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STRICT TOPOLOGY ON SPACES OF CONTINUOUS
VECTOR-VALUED FUNCTIONS

SEKI A. CHOO

1. Introduction. In this paper, X denotes a completely regular Hausdorff
space, C,(X) all real-valued bounded continuous functions on X, £ a Hausforff
locally convex space over reals R, C,(X, E) all bounded continuous functions
from X into £, C,(X) ® E the tensor product of C,(X) and E. For locally
convex spaces £ and F, E @, I denotes the tensor product with the topology
of uniform convergence on sets of the form S X 7" where S and T are equicon-
tinuous subsets of E’, F’, the topological duals of E, F respectively ([11],
p. 96). For a locally convex space G, G" will denote its topological dual.

If % is an algebra of subsets of a set ¥, E, F Hausdorff locally convex
spaces, L(F, F) the set of all linear continuous mappings from E into F,
S(Y, U, E) all E-valued, %-simple functions on ¥ with the topology of uni-
form convergence on YV, and p: % — L(E, F) a finitely additive set function,
then p will be called a measure if the corresponding linear mapping p:
S(Y,%, E) — F is continuous ([12], p. 375). Denoting by B(Y, %, E) the
closure of S(Y, 7, E), in the space of all bounded functions from Y into E
with the topology of uniform convergence, the measure p can be uniquely
extended to a linear continuous mapping u: B(Y, %, E) — F, I being the
completion of F. It is easy to verify that C,(X) @ £ C B(X, %, E), # being
the class of all Borel subsets of X. A{,(X) will denote all tight measures on
X ([6], [8], [14]) and M (X, E') = {u: B — E' = L(E, R), u is a measure
and for every x € E, p,:  — R, defined by u,(B) = {(u(B), x), is in M ,(X)}.

The strict topology 8y on C,(X, E) is defined by the family of seminorms
Il - l4.4, as k varies through all real-valued functions on X vanishing at infinity
and p ranges over all continuous seminorms on E;

”f”hﬂ = SUDgex P(}l<x)f x)), f € Cy(X, E).

When 7 is a normed space, it is proved in [6] that C,(X) ® £ is dense in
(Cy(X, E), By), (Cy(X,E),By) = M, (X, E", and By is the finest locally
convex topology which coincides with the compact-open topology on norm-
bounded subsets of C,(X, £); also bounded subsets of (C,(X, E), B¢) are
norm-bounded. (For E = R this result is proved in [13], but it immediately
carries over to the case when E is a normed space since M, (X, ') is a closed
subspace of the Banach space (C,(X, E), || - [|)’.) Considering M, (X, E') a
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Banach space, with the norm induced by (C,(X, E), | - II)’, we have
Iull = [/ (X), Vo € M (X, E).

(It is simple to verify this; cf. [8], p. 315.) Conway [5] showed (C,(X), B) is
strongly Mackey when X is paracompact. If X isa P-space and E is a normed
(Banach) space, then (C,(X, E), 89) is Mackey (strongly Mackey) [10].

2. Topological properties. The following are useful results. The proofs
are easy, and the same results are proved for £ = R in [13] and X being
locally compact in [3].

TuroREM 2.1. Let X be a completely regular Hausdorff space and E be a locally
convex space. Then

(1) p =k = Bo = u, where p is the topology of pointwise convergence, k 1s the
compact-open topology and u s the topology of uniform convergence on X.

(2) u and By have the same bounded sets.

(3) Bo and k agree on a u-bounded set.

THEOREM 2.2. The two topologies on Co(X) @ E, (C,(X) ® E, By) and
((Cy(X))g, Q« E), are identical.

Proof. Take a net {f.} in C,(X) ® E, fa— 0 in e-topology. Take a con-
tinuous seminorm ¢ on E and a scalar-valued function %z on X vanishing at
infinity. For

S={fe CG@X):fr] =1} and T ={y€ E:q(y) =1},

let .S 7" be the polars of Sand 7" in M,(X) and E’ respectively. Since f, — 0
in e-topology, f, — 0 uniformly on S§° X 7° Fix n > 0. There exists aq such
that [u(gofu)l S n1Va 2 a,V g € T%andVV u € S. Thusgof,/n € S =S
(note S is pointwise closed and so closed in (Cy(X),B)), V g € T° and
V a = aq. This means

[(1/mhx)goful S 1, Vg€ TV xe X, and Va = a,

and so (1/9)h(x) fo(x) € T° = T. We getsupexy ¢( fa(x)h(x)) < 1,V a = ay,
which proves that f, — 0 in S,.

Conversely, suppose f, — 0 in (C,(X) ® E, By). Take absolutely convex
equicontinuous subsets P and Q of M,(X) and E’ respectively. Since P is a
0-neighbourhood in (C,(X), By), there exists a scalar-valued function # on X,
vanishing at infinity, such that

PO D fe CX): | fhl =1}

Since the seminorm ¢ on E, ¢(y) = sup {|g(¥)|: g € Q}, is continuous,
supPrexq (fu (x)h(x)) — 0. Fix n > 0. We get «, such that

lgofa@)h(®) = VaZza,Vax€X, and Vg€ Q.
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From this it follows that (1/9)g o f, € P°, and so

lw(gof)l =, Ve QVuc P, and Vaz=a.
This proves f, — 0 in e-topology.

THEOREM 2.3. Let I£ be a Banach spuce. Then the following stutements are

equivalent:
(1) X is compuct;
(2) Bo = | - |l, where || - || is the sup-norm topology;

(3) (C(X, E), Bo) 1s normable;
4) (C,(X, E), Bo) is metrizable;
(5) (Co(X, E), Bo) is bornologicul;
(6) (Co(X, E), Bo) 1s barreled.

Proof. (1) implies (2): This is clear from the definition. (2) implies (1):
Assume By = || - [l on C,(X, E) and fix yo € E, yy # 0. Then 8y = || - || on the
closed subspace C,(X) ® vy of C,(X, E). Now consider the mapping

L: (Cy(X), Bo) = (Co(X) ® yo, Bo)

defined by L(f) = f ® vo. Then 8o = | - || on C,(X). Therefore X is compact
([13], p. 321).
(2) implies (3): Since || - || is normable, the result follows.

(3) implies (4): This is trivial as is (4) implies (5).
(5) implies (2): Let

I: (Co(X, E), Bo) = (Co(X, 1), [+ )

be an identity mapping. Since 8y and || - || have the same bounded set, 1(B)
is || - [-bounded in C,(X, E), for each B¢-bounded set B of C,(X, E). Hence I
is continuous ([11], Theorem 8.3, p. 62), which implies that || - || £ 8. This
proves that || - || = B,.

(1) implies (6): If X is compact, then C,(X, E) is a Banach space and so
the result follows.

(6) implies (2): Let B =1{f¢€ Co(X,E): ||f]l £1}. Then B is radial,
convex and circled. Let { f,}ae; be a net in B such that fa — f in Bo-topology.
Then f, — fin pand || f || = lim]| fo|| £ 1. Therefore f € B and B is By-closed,
and so B is a barrel. This proves that || - || < Bo.

3. P-space and k-space. A completely regular Hausdorff space X is a
P-space is every zero set in X is open, and it is well known that X is a P-space
if and only if every G5 set in X is open. A topological space X is a k-space if a
set A C X is closed if and only if 4 M K is closed for all compact subsets
K in X. If X is a k-space, then f: X — ¥ is continuous if and only if f|x is
continuous for each compact subset K in X, where ¥ is a topological space. All
locally compact spaces are k-spaces ([9], p. 131).
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TureoreM 3.1. If X s « P-space and E is a complete locally convex space,
then (Cy(X, E), By) 1s sequentially complete.

Proof. For the 8o-Cauchy sequence { f,}, let f(x) = lim f,(x) for each x in X.
Suppose there is a sequence {x,,} and a continuous seminorm ¢ on [ such that
g(f (xp)) =2 4™ m =1,2,....Put

— 1
b= 2 5 Xian
m=1 &

Then k is a real-valued function on X which vanishes at infinity. Since { f,} is
a Cauchy sequence, there is a 7o € N, N the set of natural numbers, such that

Thus q(fr (x,,)) > 4™ — 2™, which is impossible. Let U be a neighbourhood of
f(x)and V, be a neighbourhood of x, V # such that f;(17,) C U,7 = 1,2,...n.
Then W = N1 17, is open since W is a G5 set. Hence f(W) C U which
shows that f is continuous. Now, take a real-valued function % which vanishes
at infinity and a continuous seminorm g on £. Put

W = 1{g € C(X, E): sup,exq(h(x)g(x)) = 1}.

Then W is a 8y 0-neighbourhood which is closed in the pointwise topology, and
since {f,} is a Cauchy sequence and f, — f, there is n, € N such that
fn— f € W, forall n = n,, which gives f, — f in B,.

Remark. 1f X is a k-space, then a similar argument shows that (C,(X, E), 8o)
is complete.

THEOREM 3.2. Let E be a Banach space. Let f: X — E be bounded and f |k
be continuous for each compact set K in X and also let (C,(X, E), Bo) be quasi-
complete. Then f 1s continuous.

Proof. If the conditions hold, then by Aren’s extension theorem [1] there
exists a continuous extension; fx: 8X — E such that fx(8X) C conv( fx (X)),
where fx = f |k, BX is the Stone-Cech compactification and conv ( fx (X)) is
the closure of the convex hull of fx(X). We note that 38X is paracompact. Put
g¢x = fxlx. Then gx = fr on K. Order compact subsets of X by inclusion. Then
{gx: K a compact subset of X} is norm-bounded in C,(X, E) and is evidently
a Cauchy net with the compact-open topology. Hence {gx: K a compact subset
of X} is a 8p-Cauchy net and so gx — g in By, for some ¢ € C,(X, E). Since f is
the only possible limit of {gx}, we have f € C,(X, E).

LeEmMA 3.3. Let X be a k-space. Then (Cy(X), Bo) is nuclear if and only if X
is finite.

Proof. Let (Cy(X), Bo) be nuclear. Then every bounded set in (C,(X), Bo)
is relatively compact, and hence the unit ball B = { f € C,(X): | f|l £ 1} is
Bo-compact in C,(X). Now, let xo € X and { f,} be a net in B which converges
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pointwise to the characteristic function x, of {xo}. Then any By-cluster point
of {f.} coincides with x,, and hence x4, is continuous. Thus {xe} is open and
evidently X is discrete. Since a discrete space is locally compact, by Collins’
result ([4], p. 364), X is finite.

TuroreM 3.4. Let X be a k-space. Then (Cy(X, E), Bo) s nuclear if and only
if X is finite and E is nuclear.

Proof. Suppose (Cy(X, E), Bo) is nuclear and let yy € E, yo ## 0. Then the
subspace (C,(X) ® vy, 8y) is nuclear. Now define a mapping

L: (Cy(X), Bo) = (Co(X) ® yo, Bo)

by L(f) = [ ® vy, foreach f € C,(X). Then (C,(X), By) is nuclear and hence
X is finite by the lemma. So we can write C,(X, E) = E", where n is the
number of points in X. Note that £ C E”, and evidently E is nuclear.

Conversely, let X be finite and E be nuclear. Then the result follows from
Cy(X, E) = E", with the product topology and # is the number of points in X.

We need the following Husain’s definition ([7], p. 61).

Definition 3.5. Let E be a locally convex Hausdorff space and £’ be its dual.
The ew*-topology is defined to be the finest topology (not necessarily locally
convex) which coincides with weak*-topology on each equicontinuous subset
of E’. The topology ¢, on E’ is defined to be the topology of uniform conver-
gence on precompact subsets of E. The equicontinuous weak*-topology (ew*)
on E’ is, in general, finer than ¢, ([4], p. 364, [7]).

LEMMA 3.6. Let E be a Banach space. Then H C (Co(X, E), By) =
M (X, E") is equicontinuous if and only if H is uniformly bounded and, for
given e > 0, there exists a compact subset K of X such that |u| (X\K) < e for all
p € H.

Proof. See [10].
TuEOREM 3.7. Let X be a k-space and E be a Banach space. Then X is discrete

and E is finite dimensional if and only if the ew*-topology and the norm topology
on M, X, E) = (C,(X, E), By) are the same.

Proof. Suppose X is discrete and £ is of finite dimension. If
B={f€ G E):[fl =11

then B = S¥ and is compact where S is the closed unit ball of £. Since compact
subsets of X are finite and 8, coincides with k on B, the topology on B induced
by B is the one obtained on S¥ by the product topology. Thus B is 8¢-compact
and every bounded subset of (C,(X, E), By) is relatively compact. Thus the
topology on M,(X, E') is the topology f,, and hence || - || < ew*. Now, to
prove ew* < || - ||, suppose it is not true; then there exists a sequence {pu,}
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in M (X, E') such that u, = 0 in || - ||, but w, ¢ V for all n, where V is a ew*
0-neighbourhood. Put H = {0, u1, u2, . . . gy . . .}. Then H is norm compact.
Also, given € > 0, there exists ny € N such that |,|(X) < ¢ V n = n,. By
regularity there exists a compact subset K of X such that |u,|(X\K) < e,
n=12...,n0— LForanyn,ifn 2 n,, then |u,|(X\K) £ |u/(X) < eand
if = no, then |un|(X*K) < e. Therefore by Lemma 3.6 H is a Be-equi-
continuous subset of M,(X, E’). Since H is norm-compact, weak* = || - || on H.
Thus s, — 0 in weak* and hence u, — 0 in ew* which is a contradiction.
Conversely, let ew* = || - || on M,(X, E’). Let B be the closed unit ball of
E’, the dual of £ and H = { fe,: f € B}, where x € X is fixed and ¢, is the
point measure of x. Then H C M (X, E’) and it is equicontinuous and weak*-
closed since, for any u € H, |u| = || f|le, if we take K = {x}, then |u](X\K)

=0 < ¢ for any ¢ > 0. Thus weak* = ew* = |- || on H. Now, define a
mapping L: (B,|| - ) = (H, || - [|) by L(f) = fe,. Then L is one to one, onto
and continuous, and also L=! is continuous. Thus || - || = weak* on B and

hence B is norm-compact, and evidently £ is of finite dimension.

Next we want to show that X is discrete. Take an arbitrary point p in X
and let x(, be the characteristic function of {p}. Fix v, in E, ||v]| =1 and
define a mapping L: (C,(X, E), 80) — R by

L) =[x ® yodu, ¥V u € M,(X, E).

Then it is obvious that L is linear. We want to show that L is ¢ (F’, F)-con-
tinuous, where F = (C,(X, E), o) and F' = (C,(X, E), By)’. Let H be an

equicontinuous subset of M (X, E’). Since ew* = ||-] on M,(X, E"), by
Grothendieck’s completeness theorem, it is sufficient to show that L is con-
tinuous on H with respect to the || - ||-topology. Let u, — win || - || in H. Then

e — ol = luw — wl(X) = sup 1=l 2 (we — ) (B2)yil =0,

where the supremum is taken over all partitions of X into a finite number of
disjoint Borel sets {B;} and all finite collections of elements {y;} in E with
Ilv;l £ 1. In particular, ||u, — u|| — 0 implies that

| (ke — w){p}yol —0.

Hence L is a weak*-continuous linear functional and thus x,; ® v, is con-
tinuous and so is x,. Therefore {p} is open, and we conclude that X is discrete.
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