STRICT TOPOLOGY ON SPACES OF CONTINUOUS VECTOR-VALUED FUNCTIONS

SEKI A. CHOO

1. Introduction. In this paper, X denotes a completely regular Hausdorff space, $C_b(X)$ all real-valued bounded continuous functions on X, E a Hausforff locally convex space over reals **R**, $C_b(X, E)$ all bounded continuous functions from X into E, $C_b(X) \otimes E$ the tensor product of $C_b(X)$ and E. For locally convex spaces E and F, $E \bigotimes_{\epsilon} F$ denotes the tensor product with the topology of uniform convergence on sets of the form $S \times T$ where S and T are equicontinuous subsets of E', F', the topological duals of E, F respectively ([11], p. 96). For a locally convex space G, G' will denote its topological dual.

If \mathscr{U} is an algebra of subsets of a set Y, E, F Hausdorff locally convex spaces, L(E, F) the set of all linear continuous mappings from E into F, $S(Y, \mathscr{U}, E)$ all E-valued, \mathscr{U} -simple functions on Y with the topology of uniform convergence on Y, and $\mu: \mathscr{U} \to L(E, F)$ a finitely additive set function, then μ will be called a measure if the corresponding linear mapping μ : $S(Y, \mathscr{U}, E) \to F$ is continuous ([12], p. 375). Denoting by $B(Y, \mathscr{U}, E)$ the closure of $S(Y, \mathscr{U}, E)$, in the space of all bounded functions from Y into Ewith the topology of uniform convergence, the measure μ can be uniquely extended to a linear continuous mapping $\mu: B(Y, \mathscr{U}, E) \to \widetilde{F}, \widetilde{F}$ being the completion of F. It is easy to verify that $C_b(X) \otimes E \subset B(X, \mathscr{B}, E), \mathscr{B}$ being the class of all Borel subsets of X. $M_t(X)$ will denote all tight measures on X ([6], [8], [14]) and $M_t(X, E') = \{\mu: \mathscr{B} \to E' = L(E, R), \mu$ is a measure and for every $x \in E, \mu_x: \mathscr{B} \to R$, defined by $\mu_x(B) = \langle \mu(B), x \rangle$, is in $M_t(X)$.

The strict topology β_0 on $C_b(X, E)$ is defined by the family of seminorms $\|\cdot\|_{h,p}$, as *h* varies through all real-valued functions on *X* vanishing at infinity and *p* ranges over all continuous seminorms on *E*;

 $||f||_{h,p} = \sup_{x \in X} p(h(x) f(x)), f \in C_b(X, E).$

When E is a normed space, it is proved in [6] that $C_b(X) \otimes E$ is dense in $(C_b(X, E), \beta_0)$, $(C_b(X, E), \beta_0)' = M_t(X, E')$, and β_0 is the finest locally convex topology which coincides with the compact-open topology on norm-bounded subsets of $C_b(X, E)$; also bounded subsets of $(C_b(X, E), \beta_0)$ are norm-bounded. (For E = R this result is proved in [13], but it immediately carries over to the case when E is a normed space since $M_t(X, E')$ is a closed subspace of the Banach space $(C_b(X, E), \|\cdot\|)'$.) Considering $M_t(X, E')$ a

Received March 1, 1978 and in revised form August 28, 1978.

Banach space, with the norm induced by $(C_b(X, E), \|\cdot\|)'$, we have

 $\|\mu\| = |\mu|(X), \forall \mu \in M_t(X, E').$

(It is simple to verify this; cf. [8], p. 315.) Conway [5] showed $(C_b(X), \beta_0)$ is strongly Mackey when X is paracompact. If X is a P-space and E is a normed (Banach) space, then $(C_b(X, E), \beta_0)$ is Mackey (strongly Mackey) [10].

2. Topological properties. The following are useful results. The proofs are easy, and the same results are proved for $E = \mathbf{R}$ in [13] and X being locally compact in [3].

THEOREM 2.1. Let X be a completely regular Hausdorff space and E be a locally convex space. Then

(1) $p \leq k \leq \beta_0 \leq u$, where p is the topology of pointwise convergence, k is the compact-open topology and u is the topology of uniform convergence on X.

(2) u and β_0 have the same bounded sets.

(3) β_0 and k agree on a u-bounded set.

THEOREM 2.2. The two topologies on $C_b(X) \otimes E$, $(C_b(X) \otimes E, \beta_0)$ and $((C_b(X))_{\beta_0} \bigotimes_{\epsilon} E)$, are identical.

Proof. Take a net $\{f_{\alpha}\}$ in $C_b(X) \otimes E$, $f_{\alpha} \to 0$ in ϵ -topology. Take a continuous seminorm q on E and a scalar-valued function h on X vanishing at infinity. For

$$S = \{ f \in C_b(X) : ||fh|| \le 1 \}$$
 and $T = \{ y \in E : q(y) \le 1 \},\$

let S^0 , T^0 be the polars of S and T in $M_t(X)$ and E' respectively. Since $f_{\alpha} \to 0$ in ϵ -topology, $f_{\alpha} \to 0$ uniformly on $S^0 \times T^0$. Fix $\eta > 0$. There exists α_0 such that $|\mu(g \circ f_{\alpha})| \leq \eta \forall \alpha \geq \alpha_0, \forall g \in T^0$, and $\forall \mu \in S^0$. Thus $g \circ f_{\alpha}/\eta \in S^{00} = S$ (note S is pointwise closed and so closed in $(C_b(X), \beta_0)$), $\forall g \in T^0$ and $\forall \alpha \geq \alpha_0$. This means

 $|(1/\eta)h(x)g \circ f_{\alpha}| \leq 1, \forall g \in T^0, \forall x \in X, \text{ and } \forall \alpha \geq \alpha_0,$

and so $(1/\eta)h(x) f_{\alpha}(x) \in T^{00} = T$. We get $\sup_{x \in X} q(f_{\alpha}(x)h(x)) \leq \eta, \forall \alpha \geq \alpha_0$, which proves that $f_{\alpha} \to 0$ in β_0 .

Conversely, suppose $f_{\alpha} \to 0$ in $(C_b(X) \otimes E, \beta_0)$. Take absolutely convex equicontinuous subsets P and Q of $M_t(X)$ and E' respectively. Since P^0 is a 0-neighbourhood in $(C_b(X), \beta_0)$, there exists a scalar-valued function h on X, vanishing at infinity, such that

 $P^0 \supset \{ f \in C_b(X) \colon \| f h \| \leq 1 \}.$

Since the seminorm q on E, $q(y) = \sup \{|g(y)| : g \in Q\}$, is continuous, $\sup_{x \in X} q(f_{\alpha}(x)h(x)) \to 0$. Fix $\eta > 0$. We get α_0 such that

$$|g \circ f_{\alpha}(x)h(x)| \leq \eta, \, \forall \, \alpha \geq \alpha_0, \, \forall \, x \in X, \text{ and } \forall \, g \in Q.$$

From this it follows that $(1/\eta)g \circ f_{\alpha} \in P^0$, and so

 $|\mu(g \circ f_{\alpha})| \leq \eta, \forall g \in Q, \forall \mu \in P, \text{ and } \forall \alpha \geq \alpha_0.$

This proves $f_{\alpha} \rightarrow 0$ in ϵ -topology.

THEOREM 2.3. Let E be a Banach space. Then the following statements are equivalent:

- X is compact;
 β₀ = || · ||, where || · || is the sup-norm topology;
 (C_b(X, E), β₀) is normable;
 (C_b(X, E), β₀) is metrizable;
 (C_b(X, E), β₀) is bornological;
- (6) $(C_b(X, E), \beta_0)$ is barreled.

Proof. (1) implies (2): This is clear from the definition. (2) implies (1): Assume $\beta_0 = \|\cdot\|$ on $C_b(X, E)$ and fix $y_0 \in E$, $y_0 \neq 0$. Then $\beta_0 = \|\cdot\|$ on the closed subspace $C_b(X) \otimes y_0$ of $C_b(X, E)$. Now consider the mapping

 $L: (C_b(X), \beta_0) \to (C_b(X) \otimes y_0, \beta_0)$

defined by $L(f) = f \otimes y_0$. Then $\beta_0 = \|\cdot\|$ on $C_b(X)$. Therefore X is compact ([13], p. 321).

(2) implies (3): Since $\|\cdot\|$ is normable, the result follows.

(3) implies (4): This is trivial as is (4) implies (5).

(5) implies (2): Let

$$I: (C_b(X, E), \beta_0) \to (C_b(X, E), \|\cdot\|)$$

be an identity mapping. Since β_0 and $\|\cdot\|$ have the same bounded set, I(B) is $\|\cdot\|$ -bounded in $C_b(X, E)$, for each β_0 -bounded set B of $C_b(X, E)$. Hence I is continuous ([11], Theorem 8.3, p. 62), which implies that $\|\cdot\| \leq \beta_0$. This proves that $\|\cdot\| = \beta_0$.

(1) implies (6): If X is compact, then $C_b(X, E)$ is a Banach space and so the result follows.

(6) implies (2): Let $B = \{f \in C_b(X, E) : ||f|| \leq 1\}$. Then *B* is radial, convex and circled. Let $\{f_{\alpha}\}_{\alpha \in I}$ be a net in *B* such that $f_{\alpha} \to f$ in β_0 -topology. Then $f_{\alpha} \to f$ in p and $||f|| = \lim ||f_{\alpha}|| \leq 1$. Therefore $f \in B$ and *B* is β_0 -closed, and so *B* is a barrel. This proves that $|| \cdot || \leq \beta_0$.

3. *P*-space and *k*-space. A completely regular Hausdorff space *X* is a *P*-space is every zero set in *X* is open, and it is well known that *X* is a *P*-space if and only if every G_{δ} set in *X* is open. A topological space *X* is a *k*-space if a set $A \subset X$ is closed if and only if $A \cap K$ is closed for all compact subsets *K* in *X*. If *X* is a *k*-space, then $f: X \to Y$ is continuous if and only if $f|_{K}$ is continuous for each compact subset *K* in *X*, where *Y* is a topological space. All locally compact spaces are *k*-spaces ([9], p. 131).

THEOREM 3.1. If X is a P-space and E is a complete locally convex space, then $(C_b(X, E), \beta_0)$ is sequentially complete.

Proof. For the β_0 -Cauchy sequence $\{f_n\}$, let $f(x) = \lim f_n(x)$ for each x in X. Suppose there is a sequence $\{x_m\}$ and a continuous seminorm q on E such that $q(f(x_m)) \ge 4^m, m = 1, 2, \ldots$ Put

$$h = \sum_{m=1}^{\infty} \frac{1}{2^m} \chi_{\{x_m\}}.$$

Then *h* is a real-valued function on *X* which vanishes at infinity. Since $\{f_n\}$ is a Cauchy sequence, there is a $n_0 \in \mathbb{N}$, \mathbb{N} the set of natural numbers, such that

$$q(f_n(x_m) - f(x_m)) < 2^m, \forall n \ge n_0, \forall m \in \mathbf{N}.$$

Thus $q(f_{n_0}(x_m)) > 4^m - 2^m$, which is impossible. Let U be a neighbourhood of f(x) and V_n be a neighbourhood of $x, \forall n$ such that $f_i(V_n) \subset U, i = 1, 2, ..., n$. Then $W = \bigcap_{n=1}^{\infty} V_n$ is open since W is a G_{δ} set. Hence $f(W) \subset U$ which shows that f is continuous. Now, take a real-valued function h which vanishes at infinity and a continuous seminorm q on E. Put

$$W = \{g \in C_b(X, E) \colon \sup_{x \in X} q(h(x)g(x)) \leq 1\}.$$

Then W is a β_0 0-neighbourhood which is closed in the pointwise topology, and since $\{f_n\}$ is a Cauchy sequence and $f_n \to f$, there is $n_0 \in N$ such that $f_n - f \in W$, for all $n \ge n_0$, which gives $f_n \to f$ in β_0 .

Remark. If X is a k-space, then a similar argument shows that $(C_b(X, E), \beta_0)$ is complete.

THEOREM 3.2. Let E be a Banach space. Let $f: X \to E$ be bounded and $f|_{\kappa}$ be continuous for each compact set K in X and also let $(C_b(X, E), \beta_0)$ be quasicomplete. Then f is continuous.

Proof. If the conditions hold, then by Aren's extension theorem [1] there exists a continuous extension; $f_K: \beta X \to E$ such that $\tilde{f}_K(\beta X) \subset \overline{\operatorname{conv}(f_K(X))}$, where $f_K = f|_K$, βX is the Stone-Čech compactification and $\overline{\operatorname{conv}(f_K(X))}$ is the closure of the convex hull of $f_K(X)$. We note that βX is paracompact. Put $g_K = \tilde{f}_K|_X$. Then $g_K = f_K$ on K. Order compact subsets of X by inclusion. Then $\{g_K: K \text{ a compact subset of } X\}$ is norm-bounded in $C_b(X, E)$ and is evidently a Cauchy net with the compact-open topology. Hence $\{g_K: K \text{ a compact subset of } X\}$ is a β_0 -Cauchy net and so $g_K \to g$ in β_0 , for some $g \in C_b(X, E)$. Since f is the only possible limit of $\{g_K\}$, we have $f \in C_b(X, E)$.

LEMMA 3.3. Let X be a k-space. Then $(C_b(X), \beta_0)$ is nuclear if and only if X is finite.

Proof. Let $(C_b(X), \beta_0)$ be nuclear. Then every bounded set in $(C_b(X), \beta_0)$ is relatively compact, and hence the unit ball $B = \{f \in C_b(X) : ||f|| \leq 1\}$ is β_0 -compact in $C_b(X)$. Now, let $x_0 \in X$ and $\{f_\alpha\}$ be a net in B which converges

SEKI A. CHOO

pointwise to the characteristic function $\chi_{\{x_0\}}$ of $\{x_0\}$. Then any β_0 -cluster point of $\{f_\alpha\}$ coincides with $\chi_{\{x_0\}}$ and hence $\chi_{\{x_0\}}$ is continuous. Thus $\{x_0\}$ is open and evidently X is discrete. Since a discrete space is locally compact, by Collins' result ([**4**], p. 364), X is finite.

THEOREM 3.4. Let X be a k-space. Then $(C_b(X, E), \beta_0)$ is nuclear if and only if X is finite and E is nuclear.

Proof. Suppose $(C_b(X, E), \beta_0)$ is nuclear and let $y_0 \in E$, $y_0 \neq 0$. Then the subspace $(C_b(X) \otimes y_0, \beta_0)$ is nuclear. Now define a mapping

 $L: (C_b(X), \beta_0) \to (C_b(X) \otimes y_0, \beta_0)$

by $L(f) = f \otimes y_0$, for each $f \in C_b(X)$. Then $(C_b(X), \beta_0)$ is nuclear and hence X is finite by the lemma. So we can write $C_b(X, E) = E^n$, where n is the number of points in X. Note that $E \subset E^n$, and evidently E is nuclear.

Conversely, let X be finite and E be nuclear. Then the result follows from $C_b(X, E) = E^n$, with the product topology and n is the number of points in X.

We need the following Husain's definition ([7], p. 61).

Definition 3.5. Let E be a locally convex Hausdorff space and E' be its dual. The ew^* -topology is defined to be the finest topology (not necessarily locally convex) which coincides with weak*-topology on each equicontinuous subset of E'. The topology t_p on E' is defined to be the topology of uniform convergence on precompact subsets of E. The equicontinuous weak*-topology (ew^*) on E' is, in general, finer than t_p ([4], p. 364, [7]).

LEMMA 3.6. Let E be a Banach space. Then $H \subset (C_b(X, E), \beta_0)' = M_t(X, E')$ is equicontinuous if and only if H is uniformly bounded and, for a given $\epsilon > 0$, there exists a compact subset K of X such that $|\mu|(X \setminus K) < \epsilon$ for all $\mu \in H$.

Proof. See [10].

THEOREM 3.7. Let X be a k-space and E be a Banach space. Then X is discrete and E is finite dimensional if and only if the ew*-topology and the norm topology on $M_t(X, E') = (C_b(X, E), \beta_0)'$ are the same.

Proof. Suppose X is discrete and E is of finite dimension. If

 $B = \{ f \in C_b(X, E) \colon || f || \le 1 \},\$

then $B = S^x$ and is compact where S is the closed unit ball of E. Since compact subsets of X are finite and β_0 coincides with k on B, the topology on B induced by β_0 is the one obtained on S^x by the product topology. Thus B is β_0 -compact and every bounded subset of $(C_b(X, E), \beta_0)$ is relatively compact. Thus the topology on $M_t(X, E')$ is the topology t_p , and hence $|| \cdot || \leq ew^*$. Now, to prove $ew^* \leq || \cdot ||$, suppose it is not true; then there exists a sequence $\{\mu_n\}$

in $M_t(X, E')$ such that $\mu_n \to 0$ in $|| \cdot ||$, but $\mu_n \notin V$ for all n, where V is a ew^* 0-neighbourhood. Put $H = \{0, \mu_1, \mu_2, \dots, \mu_n \dots\}$. Then H is norm compact. Also, given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|\mu_n|(X) < \epsilon, \forall n \ge n_0$. By regularity there exists a compact subset K of X such that $|\mu_n|(X \setminus K) < \epsilon$, $n = 1, 2, \dots, n_0 - 1$. For any n, if $n \ge n_0$, then $|\mu_n|(X \setminus K) \le |\mu_n|(X) < \epsilon$ and if $n \ge n_0$, then $|\mu n|(X^*K) < \epsilon$. Therefore by Lemma 3.6 H is a β_0 -equicontinuous subset of $M_t(X, E')$. Since H is norm-compact, weak^{*} = $|| \cdot ||$ on H. Thus $\mu_n \to 0$ in weak^{*} and hence $\mu_n \to 0$ in ew^* which is a contradiction.

Conversely, let $ew^* = \|\cdot\|$ on $M_t(X, E')$. Let *B* be the closed unit ball of *E'*, the dual of *E* and $H = \{f \epsilon_x : f \in B\}$, where $x \in X$ is fixed and ϵ_x is the point measure of *x*. Then $H \subset M_t(X, E')$ and it is equicontinuous and weak*-closed since, for any $\mu \in H$, $|\mu| = ||f||\epsilon_x$, if we take $K = \{x\}$, then $|\mu|(X \setminus K) = 0 < \epsilon$ for any $\epsilon > 0$. Thus weak* = $ew^* = ||\cdot||$ on *H*. Now, define a mapping $L: (B, ||\cdot||) \to (H, ||\cdot||)$ by $L(f) = f\epsilon_x$. Then *L* is one to one, onto and continuous, and also L^{-1} is continuous. Thus $||\cdot|| = weak^*$ on *B* and hence *B* is norm-compact, and evidently *E* is of finite dimension.

Next we want to show that X is discrete. Take an arbitrary point p in X and let $\chi_{\{p\}}$ be the characteristic function of $\{p\}$. Fix y_0 in E, $||y_0|| = 1$ and define a mapping L: $(C_b(X, E), \beta_0) \to R$ by

$$L(\mu) = \int \chi_{\{p\}} \otimes y_0 d\mu, \forall \mu \in M_i(X, E').$$

Then it is obvious that L is linear. We want to show that L is $\sigma(F', F)$ -continuous, where $F = (C_b(X, E), \beta_0)$ and $F' = (C_b(X, E), \beta_0)'$. Let H be an equicontinuous subset of $M_t(X, E')$. Since $ew^* = \|\cdot\|$ on $M_t(X, E')$, by Grothendieck's completeness theorem, it is sufficient to show that L is continuous on H with respect to the $\|\cdot\|$ -topology. Let $\mu_n \to \mu$ in $\|\cdot\|$ in H. Then

$$\|\mu_n - \mu\| = |\mu_n - \mu|(X) = \sup_{\|y_i\| \le 1} |\sum (\mu_n - \mu)(B_i)y_i| \to 0,$$

where the supremum is taken over all partitions of X into a finite number of disjoint Borel sets $\{B_i\}$ and all finite collections of elements $\{y_i\}$ in E with $\|y_i\| \leq 1$. In particular, $\|\mu_n - \mu\| \to 0$ implies that

$$|(\mu_n - \mu)\{p\}y_0| \to 0.$$

Hence *L* is a weak*-continuous linear functional and thus $\chi_{\{p\}} \otimes y_0$ is continuous and so is $\chi_{\{p\}}$. Therefore $\{p\}$ is open, and we conclude that *X* is discrete.

References

- 1. R. Arens, Extension of functions on fully normal spaces, Pacific J. Math., 2 (1952), 11-22.
- N. Bourbaki, Intégration, Chap. IX, Elements de Mathématiques 35 (Hermann, Paris, 1969).
- 3. R. C. Buck, Bounded continuous functions on a locally compact space, Mich. Math. J., 5 (1958), 95–104.
- **4.** H. S. Collins, On the space $l^{\infty}(S)$, with the strict topology, Math. Zeit., 106 (1968), 361-373.
- J. B. Conway, The strict topology and compactness in the space of measures. II, Trans. Amer. Math. Soc., 126 (1967), 474–486.

SEKI A. CHOO

- 6. R. A. Fontenot, Strict topologies for vector-valued functions, Can. J. Math., 26 (1974), 841-853.
- 7. T. Husain, *The open mapping and closed graph theorems in topological vector spaces* (Clarendon Press, Oxford, 1965).
- 8. A. Katsaras, Spaces of vector measures, Trans. Amer. Math. Soc., 206 (1975), 313-328.
- 9. J. L. Kelly, General topology (Van Nostrand, Princeton, N.J., 1955).
- S. S. Khurana and S. A. Choo, Strict topology and P-spaces, Proc. Amer. Math. Soc., 61 (1976), 280–284.
- 11. H. H. Schaefer, Topological vector spaces (MacMillan, New York, 1966).
- A. H. Schuchat, Integral representation theorems in topological vector spaces, Trans. Amer. Math. Soc., 172 (1972), 376–397.
- 13. F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc., 168 (1972), 311–336.
- J. Wells, Bounded continuous vector-valued functions on a locally compact space, Michigan Math. J., 12 (1965), 119–126.

Manchester College, North Manchester, Indiana