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Abstract. We study a dual pair of general linear Lie superalgebras in the sense of R. Howe. We give
an explicit multiplicity-free decomposition of a symmetric and skew-symmetric algebra (in the
super sense) under the action of the dual pair and present explicit formulas for the highest-weight
vectors in each isotypic subspace of the symmetric algebra. We give an explicit multiplicity-free
decomposition into irreducible gl(m|n)-modules of the symmetric and skew-symmetric algebras
of the symmetric square of the natural representation of gl(m|n). In the former case, we also find
explicit formulas for the highest-weight vectors. Our work unifies and generalizes the classical
results in symmetric and skew-symmetric models and admits several applications.
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1. Introduction

Howe duality is a way of relating representation theory of a pair of reductive Lie
groups/algebras [H1], [H2]. It has found many applications to invariant theory, real
and complex reductive groups, p-adic groups and infinite-dimensional Lie algebras
etc.

As an example we consider one of the fundamental cases — the (gl(m), gl(n)) Howe
duality. The symmetric algebra S(C” ® C") and the skew-symmetric algebra
A(C" @ C") admit remarkable multiplicity-free decompositions under the natural
actions of gl(m) x gl(n). The highest-weight vectors of gl(m) x gl(n) inside the sym-
metric algebra are given by products of certain determinants (see (2.2)) and form
a free Abelian semi-group while those inside the skew-symmetric algebra are given
by Grassmann monomials, cf. [H2], [KV], [GW].

Our present paper is devoted to the study of Howe duality for Lie superalgebras
and its applications. It is by now a well-established fact that one should put the
Grassmann variables on the same footing as Cartesian variables and hence it is natu-
ral to consider the supersymmetric algebra, which is a mixed tensor of symmetric and
skew-symmetric algebras. In this paper we give a complete description of the Howe
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duality in a symmetric* algebra under the action of a dual pair of general linear Lie
superalgebras and find explicit formulas for the highest-weight vectors inside our
symmetric model. A dual pair consisting of a general linear Lie superalgebra
and a general linear Lie algebra was discussed in [H1]. We also study in detail some
other multiplicity-free actions of the general linear Lie superalgebras as specified
below.

Our motivation is manifold. Firstly, our work is motivated by an attempt to unify
the Howe duality in the symmetric and skew-symmetric models [H2] which have
many differences and similarities. Specialization of our results gives rise to the Howe
duality for general linear Lie algebras in both symmetric and skew-symmetric
models. Secondly, we are motivated by our study of the duality in the infinite-
dimensional setup (see the review [W] and references therein) and our work in
progress on its generalization to the superalgebra case. We realize that we have
to understand the finite-dimensional picture better first in order to have a more com-
plete description of the infinite-dimensional picture. Thirdly, there exists a new type
of Howe duality which is of pure superalgebra phenomenon which is treated in [CW].

Let us discuss the contents of the paper. The generalization of Schur duality for the
superspace was given by Sergeev in [Se]. For lack of an analog in the super setup of
the criterion of multiplicity-free action in terms of the existence of a dense open
orbit of a Borel subgroup (cf. [V] and [H2]), we use Sergeev’s result to derive
the decomposition of the symmetric algebra S(C” @ C"") with respect to the action
of the sum of two general linear Lie superalgebras gl(p|q) x gl(m|n). We see that a
representation of gl(p|q) is paired with a representation of gl(m|n) parameterized
by the same Young diagram. On the other hand one can show that our Howe duality
for superalgebras implies Sergeev’s Schur duality as well. We also obtain an explicit
multiplicity-free decomposition of a skew-symmetric algebra A(C” @ C™") as
gl(plg) x gl(m|n)-modules. In particular it follows that gl(p|g) and gl(m|n) when
acting on S(C’ @ C™") and respectively on A(C'" @ C"") are mutual
(super)centralizers. A remarkable phenomenon is the complete reducibility of the
symmetric model under the action of the dual pair, which is quite unusual for
Lie superalgebras.

In a purely combinatorial way, Brini, Palareti and Teolis [BPT] were indeed the
first to obtain an explicit decomposition of S(C” @ C"") under the action of
gl(plq) x gl(m|n). In addition, their combinatorial approach exhibits explicit bases
parameterized by so-called left (or right) symmetrized bitableuax between two
‘standard Young diagrams’ (see [BPT] for definition). However, Brini et al. did
not identify the highest weights for these gl(plg) x gl(m|n)-modules inside
S(Cr1 @ Cmmy,

We also obtain an explicit decomposition into irreducible gl(m|n)-modules of the
symmetric algebra S(S2C™") and respectively skew-symmetric algebra A(S2C™")

*In this paper we will freely suppress the term super. So in the case when a superspace is in-

volved, the terms symmetric, commute, etc., mean supersymmetric, supercommute, etc., unless
otherwise specified.
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of the symmetric square of the natural representation of gl(m|n). These results unifies
and generalizes several classical results and they can be proved in an analogous way
as in the classical case [H2], [GW].

Associated to the Howe duality and the above gl(m|n)-module decompositions, we
obtain, by taking characters, various combinatorial identities involving the so-called
hook Schur functions. Being generalization of Schur functions, these hook Schur
functions have been studied in [BR]. The decompositions mentioned above in turn
provide the representation theoretic realization of the corresponding combinatorial
identities. For example, the (gl(m|n), gl(p|g))-duality gives rise to a combinatorial
identity for the hook Schur functions which generalizes the Cauchy identity for
Schur functions, cf. [H2]. Specializations and variations of these combinatorial
identities are well known and other proofs can be found in [M].

However it is a much more difficult problem to find explicit formulas for the
highest-weight vectors of gl(p|q) x gl(m|n)-modules inside the symmetric algebra.
We first find formulas for the highest-weight vectors in the case for ¢ =0 (and
so for n = 0 by symmetry). A main ingredient in the formulas for the highest-weight
vectors is given by the determinant of a matrix which involves both Cartesian
variables x}’s and Grassmann variables 5”’s of the form:

1 2 r
X% xé e xl
r
x2 x2 e x2
1 2 r
xl/i/l x’i" e m
i
n ;/’ ... ]7
1 2 r
;/I 17 .. ”I

We remark that the rows involving Grassmann variables are the same but the deter-
minant is nonzero (one needs to overcome some psychological barriers). Note that
when m = r the Grassmann variables disappear and the above determinant reduces
to those mentioned earlier which occur in the formulas for highest-weight vectors
in the symmetric algebra case of the classical Howe duality. When m = 0, the
Cartesian variables disappear and the above determinant is equal to (up to a scalar
multiple) a Grassmann monomial which shows up in the formulas for highest-weight
vectors in the classical skew-symmetric algebra case.

We show that the gl(p|q) x gl(m|n) highest-weight vectors form an Abelian
semigroup in the case when p = m. However, in contrast to the Lie algebra case
this semigroup is not free in general. We find that the generators of the semigroup
are given by highest-weight vectors associated to rectangular Young diagrams of
length not exceeding m + 1. This way we are able to find explicit formulas for
all highest-weight vectors in the case when ¢ = 0 (or m = 0), or p = m.

In the general case the highest-weight vectors no longer form a semigroup. We find
a nice way to overcome this difficulty by introducing some extra variables which,
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roughly speaking, help us to reduce the general case to the case p = m. Then we use a
simple method to get rid of the extra variables to obtain the genuine highest-weight
vectors we are looking for.

In contrast to the Howe duality in the Lie algebra setup, it is difficult to check
directly the highest-weight condition of the vectors we have obtained. We use instead
the multiplicity-free decomposition of the symmetric algebra to get around this
difficulty. As highest-weight constraint we obtain interesting non-trivial polynomial
identities typically involving various minors of a matrix.

We also find explicit formulas for the highest-weight vectors appearing in
the gl(m|n)-module decomposition of S(Ssz‘"). These highest-weight vector
formulas, which constitute a mixture of determinants and Pfaffians, have somewhat
similar features as those found in the Howe duality for the general linear Lie
superalgebras.

A formula for highest-weight vectors in the decomposition of S(C” @ C™") as
gl(p|q) x gl(m|n) modules may also be obtained in principle using the combinatorial
approach of Brini et al. [BPT], and in this way the highest-weights for these
gl(p|q) x gl(m|n) modules can be identified. However this way one can neither expect
to obtain formulas as explicit as ours, nor can one see the semigroup structure of the
set of the highest-weight vectors which is the guiding principle for us to find these
vectors.

It is also interesting to see whether our results concerning the decomposition of
S(S2C™") (and respectively A(S2C™") and the highest-weight vectors in these
models may also be obtained with extra insights from the combinatorial approach
in [BPT] as well.

The plan of the paper goes as follows. In Section 2 we review the classical dual
pairs of general linear Lie algebras and Schur duality. In Section 3 we present
various multiplicity-free actions for Lie superalgebras and obtain the correspond-
ing symmetric function identities. Section 4 is devoted to the construction of
the gl(plg) x gl(m|n) highest-weight vectors inside S(C" @ C™"). More precisely,
in Section 4.1, Section 4.2, and Section 4.3, we find explicit formulas of
highest-weight vectors in the case ¢ = 0, p = m, and the general case, respectively.
Finally in Section 5 we construct the gl(m|n) highest-weight vectors inside
S(S2CMm.

2. The Classical Picture

In this section we will review some classical multiplicity-free actions of the general
linear Lie algebra. We begin with the classical gl(m) x gl(n)-duality, cf. Howe [H2].

Let 2= (A1, 42,...,4;) be a partition of the integer |1| = A; + ...+ 4;, where
A = ... = A > 0. The integer |A] is called the size, [ is called the length (denoted
by /(A)), and /1 is called the width of the partition /. Let 2’ denote the Young diagram
obtained from A by transposing. We will often denote Z; by ¢ and write
2=, 4, ..., ). For example, the Young diagram
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| ]

2.1)

t

stands for the partition (5, 3,2, 1) and its transpose is the partition (4,3,2, 1, 1).

Given a partition 1 = (41, 22, ..., 4;) satisfying / <m, we may regard . as a
highest-weight of gl(m) by identifying 4 with the m-tuple (41, 42,...,4;,0,...,0)
by adding m — 1 zeros to A. We denote the irreducible finite-dimensional
highest-weight module of gl(m) by V7.

Consider the natural action of the complex general linear Lie groups GL(m) and
GL(n) on the space C" @ C". If we identify C" @ C" with M,,,, the space of all
m x n matrices, then the actions of GL(m) and GL(n) are given by left and right
multiplications:

(g1,8)(T) = (g)) "' Tgy! g1 € GL(m), g2 € GL(n), T € My

The Lie algebras gl(m) and gl(n) act on C”" ® C" accordingly. Denoting by
S(C" @ C") the symmetric tensor algebra of C" @ C" with an induced action
of gl(m) x gl(n), we have the following multiplicity-free decomposition of
S(C" @ C") as a gl(m) x gl(n)-module:

S(C"eCTH =Y Vie VL,
P

where the sum above is over Young diagrams A of length not exceeding min(m, n).

One can find an explicit formula for the gl(m) x gl(n) highest-weight vectors in this
decomposition. Let us denote a basis of C” by xi, x5, ..., x;; and a basis of C" by
x',x%,...,x". Then the vectors x¥:=x;®x, for i=1,....,m and j=1,....n
form a basis for C"® C" so that we may identify S(C" ® C") with
Clxl, ..., x0, ..., x}, ..., x"]. Using this identification the standard Borel sub-

algebra of gl(m) is a sum of the Cartan subalgebra generated by

n . 8
do¥—, I<is<m,
o,

j=1

and the nilpotent radical generated by

n . 8
YN —. 2<is<m
el

Similarly the Borel subalgebra of gl(n) is the sum of the Cartan subalgebra generated
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by

vi—, 1<j<n,
oo

1

and the nilpotent radical generated by

m . 8
ijf‘—_, 2<j<n.
o X

Let g fori=1,...,m (respectively & for j =1, ..., n) be the fundamental weights
corresponding to the Cartan subalgebra of gl(m) (respectively gl(n)) above. For
1 < r < min(m, n) define

1

1 1
xl x2 e xr
¥ox o X

A= det] . ) ) . (2.2)
r r r
Xl x2 e xr

It is easy to see that A, is a highest-weight vector for both gl(m) and gl(n) and its
weights are, respectively, Y ;_, &;and Y_;_, &. This weight corresponds to the Young
diagram

L

That is, A, is the highest-weight vector for A"(C") ® A"(C") inside S(C" @ C"), the
tensor product of the rth fundamental representations of gl(m) and gl(n).

Let 4 be a Young diagram as in (2.1) with length not exceeding min(m, n). The set
of highest-weight vectors in S(C" ® C") form an Abelian semigroup, and the prod-
uct Ay Ay Ay is a highest-weight vector for the irreducible representation in
S(C™ ® C") corresponding to the Young diagram A.

On the other hand, the skew-symmetric algebra A(C" @ C") admits an induced
gl(m) x gl(n) action. Following Howe [H2], we have the multiplicity-free decom-
position

AC"@T) =Y VeV,
A

where the summation runs over Young diagrams A of length not exceeding m and of
width not exceeding n.
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Denote by nﬁ 1 <i<m,1 <j < nthestandard basis for C"" ® C" in the consider-
ation of skew-symmetric algebra. The highest-weight vector for the gl(m) x gl(n)-
module V% ® V7 inside A(C" ® C") is given by

. ) .
mm 0y g ey

where / is the length of A.

Intimately related to the Howe duality is the Schur duality, which we review
below. Consider the standard representation of GL(m) on C™. It induces an
action on the kth tensor power ®*C”. Now the symmetric group S; in k
letters acts on ®*C” in a natural way. These two actions commute and
we may thus decompose ®<C” into a direct sum of irreducible
GL(m) x Si-module. Recalling that the irreducible representations of symmetric
group S; admit parameterization by Young diagrams of weight k, Schur
duality states that

®ka ) Z V,:; ®M£,
A

where the summation is over Young diagrams A of size k and of length not
exceeding m. Here M} is the irreducible representation of Sy corresponding
to the Young diagram A.

Further well known examples of a multiplicity-free action of gl(m) that are
of interest to us are as follows: consider the action of gl(m) on the symmetric
square S2C” and skew-symmetric square A>C”. We have an induced action
on their respective symmetric algebras S(S2C™) and S(A’C™). Explicitly,
the decomposition of these spaces as gl(m)-modules is as follows (cf. [H2],

[GW]):
SSPCM = Y vy, (2.3)
I(2)<m
S(NCMy = Y e (2.4)
) <%

Explicit formulas for the highest-weight vectors in either cases are well known
(cf. [H2]) and are given in Remark 5.1.

One may also consider the decompositions of the skew-symmetric algebra of S>C"
and A’C™. In order to describe the highest-weights that appear in these
decompositions we need a few terminology. The Young diagram associated to
the partition A=(k+1,1,,...,1) of length k> 1 is called a (k+ 1, k)-hook.
We will sometimes also call this (k + 1, k)-hook a hook of shape (k + 1, k). Assuming
that k > / we may form a new Young diagram by ‘nesting’ the (/ 4 1, /)-hook inside
the (k+1,k)-hook. The resulting partition of length k£ is (k+1,/+2,
2,...,2,1,...,1), where 2 appears / — 1 times and 1 appears k —/ — 1 times. Simi-
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larly a sequence of hooks of shapes (k| + 1, k1), ..., (ks + 1, k;) with k; > k;;; for
i=1,...,5— 1 may be nested, and the resulting partition has length k;. In consist-
ency with the terminology used we call the partition (k, 1,...,1) of length k+1
a hook of shape (k,k+1) or a (k,k+ 1)-hook. Nesting of hooks of shapes
ki, ki + 1), ..., (ks, kg + D) with k; > ki fori=1,...,5s — lisdonein an analogous
fashion.

Now we can state the following multiplicity-free decompositions of gl(n1)-modules
(cf. [H2], [GW]):

ASPC™ =NV (2.5)
A

(2.6)

AN T"y =) Th,
n
where A (respectively p) is over all partitions with /(1) < m (respectively I(u) < m)
such that 4 (respectively u) is obtained by nesting a sequence of (k + 1, k)-hooks
(respectively of (k, k + 1)-hooks).

3. Multiplicity-Free Actions of the General Linear Lie Superalgebra

Let C™" denote the superspace of superdimension m|n. Recall that this means
that C"™" is a Z,-graded space, where the even subspace has dimension m
and the odd subspace has dimension n. The space of linear maps from C™"
to itself can be regarded as the space of (m 4+ n) x (m+ n) matrices with an
induced Z,-gradation, which gives it a natural structure as a Lie superalgebra,
denoted by gl(m|n). We have a triangular decomposition
gl(m|n) = gl(m|n)_, + gl(m|n), + gl(m|n),, where gl(m|n),, denote the set of
strictly upper and lower triangular matrices and gl(m|n), denotes the set of diag-
onal matrices. Given an m + n tuple of complex numbers (ay, ..., ay; by, ..., by),
we associate an irreducible gl(m|n)-module V,,,, of highest weight (ai, ..., au;
by, ...,by) (with respect to the standard Borel subalgebra gl(m|n), + gl(m|n),).
It is well known (cf. e.g. [K]) that the module V,,, is finite-dimensional if
and only if (ar,...,am; by, ..., by) satisfies the conditions
ai—aiy1,bj—bjpreZy, forall i=1,....m—1and j=1,...,n— 1

Let C’ and C™" denote complex superspaces of superdimensions plg and
m|n, respectively. We will now describe a duality between the Lie superalgebras
gl(plq) and gl(m|n). Our starting point is Schur duality for Lie superalgebra
gl(m|n).

Schur duality for the Lie superalgebra gl(m|n) was studied in [Se]. Below we will
recall the main result for the convenience of the reader. Let C"" denote the stan-
dard gl(m|n)-module. We may, as in the classical case, consider the kth tensor
power ® C™" which admits a natural action of the Lie superalgebra gl(m|n).
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On the other hand, the symmetric group S; acts naturally on ®*C™" by per-
mutations with appropriate signs (corresponding to the permutations of odd
elements in C""). It is easy to check that the actions of gl(m|n) and Sy commute
with each other, cf. [Se] (also see [BR] for a more detailed study).

THEOREM 3.1. (Sergeev). As a gl(m|n) x Si-module we have

QT =YV, ® M.

where A is summed over Young diagrams of size k such that .1 < n, M,i is the
irreducible Si-module parameterized by ., and V,f;‘n

gl(m|n)-module with highest weight (A1, A2, ..., s (Ay —m), ..., (A, —m)), where
we denote () =1 for | € 7.y and {I) = 0, otherwise.

denotes the irreducible

The symmetric algebra S(C”'? @ C™") is by definition equal to the tensor product
of the symmetric algebra of the even part of C”' @ C™" and the skew-symmetric
algebra of the odd part of C”7 @ C"". It admits a natural gradation

S(CPW ® Cm\n) — Z Sk(cplq ® Cm\n)
k=0

by letting the degree of the basis elements of C”'7 ® C"" be 1. The natural actions of
gl(plg) on C”' and gl(m|n) on C™" induce commuting actions on the kth symmetric
algebra SK(CP'7 @ C™"). Indeed gl(plg) and gl(m|n) are mutual centralizers in
gl(CPM @ C™"). We obtain the following theorem by an analogous argument as
in [H2].

THEOREM 3.2. The symmetric algebra S(CP'" @ C™") is multiplicity-free as
a module over gl(p|q) x gl(m|n). More explicitly, we have the following decom-
position

S(CTQC"™M =Y Vi @ Vi
where the sum is over Young diagrams /. satisfying Ap+1 < q and A1 < n. Here the
highest weight of the module V]flq (respectively V;iqn) is given by (A1, ..., Ap;
(}'/1 _p)$ D] (}'Z] _P>) (resp' ()‘13 ) j'ma (j'll - m}v cees <;L;1 - m)))

Proof. By the definition of the kth supersymmetric algebra we have

Sk(Cm‘n 2 Cplq) ~ ((®kCn1|n) ® (®kCP|l]))Ak’
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where Ay is the diagonal subgroup of S; x S;. By Theorem 3.1 we have therefore

S(C @ P Z((Z " ®M£‘> <Z e ®M,,>>Ak

k=0 \ \I4| lul=k

= Z Z ( min V[ﬁiq) ® (Mk ® MM)AA

k=0 |A|=|ul=k

= kz_: Z:( m\n plq
o~ Z( i ® Vi)

where A in the previous line is summed over all Young diagrams satisfying the con-
ditions A,4+1 <n and 4,41 <¢. The second to last equality follows from the
well-known fact that M ,ﬂ is a self-contragredient module. O

Remarks 3.1. (1) This theorem (except the explicit formula for the highest weights)
was first obtained in [BPT] in a combinatorial approach. It is also obtained inde-
pendently recently by Sergeev.

(2) When n = g = 0, we recover the (gl(p), gl(m))-duality in the symmetric algebra
case. When ¢ = m = 0 we recover the (gl(p), gl(n))-duality in the skew-symmetric
algebra case.

(3) One can easily show that the (gl(m|n), gl(k))-duality implies the (gl(m|n), S)
Schur duality (Theorem 3.1), using an argument of Howe (cf. 2.4, [H2]).

The next corollary is immediate from Theorem 3.2.

COROLLARY 3.1. The image of the action of the universal enveloping algebras of
gl(plg) and gl(m|n) on SK(CM" @ C"™") are double commutants.

THEOREM 3.3. The skew-symmetric algebra A(C?'Y @ C™") is multiplicity-free as a
module over gl(p|q) x gl(m|n). More explicitly, we have the following decomposition

A(CPW len) ~ Z p\q ® VA|n’

where the sum is over Young diagrams /. satisfying ip+l < gqand 4, , <n. Here the
highest weight of the module Vi (respectively mln) is given by (A1, ..., Ap;

(2 =D) ..o (= D) (resp. (/1/1,...,/1,”, (A —m), ..., (Jy—m))).
Proof. By the definition of the kth skew- symmetric algebra we have

AH(CM e O = (BT & (BTN,

where Ay is the diagonal subgroup of Sy x S and (®FC™"))»~ is the subspace of
(®*C™m)) that transforms according to the sign character of Ax. By Theorem 3.1
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we have therefore

o0 M
A(Cplq ® len = Z((Z p\q ® M]t) (Z min ®M;cl>)

[Al=k |l

3

= Z Z (Vg ® Vin) @ (M} @ M{YS

=0 |A|=|ul=k
00
~ 74
=) Z a ® Vi
k=0
= ® mln’

~

where 4 in the previous line is summed over all Young diagrams satisfying the con-
ditions 4,11 < gand 4, ; < n. The second to last equality follows from the following
well-known facts: M,ﬁ is a self-contragredient module and tensoring the module M,ﬁ
with the sign character yields the module M; . O

Remark 3.2. Of course it follows from Theorem 3.3 that the image of the action of
the universal enveloping algebras of gl(p|¢) and gl(m|n) on AK(CPY @ C"™") are also
double commutants.

The following corollary turns out to be very useful later on in order to check that a
given vector is indeed a highest-weight vector inside S(C @ C"").

COROLLARY 3.2. Assume a vector v € S(C''' @ C"") has the weight A with respect
to gl(plq) x gl(m|n) associated to a Young diagram A satisfying i,+1 < qand Ay < n.
If v is a highest-weight vector for gl(p|q), then it is for gl(m|n) as well.

Proof. Since v is a highest-weight vector for gl(p|q) with weight 4, it belongs to the
subspace W of S(C*1 @ C"") which consists of vectors with weight } annihilated by
the standard Borel in gl(p|¢g). By Theorem 3.2, W is isomorphic to mm as a gl(m|n)-
module. There exists a unique vector (up to scalar multiple) in V/ m‘n which has weight
A, which is the highest-weight vector. By assumption v has weight A as a gl(m|n)-
module, so it is a highest-weight vector for gl(m|n). O

The description of highest-weight vectors of the irreducible gl(p|g) x gl(m|n)-
modules in the symmetric algebra turns out to be much more subtle than
in the classical Howe duality case and we will deal with this question in
Section 4.

Next consider the symmetric square S2C™" of the natural representation of
gl(m|n). The following theorem can be proved by an analogous argument as in [H2].
This result was also obtained independently recently by Sergeev. We omit the proof
since it is in any case parallel to the proof of Theorem 3.5 below.
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THEOREM 3.4. The symmetric algebra of the symmetric square of the natural rep-
resentation C"™" of the Lie superalgebra gl(m|n) is a completely reducible multiplicity-
free gl(m|n)-module. More precisely we have the following decomposition

ko Q2 ~mlny __ )
S@@)—me

where the summation is over all partitions A into even parts of size 2k and 2,1, < n.

Now S2C"" reduces to S2C™ in the case when n = 0, and to A>C” in the case when
m = 0, the symmetric and skew-symmetric square of the natural representation of
gl(m) and gl(n), respectively. Thus one obtains as a corollary the classical
multiplicity-free decompositions of their respective symmetric algebras, namely (2.3)
and (2.4). Again the question of obtaining explicit formulas for the highest-weight
vectors inside S(S2C™") is substantially more subtle than in the nonsuper case.
We will give these in Section 5.

THEOREM 3.5. The skew-symmetric algebra of the symmetric square of the natural
representation C™" of the Lie superalgebra gl(m|n) is a completely reducible
multiplicity-free gl(m|n)-module. More precisely we have the following decomposition

NSPC™) =3 Vs
A

where the summation is over all partitions J. of size 2k, which are obtained by nesting

(I 4+ 1, D)-hooks with Ay < n.

Proof. Our argument follows closely the one given in the proof of Theorem 4.4.2 in
[H2] with Theorem 3.1 replacing the classical Schur duality. Let D; denote the the
subgroup of Sy, which preserves the partition {{1,2},{3,4},..., {2k —1,2k}} of
2k. Note that Dy is isomorphic to a semidirect product of S; and (Zz)k, where
Z, acts by interchanging 2j — 1 with 2j and S; acts by permuting the pairs. Let
sign ~ denote the character on Dy which is trivial on (Z,)*, but transforms by
the sign character on S;. We observe that

2k
AZk(SZCmIn) ) (® Cm|")Dk,sign~.
Thus using Theorem 3.1, we obtain

AZk(S2Cm|n) ) Z (V;’ln ® M%k)Dk’SignN o Z Vr);ﬂn ® (Mélk)Dk,signA«.
[A1=2k |A|=2k

Now by Theorem Al.4 of [H2] the space (Mék)D"’Sig“N is nonzero if and only if /1 is
constructed from nesting hooks of types (/+1,/), in which case it is one-
dimensional. O
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Similarly we obtain as a corollary the classical multiplicity-free decompositions
(2.5) and (2.6).

Remark 3.3. The character of V,j'ﬂn is defined as the trace of the action of the diag-
onal matrix diag(xy, ..., Xm; V1, ..., Vn) in gl(m|n) on V,flln and according to [BR] is
given by so-called hook Schur functions HS,(x, y) (see [BR] for definition). Thus,
comparing the characters of both sides of Theorem 3.2 and Theorem 3.3,
respectively, with x=(x1,...,%,), y=01,...,¥y), u=i,...,u,) and v=
(v1, ..., v,) we obtain the following combinatorial identities:

D CHS (x, )HS (w, v) = [0 = xa) ™' (4= yyw)™ (1 + xiw)(1 + ya),
2. ij.k,l

> THS(x, )HS(uv) = [ [ (A + xiu)(1 + yv)(1 = xv) ™' (1 = yu) ™,
i ij.k,l

where 1 <i<p, 1 <j<gq, ] <k<mand 1 </<n with summation in the first
identity over A such that 4,41 < ¢ and 4,41 < n and in the second one over A such
that 4,1 < ¢ and 2, +1 <n. Now putting y = v =0 in the first identity we obtain

the classical Cauchy identity, while putting respectively y = u = 0 the dual Cauchy
identity (see, e.g., [M]):

Yo sis0) =[]0 -~
i ij

D 55y () =[]+ xip).
i iJ

Remark 3.4. Similarly Theorem 3.4 and Theorem 3.5 give rise to the following
combinatorial identities (x = (x1,...,X,) and y = (1, ..., ¥n)):

Y oHS (= [ (0 =xox) A=y ]+ xp),
A

i<ij<j ij

Y HS(x.) = ] (O +xx)@+yp) [0 —xop™.
n

i<ij< ij

where in the first identity the sum is over all partitions A with even rows such that
Ams1 < n and in the second over all partitions u that can be obtained by nesting
(k+ 1, k)-hooks such that yu,_ ; <n and 1 <i,i <m, 1 <j,j <n. Putting either
x = 0 or y = 0in these two identities we obtain the following classical Schur function
identities (see e.g. [M]), which correspond to the decompositions in (2.3), (2.4), (2.5)
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and (2.6), respectively:

Yoosu= [] a=-xp7" ] a-xxp,

1) <m 1<i<m 1<i<j<m
-1
> sew= ] G—x7
W)<% 1<i<j<m
2
Esp: 1_[ (I+x7) H (I + xix;),
P 1<i<m I1<i<j<m
Y osi= [ d+xx.
T I1<i<j<m

where p (respectively ) above is summed over all nested sequences of hooks of shape
(k+ 1, k) with k < m (respectively of hooks of shape (k, k + 1) with k <m — 1).

4. Construction of Highest-Weight Vectors in S(C” @ C™")

This section is devoted to the construction of the highest-weight vectors of
gl(plg) x gl(m|n) inside the symmetric algebra of C”¥ @ C"". We will divide this
section into several cases. Before we embark on this task we will set the notation
to be used throughout this section.

Welete!,...,ef;f!, ..., f7 denote the standard homogeneous basis for the stan-
dard gl(p|q)-module. Here ¢ are even, while f7 are odd basis elements. Similarly
we letey, ..., e f1, ..., [y denote the standard homogeneous basis for the standard

gl(m|n)-module. The weights of ¢, f7, ¢; and f; are denoted by &, ;, & and Jy,
for1 <i<p,1<j<gq, 1 <I<mand 1<k <n, respectively. We set

Xi=e®e; Gi=e®f; ni=fi®d; Vi=fiof. (4.1)
We will denote by CJ[x, &, 5, y] the polynomial superalgebra generated by (4.1). The

commuting pair of gl(p|g) and gl(m|n) may be realized as first-order differential
operators as follows (1 <7,/ <p;1</[,I'<gand 1 <s,5 <m; 1 <k, k' <n):

m n m

9 n
Z X ;”I;W» Z 361/ Z ]al’

J=1

4.2)
m X n 9 m 9 n
;¥§@+;n}@, Zéjax Zfa“
. 9
2 jsaxJ @ Z’ﬁc +Z)/k
L s (4.3)

q

e Z ' Z”@_Di

(4.2) spans a copy of gl(p|g), while (4.3) spans a copy of gl(m|n).
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Our Cartan subalgebras of gl(p|q) and gl(m|n) are spanned, respectively, by

m [8 n m /8 n
;xja_sz Z”}ai’ Z‘f]aél ;]ayj

~.

and
P

S+Z@aéf 2" +;)/"

=1 j=1

M":

~.

while the nilpotent radicals are respectively generated by the simple root vectors

m '71i n .711 /-1 l 1_
;x; 8x; + Z”; 817; ’ ;5 351 ; ]l
3

5 4.4
X —+ , l<igsp l<I<
2 ijl ]; ]1 <i<pl< q
and
LA, d i, . d
DN+ Zifk ) Zﬂk )
S e 5 ws)

P

-1"7811/1 Z 8 l<s<m,1<k<
]:

j=1

With these conventions, we may thus identify S(C?¥ @ C"'") with the polynomial
superalgebra C[x, &, 1,y] (as gl(plq) x gl(m|n)-modules).

4.1. HIGHEST-WEIGHT VECTORS: THE CASE ¢ =0

In this section we will describe the highest-weight vectors for gl(p) x gl(m|n) in the
symmetric algebra S(C” @ C™"), i.e. ¢ = 0 case. The space S(C” ® C"") is identified
with C[x, 5], and (4.4) and (4.5) reduce to

m n

ZX’ lax Yot (4.6)

= n;j

)4 P P

Zx/xlax;’znkl ij 4.7)
X 1

Jj=1 Jj=1 k.'*

respectively. Now by Theorem 3.2 a highest weight representation V’ ® V,jlln of
gl(p) x gl(m|n) appears in the decomposition of S¥(C” @ C™") if and only if A is
of size k and of length at most p such that 4,,;; < n.

We will consider two cases separately, namely m > p and m < p.
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We begin with the case of m > p. Here the condition /,,,; < n is an empty con-
dition. So we are looking for homogeneous polynomials of degree k in C[x, #],
annihilated by all vectors of (4.6) and (4.7), and having gl(p)- and gl(m|n)-weight
/. of length not exceeding p. If 1 is such a weight, then A: < p, where we recall that
2= (A],..., ) denotes the transpose of 1. It is easy to see that the product
Ay -+ Ay 1s annihilated by all vectors of (4.6) and (4.7), where we recall that A,
is defined in (2.2). It is straightforward to check that its weight is exactly A.

THEOREM 4.1. In the case when m = p, all gl(p) x gl(m|n) highest-weight vectors in
CIx,n] form an Abelian semigroup generated by A,, for r=1,...,p. The
highest-weight vector associated to the weight 2 is given by the product Ay ---A;.

We now consider the case p > m. In this case the condition 4,,4; < nisno longer an
empty condition. Obviously the highest-weight vectors associated to Young dia-
grams 4 with 4,41 = 0 can be obtained just as in the previous case.

Now suppose 4 is a diagram of length exceeding m. Let |, 25, ..., 4, denote its
column lengths as usual. We have p> A1 >2,... >4, and m>4,_,. For
m < r < p, the following determinant of an r x » matrix plays a fundamental role
in this paper:

xi x% .. x’l’

X % x)

x.1 x.2 x."
Appi=det] "m B ml, k=1,...,n. (4.8)

' ’l;l( 7715» ”I/?

Me M M

moom M
That is, the first m rows are filled by the vectors (x!,..., xj’f), forj=1,...,m, in
increasing order and the last r—m rows are filled with the same vector
(nf, ..., n;). Since the matrix entries involve Grassmann variables 1}, we must

specify what we mean by the determinant. By the determinant of a matrix

1 2 r
a{ a% PR al
’
az az e a2
A: = . bl
2 r
a Clp a,

whose matrix entries involve Grassmann variables n}, we will always mean the
expression Zaesr(—l)”(“)a(f(l)ag(z) ---a’", where p(o) is the length of ¢ in the sym-
metric group S,. In general it is not true that det4 = detA’.
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Remark 4.1. The determinant (4.8) is always nonzero. It reduces to (2.2) when
m = r, and reduces to (up to a scalar multiple) 11}( ---np when m = 0.

Now let 4 be a diagram of length at most p such that 4,,,; < n. It is thus of the
following shape:

where r is defined by 4, > m and 1, ,; < m. We can divide such a diagram into two

diagrams, namely

(4.9)

— Nre— ——

T t—r

Now the second diagram in (4.9) has length not exceeding m, so its associated
highest-weight vector is given by the product AMI ~-+Ay. A formula for the
highest-weight vector associated to the first diagram in (4.9) is given by the
following proposition. We will denote by [],_, Ay, the (ordered) product
Ay A

PROPOSITION 4.1. Let p = A = 2y = ... = 2. > m. Then [[,_, Ay is a highest-
weight vector associated to the first Young diagram in (4.9).

Proof. Observe that [];_, A s, has the same gl(p) x gl(m|n)-weight as the first
Young diagram of (4.9). Clearly [,_, A s 1s nonzero. It is straightforward to verify
that [T,_; Az ;; 1s annihilated by the operators in (4.6). It follows from Corollary 3.2
that [];_; Ac s, is also a highest-weight vector for gl(m|n). O

Our next theorem follows by observing that the product of the highest-weight

vectors corresponding to the two Young diagrams in (4.9) is nonzero and is a
highest-weight vector associated to the Young diagram A.
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THEOREM 4.2. Suppose that m < p. An irreducible highest-weight module
V]f' ® V,f”” appearing in C[x, n] if and only if 1 corresponds to a Young diagram J.
of length not exceeding p and 7,,.1 < n. Furthermore a highest-weight vector associ-
ated to such a A is given by

r t
[Tacy TT 45
k=1 j=r+1

where r is defined by X, > m and 7, <m.

As a corollary we obtain the following useful combinatorial identity, which will
play an important role later on.

COROLLARY 4.1. Let xf be even variables for i=1,...,pand [ =1, ..., m with
p =q>m. Let n| and n’ be odd variables for i =1, ...,p. Then

x% xﬁ y xboxr X
Xy X3 xg 1 1 1
xl xz P xq
) : 2 X 2
2 S
){1 'xrg xﬁz o2
T Y A
monpooomy Lo )
. n 13 My
O 0 q
1 2 ’12 ’72 ’72
nmny ’711)

Proof. Consider Ay , and A, , where p > q. By Theorem 4.2 the product A; ,A; ,isa
highest-weight vector and thus is annihilated by all operators in (4.7). In particular
applying the operator Zle n’i(a/an’é) to Ay ,A» , and dividing by (¢ — m) we obtain
the desired identity. O

Remark 4.2. The above corollary gives rise to identities involving minors in even
variables xs by looking at the coefficient of a fixed Grassmann monomial involving
ns. We do not know of other direct proof of these identities.

It is well known (cf. [OV]) that as a gl(p)-module S'(C”) ® AV(C?), forj=1,...,p,
decomposes into a direct sum two irreducible components of highest weights
ig +Z§<:1 e and ig; —}-Z’,:;lz &, respectively. We can also get this result from
Theorem 4.2 and in addition obtain explicit formulas of the highest-weight vectors.
To do so consider S*(C7 @ C''") =~ sk(CrPr) ~ > ik SI(CM% @ A(CP). Now
according to Theorem 4.2 all the gl(p) x gl(1/1) highest-weight vectors inside
SK(C? ® C'") are given by (x])'A;, where j = 1,...,p and i +j = k. These vectors
are of course gl(p) highest-weight vectors. Now a simple calculation shows that
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applying the negative root vector of gl(1|1) to (x%)"AL j we obtain a nonzero multiple
of (x%)’h}rﬁ e n’i, while applying the negative root vector again gives zero. Thus
the vectors (x])'A;; and (x}))'nln? . .. | exhaust all gl(p) highest-weight vectors inside
the space ), ik S(CHN (C’7 ). To conclude the proof we observe that the vectors
(D ™'A1 1 and (xD)'nind .. .n) lie in S(C7) ® A/(CP), with weights ie; + Y _, &
and ig; + _;:;12 &k, respectively.

4.2. HIGHEST-WEIGHT VECTORS: THE CASE p =m

In this section we shall find gl(m|q) x gl(m|n) highest-weight vectors that appear in
the decomposition of CI[x, &, #n,y]. By Theorem 3.2 we need to construct a vector
in C[x, &, n, y] annihilated by all operators in (4.4) and (4.5) of weight corresponding
to the Young diagram 2

(4.10)

where r < min(q, n) (which we will always assume for this section).

First we remark that if A has length less than or equal to m then it is easy to check
that a formula for the corresponding highest-weight vector is given by
Ay ---Aj;. So we may assume that the length of 4 exceeds m.

As before we cut up this Young diagram into two diagrams, namely

(4.11)
il
S—— A

Denoting the second diagram by u and v a highest-weight vector associated to the
first diagram, it is easy to see that the product vA,, --- A, is a highest-weight vector
for the diagram A. Thus our task reduces to finding a highest-weight vector associ-
ated to the first diagram in (4.11).

We claim that a highest-weight vector associated to the first diagram in (4.11) can
be essentially obtained by taking a product of those associated to s diagrams of
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rectangular shape

4.12)

1{

Amti

and dividing by a suitable power of A,. Indeed taking the product of two
highest-weight vectors for the Young diagram of shape (4.12) of widths A,.;
and /,,1;4+1 respectively produces a highest-weight vector for the Young diagram

——— S——
Am4itl Amitl

Am+i

Once we verify that the product is nonzero, we may divide it by (A,,)*"** and the
resulting vector is a highest-weight vector for the diagram

2 {

]
N —
Amtitl

)‘m-+-1

Similarly by taking a product of s such vectors associated to the s diagrams of the
form (4.12) of widths Au1, ..., Anis, respectively, and dividing by AfmetFme
we obtain a highest-weight vector associated to the first diagram of (4.11). So
our task now is to find a formula for a highest-weight vector corresponding to a
Young diagram of shape (4.12). (From the explicit formula it will follow immediately
that a product of s vectors of such type is nonzero.)
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Let us put r = A,,4;1n (4.12). We define the r x r matrix Y and the m x m matrix X

as follows:
yi yi e y)i xi xi PRI x’l‘”
y y yr X X P i
yi=|"2 77 2l ox=|" 7 2. (4.13)
oy Xy Xy e X

Given a Young diagram / of rectangular shape (see (4.12)) consisting of m rows
and r columns, we consider marked diagrams D obtained by marking the boxes
in A subject to the restriction that each column can contain no more than one marked
box. For example the following is a marked diagram in the case » = 6 and m = 4:

1 2 3 45 6
X

X|X| | (4.14)

To each such a marked diagram D we may associate an r x r matrix Y, obtained
from Y as follows. For each marked box, say in the ith column and jth row, we
replace the ith row of the matrix Y by the vector (511 , 5/2 cee, é]’) The resulting matrix
will be denoted by Yp. For instance in our example (4.14) the matrix Y is

S
Yp=|33 %3 53 53 53 %3

To each such diagram D we may also associate r m x m matrices X; i =1,...,r)
obtained from X as follows. If the ith column of D is not marked, then X; = X.
If the ith column is marked at the jth row, then X; is the matrix obtained from
X by replacing its jth row by the vector (n!, 7?7, ..., 7). As an illustration, the dia-
gram in our example (4.14) gives rise to the matrices

T, R 12 3 4
SRR I
Xy X5 X3 X X3 X5 X3 X
Xi=|"1 3 3% Gl =XX3=|"7 3 3 7|et
R mon
Xy Xy Xy Xy Xy Xy Xy Xy

Let |D| denote the total number of marked boxes in the diagram D. Set

ADZ = detXDdet YD,
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where by detX), we mean [];_, detX; arranged in increasing order. We can now state
the following theorem.

THEOREM 4.3. The vector ZD(—I)%‘DKID‘_])AD is a gl(m|q) x gl(m|n) highest-weight
vector in C[x, &, n, y] corresponding to the rectangular Young diagram of lengthm + 1
and width r, where the summation over D ranges over all possible marked m x r dia-
grams.

Proof. We first show that ZD(—I)%'D‘(‘D'_I)AD indeed has the correct weight.

First note that diagram (4.12) corresponds to the gl(m|q) x gl(m|n)-weight
oy reit Yo g+ Y O+, 0. Let D, j=1,...,m, denote the m disjoint
subsets of {1,...,r} defined by the condltlon that j € D if and only if D contains
a marked box at its jth column and ith row. Put D=U”D; and D=
{1,...,r}—D. The weight of detY, is Z D |Djle: + ZJ 1(3 Now
detXD has weight rY /" & — > 1 ! |Dile; + ZjeD oj+r) il & Hence, each
detYpdetXp has weight Y777, re; + 3700, &+ 37, 0+ Y/ 9;, as required.

Hence by Corollary 3.2 it is sufficient to show that (4.5) annihilates it, namely

m . a q ) )
(; RSFPAPIES ‘aéf) (Z( D 1)AD) =0, @.15)

J=1

(i’fs w) ZJ/H )(D PR ”A> 0, (4.16)

Jj=1

3

q

j=1 j=1

We will first establish (4.15). Note that the simple root vector

» i+Zq:§’ RA
= s—1 8)C£ = s—1 aiﬁ
maps the vectors (x1 coo XM to (xly, ... X)) and (éf1 L EDto (éfs e ET ).

For a diagram D, let us denote by DT‘ ¥ dlagram obtained from D by moving each
marked box in its sth row to the box above it in the s — 1st row. Analogously
we define D -1 a diagram obtained from D by moving each marked box in the
s — 1st row to the box below it in the sth row. It is easy to check

o —+ A
(z e lag)( »
= Z detXDdet YDTlS — Z detXDl‘\__,det Yp.

Dyt Dy
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Thus, we have

(S te aa><;fﬂ>
(4.18)

= Z Z detXpdet YD Z detXle detYp

1DI=k \ Do D

But evidently

Z dCtXD thYD = Z detXD det YD
|DI=k |D|=k

thanks to the equality (D) 1 = D. Hence the right-hand side of (4.18) is zero,
proving (4.15).
Our next step is to prove (4.16). In this case

Zml +ZJ41

maps the vectors (n!,...,n") to (!, ....n" ) and 0L, ..., D) to (14, ..., p7" ).
For a diagram D such thatj € D; and / € D; we denote by Djﬁl the diagram obtained
from D by removing j from D; and adding / to D;. For a fixed k we write

IYED 3] D SRVEEND S

|DI=k ID|=k \5,5—1eD s¢D or s—1¢D

First observe that

(EFCES ST 3lp 3%

D=k 5,s—1€D
=> 2 ((Z'ﬁl +Z)4 | )(detXD)>detYD
|D|= kvv leD y]S
=0.

This is because if 5,5 — 1 € D;, for some i, then the term

(Zm P +;J/_ )(detXD)

=...detX,_1(D)detX;_1(i)---
= O’

where in general X;(a) is the matrix obtained from X by replacing the ath row with
the vector (), ..., 0.
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Now if s € D; and s — 1 € D, then

(an , +Z - )(detXD) - detX,_i(DdetX,_(i). . ..

Let D’ be the same diagram as D, except s € D'y and s — 1 € D';. Then we have

m . 9 .
(Z - % + Zyiq %) (detXp) = ---detX,_;(HdetX,_1(])....
= s g s

Of course Yp = Yp and detX, (i) anticommutes with detX; ((/), so

<Z i Z v )(detXDdet Yp +detXpdetYy) = 0.

Next we observe that if D is a diagram such that s,s — 1 ¢ D, then

(Znﬁ 18",+Zy§ X )detXDdetYD)

so that our task of proving (4.16) reduces to proving that

<Zq’€l Zy’_ ) ZdetXDdetYD+ZdetXDdetYD , “19)

seD s—leb
s—1¢D s¢D

=0,

where the sum is over all diagrams D with |D| = k. But the left-hand side of (4.19) is
equal to

> detXp_ detYp— Y detXpdetYp . =0.
seD,s—1¢D s—leD,s¢gD

To complete the proof we now need to verify (4.17). The odd simple root vector
m
m 8 ] Z ém ayll

J=1

has the effect of changing the vectors (nl, ..., 77" to (x}, ..., x") and (b},..., %) to
—(&fin, ..., &) If D is a diagram such that 1 € D; with j # m, then

(ST o=

https://doi.org/10.1023/A:1017594504827 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017594504827

HOWE DUALITY FOR LIE SUPERALGEBRAS 79

Thus

e gea)mmm)

Jj=1 Jj=1

(Z " o} _,;éj o, ) (4.20)

1

% Z (_1)%IDI(IDI—1)AD+ Z (_1)%IDI(\DI—1)AD

D,1eD,, D,1¢D

For a diagram D with 1 & D (resp. with 1 € D,,) we denote by DT (resp. D) the
diagram obtained from D by adding 1 to D,, (resp. by removing 1 from D). Then
(4.20) becomes

3 (—DHPIPgetxy detyy — Y (—1APUIPEDHP Get X pdet Y. (421)
D.leb, D,1¢D

Setting D' = D~ in the first sum of (4.21) we may rewrite (4.21) as

Z (—1)%‘D/“'D"“)detdeetYD,+—
D 1¢D
— 3 (— PP det X pdet Vs = 0. O
D,1¢D

We will denote the vector ), (— 1)%‘0'('D‘*1)AD by I',. Itis clear that a product of I',s
(not necessary for the same value 7) remains nonzero. Thus a highest-weight vector
for an arbitrary Young diagram of shape (4.10) can be constructed using such
vectors, as described earlier in this section. We summarize the results in this section
in the following theorem.

THEOREM 4.4. An irreducible representation V. mlq ® Vm‘n of gl(m|q) x gl(m|n)
appears in the decomposition of C[x, &, n,y] if and only if /. is associated to a Young
diagram with /,,.1 < min(q, n). Let t be the length of /. Then

(1) ifthelengthof .does not exceed m, then a highest-weighl vectoris givenby Ay -+ - A;.
(2) lflhe length of A is m+s, s> 1, let 0 <r <min(qg, n) be such that %, > m and
A, +1 < m, then a highest-weight vector correspondmg to A is given by

(Ay) Vot timd T, T, LT, A A (4.22)

m+1 m+2 Amts 1

We will obtain a more explicit formula for (4.22) in the next section.
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4.3. HIGHEST-WEIGHT VECTORS: THE GENERAL CASE

We consider now the general case. Without loss of generality we may assume p=

According to Theorem 3.2 an irreducible gl(p|q) x gl(m|n)-module V' pl p V,jﬂn
appears in the decomposition of C[x, ¢, n,y] if and only if 4,,; <n and
/p+1 < gq. If the length of the Young diagram 4 is less than or equal to m, then
Ay - -+ Ay is the desired highest-weight vector, where 7 is the length of /. If the length
of 4 exceeds m, but is less than or equal to p, then we see that the vector given in
Theorem 4.2 provides a formula for the highest-weight vector in this case as well.
Thus it remains to study the case when the length of /4 exceeds p.

So we are to consider a Young diagram of the form:

(4.23)

In the case when ¢ < n, the numbers r, " satisfying the conditions 0 <r < gq,
0 <+ <nand r</r are determined as follows: 1, > p and 1., <p, A, > m and
.41 <m. In the case when ¢ > n, the numbers r, ’ satisfying 0 <r </ <n are
defined in exactly the same way. In either case we may split (4.23) into three

[ ] -

p_m{ p—m{_j_— (4.24)

s _J__
T SV S—

T r—r t—r!

We associate the vectors A,y ;- A, 7, and Ay, » -+Aj to the second and third
diagrams in (4.24) respectlvely Below we will construct a highest-weight vector
for the first diagram in (4.24). From the formula it will be easy to see that the product
of these three vectors is a highest-weight vector for the Young diagram (4.23).
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The above discussion thus reduces our question to finding a gl(p|g) x gl(m|n)-
highest-weight vector corresponding to a Young diagram of type:

8
=
Ll

r

(4.25)

where r < min(g, n). The difficulty of finding a highest-weight vector associated to
such a diagram lies in the fact that the highest-weight vectors in C[x, &, #, y] no longer
form a semigroup in general.

We will now outline our strategy. We need to find highest-weight vectors in
C[x, &, n,y], annihilated by (4.5) and having weight corresponding to the Young
diagram in (4.25). Recall that x denotes the set of even variables {x}|1 <i<p,
1 <7< m}. We introduce a new set of even variables xj, 1 <i<p,m<I[<p,
and denote by x' = {x§|1 < i,] < p}, the union of our old set with this new set.
We shall construct certain vectors in C[x/, &, 1, y], which can been shown, using
our results in the previous section, that they are annihilated by (4.5). A priori these
vectors lie in C[x/, &, 5, y] so that such vectors do not make sense. However, we will
show that these vectors, after dividing by a suitable power of the determinant of
the p x p matrix (x}), are in fact independent of the variables {x/|l <i<p,
m+1 <[ < p}, and thus lie in C[x, &, n,y].

Consider a marked diagram having m rows and r columns with at most r marked
boxes subject to the constraint that at most one marked box appears on each column.
To such a diagram D we have associated in the previous section a matrix Yp, which is
obtained from the r x r matrix Y (see (4.13)) by suitably replacing its rows. To each
such diagram we now associate p x p matrices X;, for 1 < i < r, similar to the ones
in the previous section: Let X denote the p x p matrix:

oo N
1 2
x2 xz e x127
=)« 2 . X (4.26)
. lm 2m m . .
xm+l xm+l T xqurl
1 2 ... P
Xp Xl Xp

If the ith column of D is not marked, then X; = X. If the ith column is marked at the
jth row, then X; is the matrix obtained from X by replacing its jth row by the vector
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(!, n?, ..., n"). Note that none of its m + Ist to pth rows are replaced. As before we
define clletX p:= ], detX; (arranged in increasing order) and define I', =
3 (= 1)APIP=Ddet X pdet Y.

The proof of Theorem 4.3 carries over word for word to prove

PROPOSITION 4.2. The vector T, is annihilated by (4.5).

In the case when p = m a highest-weight vector for the first Young diagram in
(4.11) is obtained essentially by taking the product of highest-weight vectors for
the Young diagram of type (4.12). In the case when p > m one can verify that this
procedure cannot be carried out, as such products are necessarily zero. Hence in
this case we will need to find a general formula for the Young diagram A of shape
(4.25). To do so we will first consider matrices that will play the same role in
the case of p = m as the X;s play in the case p = m. As we will generalize diagrams
to include those that allow more than one marked box on each column, we are
led to study combinatorial identities of determinants of matrices obtained from
X that have more than one row replaced by an odd vector. This leads us to define
the following types of determinants.

Let X be the p x p matrix as in (4.26) and let (n}, cee, nf) be an odd vector. Let I be
asubset of {1, ..., p} and define X;(/) to be the matrix obtained from X by replacing
its ith row by the vector (y},...,n)), for all ie l. If I ={i,..., i}, we write
X;(I) = X;(iy, ..., 0;) as well.

LEMMA 4.1. We have

detX;(1)detX; (2) - - - detX,(p) = [%(detX)”_ldetXl(l, D). (4.27)

Proof. Denoting by R(X) and L(X) the right-hand side and the left-hand side of
(4.27), respectively, we may regard R and L as functions of X. Since the group
GL(p) acts on X, the space of p x p matrices, by left multiplication, it acts on
functions of X. To be more precise if 4 € GL(p), then (4 -L)(X):= L(47'X)
and (4 - R)(X):= R(A7'X). We want to study the effect of this action on R and
L. In order to do so, consider first the action of the three kinds of elementary matrices
on them. Namely, those that interchanges any two rows, that multiplies a row by a
scalar, and those that add a scalar multiple of a row to another. It is subject to
a direct verification that if 4 is any of the three types of elementary matrices,
we have

(A - R)(X) = (detd) ”R(X), (A-L)X)=(detd)' 7L(X). (4.28)

Since every element in GL(p) is a product of elementary matrices, we conclude that
(4.28) holds for every 4 € GL(p) as well. Putting X = 1, the identity p x p matrix,
we see that R(1,) = L(1,) so that R(A4) = L(4) by (4.28) for all 4 € GL(p). As
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GL(p) is a Zariski open set in the space of p x p matrices we have R(X) = L(X) for
any p x p matrix X. ]

Remark 4.3. An alternative proof of the above lemma can be given as follows. Let
Xj; denote the (i, j)-th minor of X. It is known that det(X}) = detX?~! which follows
directly from a form of the Cramer’s formula X (X;;) = (detX)1,. The above lemma
follows from this identity by expanding each determinant on the left-hand side
of (4.27) by the row (ni,..., n7) and noting that detX(1,...,p) is equal to

plung -
COROLLARY 4.2. Let I ={i,...,in} and J={ji,....j5} be two subsets of
{1,...,p} arranged in increasing order. Then

(1) detX (I)detX1(J) =0 ifand only if INJ # @
(ii) detX;(i1)detX; (i) - detXy (i) = gy (detX)" " det X (1).
(iii) For INJ = @ we have

(211!

detX;(DdetX1(J) =¢y————
etX (N)detX:(J) bU(|I|+|J|)!

detXdetX|(/ U J),

where ¢p; is the sign of the permutation that arranges the ordered tuple
(i1, .- iqp Jis - - -5 Ji) in increasing order.

Proof. (i) is an obvious consequence of Lemma 4.1.
For (ii) let I¢ = {ky, ..., kj;¢} denote the complementary subset of / in {1, ..., p}
put in increasing order. We apply successively the differential operators

V4 9 P P

Zx;»l 31/[/1 Zxéiz 81/[/1 Zx;fuﬂ\ 3 /

j=1 j=1 j=1

to (4.27) and find that

(detX)yMdetX;(iy) - - - detX1 (i) = (detX)” tdetXx,(I).

1!
Dividing by (detX)’~"! we obtain (ii).
By (ii) we have

| 1|'( etx)1-! 1“(detX)'JHdetxl(I)detxl(f)

= detX,(iy) - - - detX; (i )detX (1) - - - det X ().

Thus if ¢y is the permutation arranging / U J in increasing order, then

detX)HV122det X, (Ndet X, (J) = ——— (detX) "' det X, (1 U J
e ML (1) = S ) et .
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Now (iii) follows from dividing the above equation by (detX)*/I=2 and multiplying
by |I]!|J]!. O

Returning to the problem of finding the highest-weight vector associated to the
Young diagram (4.25), our first task is to present a more explicit expression for
a product of the form I'; , ---I';, . We associate to such a Young diagram a col-
lection D of s marked diagrams D;, i=1,...,s, with D; having A,,; columns
and m rows. We arrange these D; in the form:

D] . m
Ap+l
.
Dy m
{ (4.29)
Apt2
D, : m

)‘P+s

Marked boxes are put into D subject to the following constraint: in each D; a column
has at most one marked box. If a diagram D, contains a marked box in its kth row
and sth column, then no other D; (j # i) contains a marked box in its kth row
and sth column. From now on D will denote such a collection of marked diagrams.

Now suppose that D is a collection of diagrams D;,i =1, ..., s. To each D; we may
associate a /Ay X A,4; matrix Yp, as in the previous section. We let
detYp:=detYp detYp, --detYp . Now to each column j of D (I <j < Jp41), we
may associate a p x p matrix X;(/;) obtained from the matrix X as follows. Let
I; be the subset of {1,...,p} consisting of the numbers of the marked rows on
the column j. We define X;(/;) to be the matrix obtained from X by replacing
the rows of X corresponding to I; by the vector (17},...,115-’). We then define
Xp:=Xi()Xa (D). .. X, (I;,,,)-

Suppose we have a marked box in D; appearing in its kth row and sth column. We
associate an odd indeterminate a**. Consider the product of all ¢ arranged in
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increasing order following the lexicographical ordering of (i, s, k). Now we may also
consider the product arranged in increasing order following the lexicographical
ordering (s, k, i). These two products differ by a sign, and this sign is denoted by
¢p. Furthermore we let d; = |D;|, the number of marked boxes in D;, and e; be
the number of marked boxes in the jth column of D.

PROPOSITION 4.3. With notation as above we have

LIPREEE WY, did)=1D) €D
—” (=1y detXDdet Yp.
(detX) p+2+ +/p+s Z el| e/l,ur]
Proof. Given diagram D; with m rows and 4,,; columns, fori =1, ..., s, we want

to know how to simplify the expression
LS didi—1)
(=132 L= detXp,detYp, ---detXp detYp,.
We move all detX)p, to the left and get

(=12 43P e x ) . detXp det Y, - - - det V. (4.30)

Now each detXp, is a product of detX;(a). We arrange all X;(a) together so that
Xi(ay) appears to the left of Xj(ay) if and only if a; < a; and call the resulting
expression X' and move it to the left. We do the same thing to X»(a) and move
X} to the right of X})' etc. Then (4.30) becomes

(— 1)%(2;'4':1 d,'cl/)—%IDlgDXlﬂ)l ng . Xzzpﬂ detYp, ---detYp,. (4.31)

We apply now Corollary 4.2 to (4.31) and obtain

(- E A B e P e Y,
: Iptl
Since Y i Apri =D s ”“()L — p), the proposition follows. O
It follows immediately from Corollary 4.1 that
PROPOSITION 4.4. The vector
Z:=detXi(m+1,...,p)detXo(m+1,...,p)---detX; , ,(m+1,...,p)
is annihilated by (4.5).

PROPOSITION 4.5. The expression

1 ) —
Z(—l)z((zw i) 'D‘)SidetXDdetYDdetZ
) el---¢

/1)+1
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is divisible by (detX)**'. Furthermore the resulting expression is independent of the
variables xi (I =m+1, ..., p) and is annihilated by (4.5).

Proof. Since for a subset I of {1,...,m}, detX;([)detX;(m +1,...,p) is a scalar
multiple of detXdetX;(IU{m+1,...,p}) by Corollary 4.2(iii), it follows that the
expression is divisible by (detX)’A”"+1 and independent of x}, for/ =m+ 1, ..., p, after
division. It is clear that it is annihilated by (4.5). O

The vector

Z( DH QR ADTPD gy1 e, 1) Nep(det X))+ detZdet Xpdet V)

depends only on the s-tuple (441, ..., Ap+s) and thus we will denote this vector by
r(;bp+1, PERE )~p+s)-

PROPOSITION 4.6. The vector I'(Apt1, .. ., Apts) has weight corresponding to the
Young diagram (4.25).

Proof. Let f;,j =1, ..., mdenote the number of marked boxes in D that appear in
the jth row of some diagram D;. Then detYp has weight

Ap+1 Lptl Aptl

Z(z’ )3, +Z fie — Zeja +Z(z’ »)o;,

while the expression (detX)*'detXpdetZ has weight

p+1 2 p+1 m

],+128]+(p m)Zé +Ze]5 —Zfs]+/1p+128,.

So the combined weight is

m p+l Ap+|

Tyt Zs] + Api Zej + Zu —m)d; + Zu =P,
which of course is the weight of the Young diagram (4.25). O

Combining our results in this section we have proved.

THEOREM 4.5. In the case when p = m an irreducible gl(p|q) x gl(m|n) module
V]f‘q ® len appears in C[x, &, n, ylif and only if Ami1 < nand l,11 < q. The following
are highest-weight vectors corresponding to such a Young diagram A ('t is the length of

2):
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(1) In the case when Ay = 0 it is given by

(ii) In the case when Jyy1 > 0 and Zy,41 =0 it is given by

r !
[Taw; TT 45
i=1

i=r+1

where 0 < r < n is defined by 1, > m and 2., < m.
(i) In the case when A,41 > 0 it is given by

v t
TOpsts - dpes) [ ] Az T Ase

i=rtl i=r¥1
where r < v’ are defined as in (4.23) and p + s is the length of /.

Proof. The only thing that remains to prove is that the vector in (iii) is indeed killed
by (4.5). But this is because of the presence of Z in the formula of I'(A,41, . . ., Ap+s)
and so is an immediate consequence of Corollary 4.1. ]

5. Construction of Highest-Weight Vectors in S(S2C™")

In this section we will give an explicit formula for a highest-weight vector of each
irreducible gl(m|n)-module that appear in the symmetric algebra of the symmetric
square of the natural gl(m|n)-module. According to Theorem 3.4 we have the
following decomposition of S(S2C"") as a gl(m|n)-module:

SSPC"M =YV

where the summation is over all partitions 4 with even rows and 7,11 < n.

We let {x1,...,%u &1 ..., &) be the standard basis for C™", with x; denoting
even, and ¢; odd vectors. Regarding x; as even and ¢; as odd variables the Lie
superalgebra gl(m|n) has a natural identification with the space of first order
differential operators over C[x;, {;]. The Cartan subalgebra of diagonal matrices
is then spanned by its standard basis x;(d/dx;) and £;(9/9¢;), for i=1,...,m and

j=1,...,n. The nilpotent radical is generated by the simple root vectors
d d d
X;j——, i Xm—, i=1,...m—1;j=1,...,n—1. 5.1
"o S s
S2C™" then is spanned by the vectors Xj = Xji = XiXj, Vi = —y = & and

N = Exxi, where 1 <i,j<m and 1<k,/<n This allows us to identify
S(SZC”"") with the polynomial algebra over C in the even variables x; and yy
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and odd variables 1;,;, with 1 <i <j<m and 1 <k <[ < n, which we denote by

Clx, y, nl.
A convention of notation we will use throughout this section is the following: By
xi(x1, X2, ..., x;») we will mean the row vector (x;1, X, . .., Xin). So by the expression
X1(X1, X2, .0, Xim)
x2(-x17 x21 ) xl‘l‘l)
Xm(X1, X2, -2y Xim)
we mean the matrix whose ith row entries equals to (x;1, X, . . ., Xim), 1.€. the matrix
X111 X2 o Xim
X211 X220t Xom
X.= . .
Xml Xm2  * Xmm

Similarly by an expression of the form

X1(X1, X2, .oy X))
Xic1(X1, X2, .+ 0 Xim)
A/l(é]) = éj(xlv x21 L) xm)
Xip1 (X1, X2, ooy Xip)
Xp(X1, X2, .., Xim)
we mean to replace the ith row of the matrix X by the vector (171, 1, - - -, 1) In

these forms the action of (5.1) will be more transparent.

Consider the first » x r minor A, of the m x m matrix X, for 1 <r < m. It is easily
seen to be a highest-weight vector in C[x, y, 7] of highest weight 2(>"}_, &), where
as before we use ¢ and J; to denote the fundamental weights of gl(m|n). Hence
if 4 1s a Young diagram with even rows of length not exceeding m, then its corre-
sponding highest-weight vector is a product of A,s. To be explicit note that since
A has even rows, Ay =2t is an even number. Furthermore we also have
Xy =My, foralli=1,...,r. Then the highest-weight vector is given by [T;_; A .

Consider now a diagram of the form

(5.2)

21
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The product of highest-weight vectors of two such diagrams, if nonzero, gives a
highest-weight vector of a diagram of the form

m
e —
2 { 210 2l
e’

2l

Dividing by the determinant detX” we obtain a highest-weight vector for the dia-
gram

2 { 20
]
2l

Thus it is enough to construct vectors associated to the Young diagrams of the form
(5.2). To do so we first consider the case when / =1 in (5.2).
Consider the expression

A(Ey, &) = —(detX)(& &) + (detX1(E)))(Erx1)

5.3
+ (detX2($1))(Eax2) + - - - + (det Xy (E D) (Eaxm), ©-3)

where by (£,&,) and (&,x;) we mean y;; and #,;, respectively. The following lemma
will be useful later on.

LEMMA 5.1. Let A = (a;j) be a complex symmetric m x m matrix and 0y, 0, ..., 0,
be odd variables. Then

0 6,---0,
01

det] .

A

6”1

Proof. It is enough to restrict ourselves to real symmetric m x m matrices 4. Let U
be an orthogonal m x m matrix such that U'AU = D, where D is a diagonal matrix.
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We compute

1 0---0 0 0;---0, 1 0---0 0 & -G
0 0 G
: . =" , (5.4)
U : A N U4 : D
0 9"7 0 Cm

where { =377, up0; and U = (uy). But the determinant of the matrix on the
right-hand side of (5.4) is zero. O

The next lemma is straightforward.

LEMMA 5.2. A(¢y, &) has weight 2(3"1L, &) + 01 + 02 and, hence, its weight corre-
sponds to the weight of the Young diagram (5.2) with [ = 1.

LEMMA 5.3. A(&y, &) is annihilated by all operators in (5.1) and, hence, is a
highest-weight vector in S(S*C™") corresponding to the Young diagram (5.2) with
[=1

Proof. First consider the action of the operator x;_1(d/dx;), for i=2,...,m, on
A(&y, &) given asin (5.3). Certainly x;_(9/0dx;) annihilates the first summand of (5.3),
and furthermore it takes the summand X;(&;)(yx;) for j#i— 1,1 to

X1(X1, ooy X))

xl(xlv"'3xi717xi71a'~'axn‘l) :

. xjfl(xlw-wxm)

. Ei(xry ey Xm)
X/—l(xl» e Xisly Xic Ty - -5 Xim) xj+1(x1, ey Xm)
det| &i(xr ..., X1, Xict, ..o, X)) [(&2x7) + det ) (&2x)),
X1 (X1, ooy Xim1, Xicls oo e s Xim) :
Xi—1(X1, ... Xim)
xi*l(xls ceey xm)

Xm(X1, ooy X1, Xis1, -« Xom)

Xp(X15 ooy X))

which is zero. x;_1(9/9x;) takes X;(&1)(&x;) to

XI(XI,...,xl',l,xl'fl,...,.xm) XI(XI,...,xm)
Ximi(X1, oy X1, Xin1s ooy Xom) Xi—1(X1, -+, Xim)
det] &i(xp, ..., X1, Xi—1, ..., xm) | (Gx)+det] &Ei(xr, ..., xm) [(Eaxisy).
Xl‘_H(X], FR, ¢ H [P xm) xi+1(x1a ceey xm)
xm(xl, ey Xiely Xim1y o vy xm) Xm(X1, cees xm)

The first summand is zero, while the second summand remains. Now we verify simi-
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larly that x;_1(9/0x;) takes X;_1(&1)(&,x;—1) to the identical expression as the second
summand above with the difference that the i — 1st and ith rows are interchanged.
Thus x;1(9/9x;)(A(¢y, &) = 0.

Consider now the action of x,,(3/3¢;) on A(&;, &). Note that x,,(3/3&;) kills every
term in (5.3) except for the first and the last. The contribution from the first
summand is —detX(&,x,,), while that from the last summand is detX(&,x,,), and
hence x,,(3/951)(A(¢y, &) = 0.

Finally we consider the action of &;(3/3&5,) on (A(y, &,)) as in (5.3). &;(3/0&,) kills
the first term in (5.3) and the resulting vector is

> (detXi(&)(Ex), (5.5)
i=1

which can be in a consistent form with our earlier notation written as A(&q, &;).
Expanding along the first row we see that (5.5) is the same as

0 (&ix1) - (Ei1xm)

(&1x1)
det 1, : ,
: X
(&1xm)
which is zero by Lemma 5.1. O

The proof of the above theorem gives us certain identities that will be used later on.
We will collect them here for the convenience of the reader:

o1 3 (A &) = (5.6)
S L AG &) =M . (5.7)
S L AC ) = AC &), (5.8)
A(g;. &) =0. (5.9)

We now turn our attention to the general case of a Young diagram of the form
(5.2) with general /. Of course, we have the restriction that 2/ < n.

Let o = {(i1, i2), (i3, 14), ..., (ij_1, i7)} be a partition of the set {1,2,...,2[}.
Assuming that we have arranged ¢ in the form so that i} <ib,iz <
i4, ..., 1 < Iy, we may define &, to be the sign of the permutation taking k to
i for all 1 <k <2/. We may associate to ¢ a vector A(¢;, &)+ A&, ,, &) 1n
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S(S2C™") and define

T2 =Y eA. &) A&y, i),

where the sum is taken over all partition o = {(i1, i2), (i3, i4), . . ., (iz—1, I2;)} of the set
{1,2,...,2[} arranged in the form that ij < i, i3 <4, ..., yy_1 < ipy. The following
lemma is again a straightforward computation.

LEMMA 5.4. The weight of T(21) is 2I(3_1", &) + ijil d; and, hence, corresponds to
the weight of the Young diagram (5.2).

LEMMA 5.5. T'(2]) is annihilated by (5.1) and, hence, a highest-weight vector in
S(S2C™m,

Proof. The fact that I'(2/) is annihilated by x;_1(3/dx;) for i = 2, ..., mis a conse-
quence of (5.6). Now the proof of Lemma 5.3 shows that x,,(3/9&,)(A(&4, &) =0,
foreverys =1, ..., n. Thus x,,(8/3¢,) annihilates I'(2/) as well. So it remains to show
that &;_(9/9¢)) kills I°(27).

Given a summand in I'(2/) of the form &, ... A(;_1, &) .. . A(E;, &) . . . there exists a
summand of the form ¢y ... A({;_1, &) ... A(;, &) . . ., which isidentical to it except at
these two places. Now &;_1(9/9¢;) takes the first of the two summands above to

PN\ (SIE I ) PRSI P ) PR

and the second summand to

b NG &) NG E)

But ¢ and ¢’ differ by a transposition (7, /) and hence ¢, = —¢, and so these two terms
cancel.

Consider a summand in I'(2/) of the form &, ... A&, &-1) ... A(E, &) . ... But in
I'(2]) we also have a summand of the form ¢, ... A(&}, &) ... A(E;-1, &) . . .. Applying
¢;—1(0/9¢)) to these two terms, we again see that they cancel by the same reasoning as
before.

Now we look at a term of the form &, ... A(¢;, &) ... A(E;, &;y) . ... We also have a
term of the form &5 ... A({;—1, &) ... A&, &) . . .. Again they will cancel each other
after applying &;_1(3/9¢)).

Finally a term of the form &, ... A(¢;_1, &) . . . is killed by &;_1(3/3¢;) by (5.9). This
completes the proof. O

It is clear that a product of I'(2/)s (not necessarily the same /) is nonzero, which
therefore allows us to construct all other highest-weight vectors, as discussed in

the beginning of this section. Below we summarize the results of this section.

THEOREM 5.1. The gl(m|n)-highest-weight vectors of S(S2C™") form an Abelian
semigroup generated by T'(2),...,T'(2[n/2]) and Ay, ..., A,, where [n/2] denotes
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the largest integer not exceeding n/2. Furthermore this semigroup is free if and only if
n=0,1. More precisely a highest-weight vector associated to an even partition

A= A1, ..., ) with 4,1 < nis given by
! A ! ! 1
(detX)” " TT ) [T Ak,
m+1 j=r+1

where the nonnegative integer r is defined by A, > m and 7, < m.

Remark 5.1. From Theorem 5.1 we may recover the highest-weight vectors in
S(S2C™)and S(A’>C") by putting n = 0 and m = 0, respectively. Namely, identifying
S2C™ (respectively, A*C") with the space of symmetric m x m (respectively
skew-symmetric 7 x n) matrices, we see that in the first case the highest-weight
vectors are generated by the leading minors of the determinant of the typical element
of S>C”, while in the second case they are generated by the Pfaffians of the leading
21 x 2/ minors of the typical element of A2C", where 2/ < n. (cf. [H2]).
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