, Cb(X) all real-valued bounded continuous functions on X, E a Hausforff 
locally convex space over reals R, Cb(X, E) all bounded continuous functions 
from X into E, Cb(X) ® E the tensor product of Cb(X) and E. For locally 
convex spaces E and F, E(£)e F denotes the tensor product with the topology 
of uniform convergence on sets of the form S X T where 5 and T are equicon-
tinuous subsets of Ef, F', the topological duals of E, F respectively ([11], 
p. 96). For a locally convex space G, G' will denote its topological dual. 

If °U is an algebra of subsets of a set Y, E, F Hausdorff locally convex 
spaces, L(E, F) the set of all linear continuous mappings from E into F, 
S(Y, %, E) all E-valued, ^-simple functions on Y with the topology of uni­
form convergence on F, and \x\ % —> L(E, F) a finitely additive set function, 
then \x will be called a measure if the corresponding linear mapping \x\ 
S(Y, <%, E) -> F is continuous ([12], p. 375). Denoting by B(Y,^, E) the 
closure of S(Y, °U, £ ) , in the space of all bounded functions from Y into E 
with the topology of uniform convergence, the measure \x can be uniquely 
extended to a linear continuous mapping \±\ B(Y, &, E) —> F, F being the 
completion of F. It is easy to verify that Cb(X) ® E C B(X, Se, E), 3S being 
the class of all Borel subsets of X. Mt(X) will denote all tight measures on 
X ([6], [8], [14]) and Mt(X, E') = {M: SS -^ E' = L(E, R), M is a measure 
and for every x Ç E, fxx: 3) -> R, defined by nx(B) = (n(B), x), is in Mt(X)). 

The strict topology /30 on Cb(X, E) is defined by the family of seminorms 
|| • \\hjP, as h varies through all real-valued functions on X vanishing at infinity 
and p ranges over all continuous seminorms on E; 

\\f\\h,p = supxex p(h(x) f (x))J e Cb(X,E). 

When E is a normed space, it is proved in [6] that Cb(X) (g) E is dense in 
(Cb(X, £) ,£o) , (Cb(X, E),Po)' = Mt(X, E'), and /30 is the finest locally 
convex topology which coincides with the compact-open topology on norm-
bounded subsets of Cb(X,E); also bounded subsets of (Cb(X, E), /30) are 
norm-bounded. (For E = R this result is proved in [13], but it immediately 
carries over to the case when it is a normed space since Mt(X, E') is a closed 
subspace of the Banach space (Cb(X,E), \\ • ||)/.) Considering Mt(X,E') a 
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Banach space, with the norm induced by (C6(X, E), \\ • \\)f, we have 

y = I M I W . V M G Mt(x,E>). 

(It is simple to verify this; cf. [8], p. 315.) Conway [5] showed (Cb(X), j80) is 
strongly Mackey when X is paracompact If X is a P-space and £ is a normed 
(Banach) space, then (Cb(X, E), /30) is Mackey (strongly Mackey) [10]. 

2. Topolog ica l propert ies . The following are useful results. The proofs 
are easy, and the same results are proved for E = R in [13] and X being 
locally compact in [3]. 

T H E O R E M 2.1. Let X be a completely regular Hausdorff space and Ebe a locally 

convex space. Then 

(1) p ^ k S Po S u, where p is the topology of pointwise convergence, k is the 
compact-open topology and u is the topology of uniform convergence on X. 

(2) u and (30 have the same bounded sets. 

(3) /3o and k agree on a u-bounded set. 

T H E O R E M 2.2. The two topologies on Cb(X) ® E, (Cb(X) ® E, f30) and 

((Cb(X))p0 ® e £ ) , are identical. 

Proof. Take a net {fa} in Cb(X) ® £ , / « — > 0 in e-topology. Take a con­
tinuous seminorm q on E and a scalar-valued function h on X vanishing a t 
infinity. For 

S=\f£Cb(X):\\fh\\Zl} and T = [y £ E: q(y) £ 1), 

let S°, T° be the polars of S and T in Mt(X) and E' respectively. Since /„ —» 0 
in e-topology, fa —» 0 uniformly on S° X r ° . Fix 77 > 0. There exists a0 such 
t h a t | / z ( g o / a ) | ^ W ^ « o , V K r ° , a n d V M G 5°. T h u s g o / a / i , t S00 = S 
(note 5 is pointwise closed and so closed in (Cb(X), (30)), \/ g (z T° and 
V a. ^ OLO. This means 

\(l/r1)h(x)gofa\ < l,\/g e T\\/x G Z , and V « ^ «0, 

and so (l/y])h{x) fa(x) £ T00 - 7\ We g e t s u p x e x q(fa(x)h(x)) ^ 77, V <* ^ a0, 
which proves tha t fa —•» 0 in /30. 

Conversely, suppose / a —•» 0 in (Cb(X) ® E, @o). Take absolutely convex 
equicontinuous subsets P and Q of Af^(X) and E' respectively. Since P° is a 
0-neighbourhood in (Cb(X), /30), there exists a scalar-valued function h on X , 
vanishing a t infinity, such tha t 

P° D{fe Cb(X): II/A|| g 1}. 

Since the seminorm q on £ , 2(3/) = sup {|g(y)|: g Ç Q| , is continuous, 

s u p ^ ^ g (/«(#)/&(*)) —> 0. Fix 77 > 0. We get a0 such tha t 

|g ofa(x)h(x)\ ^ 77, V « = «o, V ^ ê X, and V g Ç (?• 
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From this it follows that (l/rj)gofa Ç P°, and so 

\n(gofa)\ g v,Vg e <2 ,VM-6 P, and V « ^ « o . 

This proves/« —> 0 in e-topology. 

THEOREM 2.3. Let E be a Banach space. Then the following statements are 
equivalent: 

(1) X is compact; 
(2) /So = || • ||, where \\ • \\ is the sup-norm topology; 
(3) (Cb(X, P ) , j80) is normable; 
(4) (C»(X, P) , /30) is metrizable; 
(5) (C&(X, P) , /So) is bornological; 
(6) (C»(X, P),/30) is barreled. 

Proof. (1) implies (2): This is clear from the definition. (2) implies (1): 
Assume j80 = || • || on Cb(X, R) and fix y0 Ç P, yo ^ 0. Then /30 = || • || on the 
closed subspace Cb(X) ® v0 of Cft(X, P) . Now consider the mapping 

L: (Cb(X),p0)->(Cb(X) ® y0, /So) 

defined by L(f) = / ® 3/0. Then /3o = || - II on C5(J). Therefore X is compact 
([13], p. 321). 
(2) implies (3): Since || • || is normable, the result follows. 
(3) implies (4): This is trivial as is (4) implies (5). 

(5) implies (2): Let 

/ : (C , (X,P) , /3 0 ) ->(C»(X,P) , || • ||) 

be an identity mapping. Since /5() and || • || have the same bounded set, 1(B) 
is || • ||-bounded in Cb(X, E), for each /^-bounded set B of Cb(X, P ) . Hence / 
is continuous ([11], Theorem 8.3, p. 62), which implies that || • || ^ f30. This 
proves that || • || = /30. 

(1) implies (6): If X is compact, then Cb(X, E) is a Banach space and so 
the result follows. 

(6) implies (2): Let B = { /€ Cb(X,E): \\ f \\ ^ 1). Then B is radial, 
convex and circled. Let { / a ] « a be a net in B such t h a t / a —>/ in /30-topology. 
Then fa —>/ in p and || / || = lim|| /a | | ^ 1. Therefore/ £ B and B is /30-closed, 
and so B is a barrel. This proves that || • || S Po> 

3. P-space and £-space. A completely regular Hausdorff space X is a 
P-space is every zero set in X is open, and it is well known that X is a P-space 
if and only if every G§ set in X is open. A topological space X is a £-space if a 
set A C X is closed if and only \i A C\ K is closed for all compact subsets 
K in X. If X is a &-space, then f: X —•» F is continuous if and only if/ |K is 
continuous for each compact subset K in X, where F is a topological space. All 
locally compact spaces are ^-spaces ([9], p. 131). 
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THEOREM 3.1. / / X is a P-space and E is a complete locally convex space, 
then (Cb(X, E)} j80) is sequentially complete. 

Proof. For the /Jo-Cauchy sequence { fn], letf(x) = lim fn(x) for each x in X. 
Suppose there is a sequence {x„J and a continuous seminorm q on £ such that 
q(f (xm)) ^ 4m, w = 1, 2, . . . . Pu t 

co I 

^ = 2-J Tyn X{xm)' 

Then h is a real-valued function on X which vanishes a t infinity. Since { fn) is 

a Cauchy sequence, there is a n0 £ N, N the set of natural numbers, such tha t 

q(fn(xm) - f (xm)) < n V ^ « o , V ^ N , 

Thus q(fm(%m)) > 4W — 2W, which is impossible. Let t / b e a neighbourhood of 
f(x) and FTO be a neighbourhood oix,\/ n such tha t fi(Vn) C U,i = 1, 2, . . . w. 
Then PF = HwLi Fw is open since IT is a GÔ set. Hence / ( I T ) C £̂  which 
shows t h a t / is continuous. Now, take a real-valued function h which vanishes 
a t infinity and a continuous seminorm g on E. Pu t 

^ H ^ C&(X, E): supx,xq(h(x)g(x)) g 1). 

Then W is a /30 O-neighbourhood which is closed in the pointwise topology, and 
since {fn} is a Cauchy sequence and /«—>/, there is nQ £ N such tha t 
/ „ — / Ç IF, for all w ^ Wo, which gives /re —>/ in /30. 

Remark. If X is a &-space, then a similar a rgument shows tha t (Cb (X, E), /30) 
is complete. 

T H E O R E M 3.2. Let E be a Banach space. Let f: X —* E be bounded and f \K 

be continuous for each compact set K in X and also let (Cb(X, E), /30) be quasi-
complete. Then f is continuous. 

Proof. If the conditions hold, then by Aren's extension theorem [1] there 
exists a continuous extension ;/A~: fiX —» E such tha t / A ( / 3X) C c o n v ( / A ( X ) ) , 
where fK = f \K, f3X is the Stone-Cech compactification and conv(fK(X)) is 
the closure of the convex hull oîfK(X). We note tha t fiX is paracompact . Pu t 
gK = ÎK\X> Then gK = fK on K. Order compact subsets of X by inclusion. Then 
\gK\ K a compact subset of X) is norm-bounded in Cb(X, E) and is evidently 
a Cauchy net with the compact-open topology. Hence \gK: K a compact subset 
of X) is a /30-Cauchy net and so gK —> g in /30, for some g Ç Cb{X, E). S i n c e / is 
the only possible limit of {gK}, we h a v e / £ C6(X, £ ) . 

LEMMA 3.3. Le£ X fre a k-space. Then (Cb(X), /30) w nuclear if and only if X 
is finite. 

Proof. Let ( C 6 p O , /30) be nuclear. Then every bounded set in (Cb(X), 0o) 
is relatively compact, and hence the unit ball B = {/ £ C6(J\T): || / || g 1} is 
/?o-compact in Cb(X). Now, let x0 Ç X and { /«} be a net in B which converges 
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pointwise to the characteristic function xuoi of {#o}- Then any /Vcluster point 
of {fa} coincides with xu-oi a n d hence xu-0) is continuous. Thus {xo} is open and 
evidently X is discrete. Since a discrete space is locally compact, by Collins' 
result ([4], p. 364), X is finite. 

THEOREM 3.4. Let X be a k-space. Then (Cb(X, E), /30) is nuclear if and only 
if X is finite and E is nuclear. 

Proof. Suppose (Cb(X, E), /30) is nuclear and let y0 G E, y0 9^ 0. Then the 
subspace (Cb(X) ® y0, /30) is nuclear. Now define a mapping 

L: (C6(X) f/30)->(C&(X) ®yo,Po) 

by L(f ) = / ® 3/0, for each/ G Cb(X). Then (Cb(X), @o) is nuclear and hence 
X is finite by the lemma. So we can write Cb(X, E) = En, where n is the 
number of points in X. Note that E C En, and evidently E is nuclear. 

Conversely, let X be finite and E be nuclear. Then the result follows from 
Cb(X, E) = En, with the product topology and n is the number of points in X. 

We need the following Husain's definition ([7], p. 61). 

Definition 3.5. Let £ be a locally convex Hausdorff space and E' be its dual. 
The ew*-topology is defined to be the finest topology (not necessarily locally 
convex) which coincides with weak*-topology on each equicontinuous subset 
of E'. The topology tp on E' is defined to be the topology of uniform conver­
gence on precompact subsets of E. The equicontinuous weak*-topology (ew*) 
on E' is, in general, finer than tv ([4], p. 364, [7]). 

LEMMA 3.6. Let E be a Banach space. Then H C (Cb(X, E), fio)' = 
Mt(X, Ef) is equicontinuous if and only if H is uniformly bounded and, for a 
given e > 0, there exists a compact subset K of X such that |/x| (X\K) < e for all 
M G H. 

Proof. See [10]. 

THEOREM 3.7. Let X be a k-space and E be a Banach space. Then X is discrete 
and E is finite dimensional if and only if the ew*-topology and the norm topology 
on Mt(X, Ef) = (Cb(X, E), (30)' are the same. 

Proof. Suppose X is discrete and E is of finite dimension. If 

B = { /€ Cb{X,E): | |/H 5S 1}, 

then B = Sx and is compact where 5 is the closed unit ball of E. Since compact 
subsets of X are finite and /30 coincides with k on B, the topology on B induced 
by j80 is the one obtained on Sx by the product topology. Thus B is /30-compact 
and every bounded subset of (Cb(X, E), /30) is relatively compact. Thus the 
topology on Mt(X, E') is the topology tPf and hence || • || ^ ew*. Now, to 
prove ew* ^ || • ||, suppose it is not true; then there exists a sequence {/xw} 
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in Mt(X, E') such that \xn —» 0 in || • ||, but nn (f_ V for all n, where V is a ew* 

O-neighbourhood. Put H = {0, /xi, JU2, . . . \xn • • •}• Then H is norm compact. 
Also, given e > 0, there exists n0 £ N such that |JUW|(X) < e, \/ n ^ n0. By 
regularity there exists a compact subset X of X such that \fin\(X\K) < e, 
w = 1, 2 , . . . , ft0 - l.Foranyn, if n ^ w0, then |/xw|(X\.fir) ^ \nn\(X) < eand 
if n ^ no, then |^w|(XxX) < e. Therefore by Lemma 3.6 H is a /30-equi-
continuous subset of Mt(X, Er). Since £T is norm-compact, weak* = 11 • 11 on H. 
Thus nn —» 0 in weak* and hence \xn —* 0 in ew* which is a contradiction. 

Conversely, let ew* = || • || on Mt(X, Er). Let B be the closed unit ball of 
E'', the dual of £ and H = { f ex: f £ B}, where x Ç I is fixed and ex is the 
point measure of x. Then H C Mt(X, Ef) and it is equicontinuous and weak*-
closed since, for any IJL £ H, \fx\ = \\ f \\ex, if we take K = {x}, then \n\(X\K) 
= 0 < e for any e > 0. Thus weak* = ew* = || • || on H. Now, define a 
mapping L: (B,\\ • ||) —» (# , || • ||) by L ( / ) = jex. Then L is one to one, onto 
and continuous, and also L~l is continuous. Thus || • || = weak* on B and 
hence B is norm-compact, and evidently E is of finite dimension. 

Next we want to show that X is discrete. Take an arbitrary point p in X 
and let x\v) be the characteristic function of \p). Fix 3/0 in E, \\y0\\ = 1 and 
define a mapping L: (Ch(X, E), fio) —> R by 

L(n) = Jxw ® 3^M, V M 6 M,(X, £')• 

Then it is obvious that L is linear. We want to show that L is a(F\ /?)-con­
tinuous, where F = (Cb(X,E),p0) and F ' = (C,(X, £),/50) / . Let H be an 
equicontinuous subset of Mt(X, E'). Since ew* = || • || on Mt(X, £ ' ) , by 
Grothendieck's completeness theorem, it is sufficient to show that L is con­
tinuous on H with respect to the || • ||-topology. Let \Ln —> ju in || • [| in H. Then 

||/*n — Mil = l/X» - M|(X) = SUPH -̂n îlXX/** — /x)(5<)yi| —>0, 

where the supremum is taken over all partitions of X into a finite number of 
disjoint Borel sets {B{] and all finite collections of elements [ji] in E with 
H îll S 1. In particular, ||juw — /x|| —> 0 implies that 

KM» - »){p}yo\ ->0. 

Hence L is a weak*-continuous linear functional and thus x\v) ® Jo is con­
tinuous and so is X{p\- Therefore \p) is open, and we conclude that X is discrete. 
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