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A theorem on homeomorphism groups
and products of spaces

A. R. Vobach

Let H(C) be the group of homeomorphisms of the Cantor set, C ,

onto itself. Let p : C •+• M be a map of C onto a compact

metric space M , and let G(p , M) be

{h e H(C) I V x e C j p(x) = ph(x)} . G(p , M) is a group.

The map p : C •*• M is standard, if for each (x , y) e C * C

such that p(x) = p(y) , there is a sequence {a; } , C C and a
Yl Yl—1

sequence {h } __ cz G(p , M) such that x •*• x and h (x ) -* y •

Standard maps and their associated groups characterize compact

metric spaces in the sense that: Two such spaces, M and N ,

are homeomorphic if and only if, given p standard from C onto

M , there is a standard q from C onto N for which

G(p , M) = h'1 G(q , N)h , for some h e H(C)

The present paper exhibits a structure theorem connecting these

characterizing subgroups of H(C) and products of spaces: Let

Mi and Mi be compact metric spaces. Then there are standard

maps p .• C •*• Mi * M2 and p. : C -*• M. , i = 1 , 2 , such that

G(p , Mi x M2) = G(pi , Mi) D G(p2 , M2) •

The following definition and results were given in [I]:

Let H(C) be the group of homeomorphisms of the Cantor set, C , onto

itself. Let p : C •*• M be a map (.continuous) of C onto a compact metric
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space M , and let G(p , M) = {h e H(C) | V i e C , p(x) = ph(x)} .

G(p , M) is a group.

A map, p , of C onto M is a standard map, if for each pair of

points, x and y , such that p(x) = p(y) , there is a sequence

^n^n=1
 c C and a sequence {h} " c: Cfp , W such that x -*• x and

hn(xn) •* y . Standard maps are very naturally obtained and their groups

characterize compact metric spaces in the following sense: Two compact

metric spaces, M and N , are homeomorphic if and only if, given p

standard from C onto M , there is a standard q from C onto N for

which G(p , M) = h~1G(q , N)h , for some h e H(C) .

The following theorem is intended to exhibit a natural connection

between these characterizing subgroups of H(C) and products of compact

metric spaces.

THEOREM. Let M\ and Mi be compact metric spaces. Then there are

standard maps p : C •*• Mi x M2 and p. : C -*• M. , i = 1 , 2 , such that

G(p , M1 x M2) = G(pi , M1) n G(p2 , M2) .

While the following hardly deserves to be called a lemma, it is

inserted before the proof of the theorem to simplify subsequent constructions.

LEMMA. If p : C2 •* M 3 a compact metric space, is a standard map,

and h : C\ -*• C2 is a homeomorphism, then ph : C\ •*• M is a standard map.

Proof of Lemma. Suppose, for x , y e C1 , ph(x) = ph(y) . Let

z = h(x) and w = h(y) , so that p(z) = p(w) . Then, from the

standardness of p , there exist sequences {x } C C2 and

{/„} ™7 C G(p , M) such that a •»• z and fjxj •*• W . If sn = h'
1 (x) ,

Ti Tl—J. 71 71 71 71 71

then h(sn) •* h(x) = z and S?J ->• x . Defining {gn = h~1fn h}^ ,

observe that, for v €. Cx , phgn(v) = ph(h~2fnh) (v) =p fn(h(v)) = ph(v) ,

so that ig^^ cG(ph , M) . Also gn(sn) = h^f^xj * h'1 (w) = y .

Proof of Theorem. Let C\ and Cz be Cantor se t s ; l e t

h : C •*• C\ x C2 b e a homeomorphism, and l e t q . : C• •*• M• , i = 1 , 2 >
1r "V If
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be standard maps. With II. : C\ K C2
 + C defined by II. (MI j \jz) = y- ,

If tr 1r tf

i = 1 , 2 , let p : C + Ci x C2 + W] x «2 be defined by

p(x) = (q\W.\h(x) y q2U2h(x) ) . Clearly, p is continuous onto M\ x M2 .

Next we see that each p. = q.T[. h is a standard map: We first show
tf If tr

that q-R- ' C\ x C2 "*• M. is standard and then remark that, by the Lemma,

q -II. h is still a standard map. Let q.U.(x\ , Xy) — o.n.ft/i , iji) ; then
1* If If "is If 1r

standardness of q. says there is a sequence {z = II. (w- ., wo )} _7 CT C.
u Yl If 1 j W #j /t ??—1 u

and a sequence {h*} - c: Cfa. ̂  M.) such that s = w. •*- a:, and

From now on, it will be notationally convenient to work with a particular

choice of i , say i = 1 . Let u. = x 2
 f o r t h e ordered pairs above -

we are only interested in the projection onto the first coordinate - and let

h : Ci •*• C2 be a homeomorphism for which h (x^) = y2 • Now let

hn : Ci x C2 + C\ x C2 be defined by h (vx , v2) = (h'(vx) , h (v2)) , so

that (zn , x2) -*• (xi , x2) and hn(zn > x2) •*• fz/j , y2) . We may claim

h } n = 1 j ... , is in G(qiJli , M\) because

i , V2)

> hQ(v2))

n > vz) .

The proof for ^2^2 ' v^^ i = 2 , Is obviously similar. As noted,

q.Tl.h „ i = 1 , 2 , is also standard.
%f If

Next, we must show that p : C •*• C\ * C2 -*• Mi x M2 is standard: It

suffices to show standardness of q : h(C) = C\ x C2 •*• A?j x M2 defined by

q(v1 , v2) = (q\(vi) 3 q2(v2)) • Suppose q(xx , x2) = q(yx , y2) ; this

means ql(xi) = q\(y\) and q2(x2) = qz(hz) • Standardness of qi implies

there exist sequences {2 } _, a Cj and {/ } _- cz G(q^ s Afjj such that

z -»• x\ and / (2 ) •*• yi . Likewise, there exist sequences {w } _-,C.C2
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and ign}n_2 czG(q2 , M2) such that w -*• x2 and g (w ) -*• y2 •

Consider the sequence {(z 3 w )} , CZ C\ x C2 ; since z -*• X\ and

wn •* x2 , (zn , wn) •* (x\ 3 x2) • Let hn : C\ x Cz be defined by

h
n
(vl > V2> = (fn(

v\> ' gn<v2)) • Then \(zn , wn) ->• (yx , y2) • We claim

hn j n = 1 , 2 , . .. , is in G(q , M\ x M2) because

, v2) = (qi^i(Vi , v2) j

i(v\ , v2) , qzg^zivi , v2))

, gn(vz)) ,

n(vl , v2) , q2^-i\(vi , v2))

= qhn(vi s v2) ,

each (Vi , v2) e Cj x C2 .

Since h is a homeomorphism, p = qh is also standard.

Finally, G(p , M\ x M2) = GCpi , Mi) D G(p2 , M2) : First, for

f € G(p , Mi x M2) and each x eC ,

p(x) =

= pf(x)

= (qiJlihf(x) 3 q2nzhf(x)) s

which says q.R.h(x) = q.Tl.hf(x) 3 i = 1 , 2 , and

f&G(pi , Mi) O G(p2 , M2) . Second, for f e G(px , My) H G(p2 , M2) and

each x € C ,

•p(x) = (qiTlih(x) , q2J[2h(x))

= (qi^ihf(x) , q2U2hf(x))

= pf(x)

and f e G(p , Mi
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