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ON THE POINTS OF INFLECTION OF 
BESSEL FUNCTIONS OF POSITIVE ORDER, I 

LEE LORCH AND PETER SZEGO 

1. Introduction. The primary concern addressed here is the variation with re
spect to the order v > 0 of the zerosy^ of fixed rank of the second derivative of the 
Bessel function Jv(x) of the first kind. It is shown that fvX increases 0 < v < oo 
(Theorem 4.1) and that fvk increases in 0 < v < 3838 for fixed k — 2 ,3 , . . . 
(Theorem 10.1). 

It is true, as one would expect, that fvk increases throughout the entire interval 
0 < v < oo, also for k = 2,3, . . . . This result has been achieved by R. Wong and 
T. Lang [12] who applied to (3.1) delicate asymptotic estimates with numerical 
estimates of the remainder terms to establish monotonicity fori/ > 10 when/: > 2. 
For — 1 < v < 0 (and hence in combination with the present paper and [12] for 
— 1 < v < oo) monotonicity for fvk,k = 3,4... , have also been demonstrated, 
but by different methods [6]. These cover analogous properties for k = 1,2, as 
well. 

The study of variation with respect to v > 0 is based on a formula for dfvkj dv, 
given in Theorem 3.1. 

This is analogous to one for djUk/dv enunciated by Schlâfli [11, §15.6(2), 
p. 508] and one for dfvk/ dv due to Schafheitlin [8, p. 274] from which monotoni-
cities ofyVfc andy'^ follow. As usual, yV* andy^ denote the respective &-th positive 
zeros of Ju(x) and J'v(x). Their formulas have been generalized by Watson [11, 
§ 15.6(3), p. 508, § 15.6(4), p. 510]. A corresponding extension of the formula for 
dcn

vkj dv would be desirable, with c"vk the k-th positive zero of the second deriva
tive of the general cylinder function Cu(x). 

2. Some preliminary remarks. Before deriving the formula for dfvkj dv, some 
elementary comments are in order. The general cylinder function Cv(x) satisfies 
the differential equations 

(2.1) x2y" + xy' + (JC2 - v2)y = 0 

and [3, §7.3(67), p. 13] 

(2.2) x2(x2 - v2)ym + x(x2 - 3v2)y" + (JC4 - (2v2 + l)x2 + v4 - v2)y' = 0. 
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934 LEE LORCH AND PETER SZEGO 

We need an observation which establishes explicitly what is depicted in graphs 
of Bessel functions: 

LEMMA 2.1. Each point of inflection of Cv(x) for which c"vk > v2, lies in the 
"second half" of the arch, i.e., between the extremum andthefollowing zero. There 
is only one point of inflection in each arch when cn

vk > v2. 

Proof. Putting x — c"vk in (2.1) shows that C'^c'^) and Cv{c"VK) are of opposite 
sign when c"vk > i/2. This is equivalent to our first assertion. 

From equation (2.1) it is clear that the second half of each arch must contain 
an odd number of points of inflection whose abscissae exceed \i/\. From equation 
(2.2) it follows that the square of the first such abscissa in the arch exceeds the 
(larger) positive zero of the coefficient of/, i.e., 

(2.3) ^ 2 > i / 2 + i + i(8i/2 + l ) i . 

However, were there a second point of inflection in the same half arch, equation 
(2.2) would imply that the square of its abscissa would be less than that zero which 
is impossible of course. This proves the remaining conclusion of the lemma. 

Thus, for 0 < v < l,j"k > fvk > v, k = 1,2,3,.... For v > 1 , a new point 
of inflection comes into being in the first half of the first arch [11, § 15.3, pp. 486-
487], easily seen to be unique. This causes an awkward renumbering of the j " k so 
that [11, § 15.3(6), p. 487] for £ = 1 , 2 , . . . , 

(2.4) fvX < Vu2-h fvk < flk+l < j v k , v > 1. 

Also, as will be used later, 

(2.5) flx > fu+lJc.l9 i/ > 1, * = 2,3 

This follows from the un-numbered formula immediately preceding [11, 
p. 487(6)] which becomes, on putting x = j " k , 

This shows that J'v+\(j'lk) and Jv(j"vk) are of opposite sign for v > 1, k = 2 ,3 , . . . , 
and that 

(2.6) flk>jUi*>0<"< 1, * = l , 2 , . . . . 

3. The basic formula: a representation for dj"k/ dv. The differentiablility 
of j"vk with respect to v when v > 0 and k is fixed can be established by the 
same argument F. W. J. Olver used [7, Lemma 6.1, Theorem 6.3, p. 246] mutatis 
mutandis to verify thaty'^ andy'^ are differentiable functions of v > 0 for fixed 
k. 

Our objective is, then, to obtain an expression for that derivative and later to 
prove it positive. 
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ON THE POINTS OF INFLECTION OF BESSEL FUNCTIONS 935 

THEOREM 3.1. If 1/ > 0 and the rank k off - j " k is fixed, then 

(3.1) 
df_^ 2v_ 

dv (j")2J,(j")Jf'(j") 

•/' Jl(t) -\[JJ-^dt-Jl(j") 

Proof. By definition, Jv"(j") = 0 whose derivative with respect to v (of which 
/ ' is also a function) yields 

(3.2) W)f- + 
dv 

3-Cto 
du 

= 0. 
x=f 

We use the well-known formula [7, §6.4, p. 247]: 

<"> l*?*-];[< dx = — •/„(*)—5 •/„(*)-5— 
x 2v 1 av av 

Differentiating both sides of (3.3) with respect to x: 

J'M 0.4) ijito=^\jVM*m-fM*M 

x ( dJ'lix) dJAx) 

We use (3.3) to replace the first right-hand term of (3.4) to yield: 

(3.5) -Ji(x) = 'J ~Y~ dx+^ \J^X)~~^/
 v^~~dv~~\ 

We now multiply by x to obtain: 

(3.6) jl{x)-f
J-Mdx=^ wgg-fj^ 

dv dv 

To investigate the behaviour of the right side of (3.6) as x —> 0+, we use [7, § 9.3, 
p. 57], [7, §5.2(5.06), p. 243]: 

(3.7) 
•iv\X) — \2X) z^J=o 4ss!r(t/+s+l) 

du (\xrT.T=Q^Ûr)Mx~i,(v+s+\)). 

where \jj denotes the logarithmic derivative of the Gamma function. 
In what follows, we must take v positive and distinguish two cases, v ^ 1 and 

v = 1. 
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936 LEE LORCH AND PETER SZEGO 

CASE l.i/ ^ l,i/ > 0. 

( 3 - 8 ) \ ^ M = OV In*), ^ = 0(S-2 In*), as * -+ 0+. 

CASE 2. i/ = 1. 

J7i(x) = 0(x), •/"(*) = 0(x), 
(3-9) | a ^ i = 0 ( x l n x ) ajw = 0 ( 1 / x X ^ ^ 

Using (3.8) and (3.9) in the right side of (3.6), we have for the right side: 

CASE \.V ^ l,i/ > 0. 

0(x2) {0(xv)0(xv-2 lnx) + 0(xu-2)0(xu hue)} - 0(x2u \nx) —• 0 

as x —» 0+. 

CASE 2. v = 1. 

<9(x2) (<9(x) • O(-) + 0(x) • 0(xlnx)) = <9(x2) + 0(x4 lnx) - • 0 

as x —• 0+. 
Thus, under the restriction v > 0, we may write (3.6) as: 

(3.io) 4(j")-l -*j 

Hence, 

<» = — — J „ ( J ) 
2;/ 

a/"« 

(3.11) 
dJ'lix) 

dv rfr 

Substituting (3.11) into (3.2) yields (3.1) and thereby proves the theorem. 

THEOREM 3.2. Ifv > 0, / ' - j " k , k-2,3,..., and, when 0 < u < 1, also for 
k = 1, then 

(3.12) 
2i/ 

(j")2Jv(j")J'l'(j") 
> 0. 

Proo/ Under the hypotheses,/^ > v. From Lemma 2.1, J"(x) changes from 
negative to positive at x — j " when Jv(j") > 0, from positive to negative when 
J vif') < 0- Hence J"'(j") has the same sign as /„(/") and our assertion is estab
lished. 

The remaining case is settled by a similar argument. 
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THEOREM 3.3. Ifv > 1, then 

2v 
(3.13) = < 0. 

Proof. Here 0 < / ' < ful while J"(x) > 0, for sufficiently small x > 0, [11, 
§ 15.3, p. 486]. Thus, /"'(/"i) < 0 while /„(/"i) > 0, and this assertion too is 
proved. 

Together, these theorems show that the sign of dj"/ dv is determined by the sign 
of 

(3.14) G(x) = jy~^-dt-Ju
2(x) 

when x = f vk' 

4. The first point of inflection: the case v > 1. What is here the first point of 
inflection comes into existence in the^r^ half of the first arch only when v > 1. 
When 0 < v < 1, there is no such point in 0 < x < fu j . This special / ' can be 
discussed more easily than the remaining fvk all of which occur in the second half 
of each arch, including the first. We prove 

THEOREM 4.1. The function fvX increases for all v•, 1 < v < oo. 

Proof In view of (3.1 ) and (3.13), this conclusion will follow from the inequality 
G(/t'i) < 0, where G(x) is defined by (3.14) and G(0) = 0, v > 0. 

Now, 

G (x) = —x— < > = -2xz(x)z (*), 
dx [ x J 

where z(x) — x~xl2Jv(x). 
The function z{x) satisfies the differential equation [11, §4.31 (19), p. 98] 

(4.1) JCY + 2xz' + (x2 -v2 + Uz - 0. 

Moreover, z(0) = 0, since v > 1 ; z(x) > 0, 0 < x < ju \. 
The first zero, dvl, of its derivative z'(x) therefore yields a positive maximum of 

z(x). Putting x = dvX in (4.1), it follows that 

(4.2) a'vl> v1 - - , v > 1. 
4 
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938 LEE LORCH AND PETER SZEGO 

Obviously, G'(x) < 0, 0 < x < ctvX. 
From (2.4) and (4.2) we have 

A < ^ 2 - 1 < ^ 2 " 4 < ^ 1 . ^ > L 

whence G'(*) < 0, 0 < x <fvX. 
Therefore, G(j"{) < 0, as required to complete the proof since G(0) = 0. 

5. The other points of inflection: 0 < v < \. 

THEOREM 5.1. The function jIk increases in 0 < v < \, for each fixed k = 
1,2,.... 

We offer two proofs. The first is in the fashion of that of Theorem 4.1. The 
second serves as an introduction to the method employed in § § 6-10. 

First Proof. For 0 < v < 1, an even larger v-interval,^ > fuk, k = 1,2,..., 
and Theorem 3.2 implies that this conclusion of this theorem as well follows from 
G(j'lk) > 0. We establish this first for k = 1 ; this will yield readily also the cases 
£ = 2,3 , . . . . 

For v > 0, G(0) = 0 and so we consider again 

d \jv\x) 
G (x) = — x— 

dx [ x 

Now, ; r 3./„(*) = xu-l/2[x-"Mx)] and [11, §3.2, p. 45] 

d Jv(x) Ju+\(x) 
dx xv xv 

Thus, x~vJv(x) decreases for 0 < x < j u \ < ju+\,\ and so obviously must 
x~~xl2Jv(x), hence also J2{x)jx, for 0 < v < \. 

Therefore, G'(x) > 0, 0 < x < jvX so that G(x) increases (from 0) in 0 < x < 
j v \ . In particular, G(j"x) > 0, establishing the theorem's assertion when k = 1; 
also G(/ti) > 0. Clearly, G(/^) > G(j'vk), 0 < v < ±, k = 1,2,.... If it be shown 
that G(j'vk) > G(j'vl), k = 2 ,3 , . . . , this would complete the proof. 

The first term in the definition of G(j'vk) obviously increases with k. The subtra
hend Jv2(j'uk) decreases, as a consequence of the Sonin-Butlewski-Polya Theorem 
[1; 9, § 7.31, p. 166 fn] (recorded in full following the statement of Theorem 11.1 
below), since the Bessel differential equation can be written (xyf) +x~l (x2—v2)y — 
0. Herey^j > u, making x2 — v2 — x[x~l (x2 — v2)] the increasing product of pos
itive functions iny^ < x < oo. 
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Second Proof. This is based on a formula [11, §5.51(5), p. 152] which will be 
used also for greater values of v : 

(5.1) G(x) = 
1 

2^ 
- 1 vw + - E w 4 

m=\ 

whence G(x) > 0, 0 < v < ^, for all x > 0, proving the theorem. 

6. The other points of inflection: | < v < 22. 7. The following lemma is 
used in the proof of Theorem 6.1. 

LEMMA 6.1. For v > \, the function f(x) = x v{v-\) increases for v < x < 

oo. 

Proof. For v > 1 the conclusion is obvious, even for all x > 0. So we consider 
v in \ < v < 1. Now, 2 — 

/ ( * ) = 1 ~ 
1 / ( 1 - 1 / ) 

This will be positive if JC2 > i/ — z/2. This is the case here, since v — v2 < | , 
\ <v < 1, whilex> \. 

THEOREM 6.1. The function fvk increases with v, | < v < 22.19, for each fixed 
k= 1,2,.... 

Pro*?/ Let y" denote any y'^ larger than 1/. For | < 1/ < 1, this includes/J j ; for 
v > \,fl must be at least fvl. This does not restrict the generality, remembering 
Theorem 4.1 in the latter cases. 

Proof will be accomplished by showing that G(j"k) > 0 under the current hy
potheses. From (5.1) 

1 1 
G(x) > ( — - \)J/(x) + -y,+iz(x) = G,(*). 

2z/ i/ 

These terms can be combined when x = 7", since [11, § 15.3, p. 487] 

1/(1/ - 1 ) 1 
(6.1) /„+,(/?) 

Hence, 

G,(/t') = 

JV 

Jvij'lY 

1 
2z/ v 

ff\ J 2 / - / / 

1 + 

Glij'DJ^iJl) 

V{V - 1) i2" 

7 ^ 2 ( / t ' ) 
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so that Gxifl) > 0 if G2(j'l) > 0. 
We have assumed that j " > v and so Lemma 6.1 applies with x — / ' , i.e., 

G2(j")> G2(t)ift<flAtisvtcordedm(2A)md(2.6)fori/ > l a n d 0 < i/ < 1, 
respectively, that/,' > / + u . Now, [11, § 15.3(8), p. 487], 

(6.2) fv+ul > v/(i/ + l)(i/+3), i / > 0 . 

Hence, 

-2z/3+43z/2 + 58z/+21 
G2(/t) > G2(V(^ + DO' + 3)) - 0 , . v - , > 0, 

v 2v(y + \)(y + 3) 

0 < 1/ < 22.79. 
This establishes the theorem which, together with previous theorems, demon

strates the increasing character ofj"k for 0 < v < 22.79, k = 1,2,.... 

7. The other points of inflection: 3 < v < 32.8. When*/ > 3, the inequality 
(6.2) can be sharpened [11, § 15.3(9), p. 487] to 

(7.D fv+\,\ > v/Ô/ + 1)(^+4), z / > 3 . 

Now that monotonicity ofj"k has been verified for v even larger, the proof of 
Theorem 6.1 can be modified so as to extend the result yet further. 

Using (7.1) where (6.2) had been employed, we have 

-2z/3+63z/2+93z/+36 
G2(j'l) > G2(J(i/ + 1)0/ +4)) = > 0, 

v 2v{y + \){y + 3) 

3 <v <32.8 . 
In sum, we have 

THEOREM 7.1. The function j " k increases with v, 0 < v < 32. 8, k = 1,2,.... 
WZ£/Î z/ > 1,/,'j increases for 1 < z/ < 00. 

8. The other points of inflection: 3 < z/ < 151.03. It is possible to proceed 
further by this method, although not to infinity with z/, since G2(j") —> — 1 as 
z/ —> 00, fory" > z/. This follows from (2.4) together with Tricomi's asymptotic 
formulas foryV^ and 7^, k fixed, v —» 00 (cf. [3], §7.9, p. 60]). Indeed, these 
asymptotics show that adding & fixed finite number of additional terms from (5.1) 
cannot establish the monotonicity of j " k for all v (k fixed) since any such section 
will become negative for sufficiently large v. 

Monotonicity of/' = fvk, for fixed k — 2 ,3 , . . . , can be established for larger v-
intervals by using additional terms of the infinite series of positive terms in (5.1) 
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defining G(x) and also by employing more precise lower bounds for / ' . In this 
section we introduce one additional term of (5.1). 

This term can be combined with the previous ones thanks to a standard recursion 
formula [11, § 3.2(4), p. 45], with x = / ' : 

A,+ 2( /") = (y + iy„+i(/") - / ' / „ , ( / " ) . 
The first term on the right has been represented already in (6.1) in terms of Ju(j"). 

Moreover [11, § 15.3, p. 487] 

Therefore, 

(8.1) Jv+2(f) =\lv + \- 2V{V1~ l) J Jv(j"). 

The factor in braces is positive, since/' > v, and, like Giij"), will clearly be 
diminished if/' is replaced by a lower estimate. 

Thus, 

G(j") > 
2v vl J 

V I (Vi\2 

(j'r 
JlQ") = G3(j")J2

u(j"). 

G^ij") is made smaller whenyv/ is replaced by a smaller value. Keeping this in 
mind, it is convenient to rewrite G^ij") as 

( , 2 ) Gj(/-, ' + £ + » + , _ < ^ + ""«><> - • > , H ^ i t . 

We extend the range of v for which G(j") > 0 by determining the v -interval for 
which G3(/") > 0. 

The addition made of one more term of the infinite series in (5.1) permits a 
substantial extension of the v -interval covered in Theorem 7.1 even when the same 
lower bound (7.1) is used for j " > jl+l }. Hence, for v > 3, 

G3(j") > Giiyjiy + 1)0/+4)) 

_ - i / 5 + 147.5i/4 + 53(V3 + 689.5v2 + 396i/ + ! 

z/(i/2 + 5*/+4)2 

> 0, 

3 < v < 151.03. 
This yields a substantial extension of Theorem 7.1: 
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THEOREM 8.1. The function fvk increases with v for fixed k — 1,2,..., 0 < v < 
151.03. When v > 1,/ ' , increases for 1 < v < oo. 

9. The other points of inflection; the effect of using a better bound for fv 

Preliminaries. To establish the monotonicity of j " k , k — 2 ,3 , . . . , for consider
ably larger i/, we rely upon some deeper inequalities for/J which will be used in 
conjunction with (8.2). 

Together with (2.5), we shall use now instead of the elementary bound (7.1), a 
sharper one due to L. Gatteschi and A. Laforgia [4, p. 422(27)]: 

(9.1) j'vX > vexp(2-]'3a\i/-2/3 - 1.06z/"4/3), v > 20, 

where a\ = 1.01879297. 
Needed also in this connection is a result obtain by A. Elbert and A. Laforgia 

[2, Corollary 4.1, p. 778]: 

(9-2) vt+i,* > i / +7 , , i + u~/ i ' 

where k — 1,2,..., and v > \i. 
The inequality (9.1 ) will be used with v replaced by v +1 throughout, in view of 

(2.5), and with /i constant in each separate application, giving (9.2) the structure 
j'lk > v + aM. In the actual calculations we use values slightly smaller than the 
ones specified in (9.1 ), thereby obtaining slightly smaller lower bounds for / , . We 
replace 2"1/V, by 0. 80861647, the exponents § and | by 0.666666666667 and 
1. 333333333333, and then use the first five decimal places of the result. 

10. Monotonicity for 0 < v < 3838; k = 2 ,3 , . . . . 
For this range monotonicity will be established in stages. From (9.2) and (2.5) 

it follows, for k = 2 ,3 , . . . , that 

(10.1) j"=j:k>is+a„ i /> /x , 

where the constant a^ = f x , — //, \i being kept fixed. As noted, G3(j"), whose 
positivity for appropriate v we seek to establish, decreases if/' is replaced by a 
smaller quantity. Hence, G3(j") > G3(y + a / . 

Thus, G3(j") will be positive at least for those v for which G3{y + a / > 0. To 
ascertain these values, we replace/7 by v + aM in (8.2) and rewrite the function. 
This gives 

[ viy + a/4G3(/") > viy + a^4G3(v + <*„) 
= -z/5 + (20a/i

2 + 8a/, + §)z/4 

(10.2) \ + (28a^3 + 24aM
 2 + 24aM + 4)z/3 

+ (17a/ + 20a / + 18a/ + 8a^ + 4)v2 

+ (6a / + 5 a / + 6 a / + 4a/)z/ + a / + | a / . 
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This is a polynomial in i/, positive at v = 0, becoming eventually negative. 
It has but one variation in sign and so has exactly one positive zero in view of 
Descartes' Rule of Signs. It is therefore positive for all positive values smaller 
than the root. 

We know already (Theorem 8.1) that G3 (/'"*) > 0, 0 < i/ < 151.03, /: = 
2, 3 , . . . , and so we start our calculations with JJ, = 151. Here, for v > 151, 

Jvk > Jv+\,\ 

> ^ +/l52,l — 151 

> i/+5.17306 

= ^+«151 

since/1521 > 156.173063272 from (9.1). 
Putting in (10.2) a^ = 5.17306, it turns out that the resulting polynomial is 

positive for 0 < v < 587.05. 
Now we begin again, this time with /i = 587 so that, for v > 587, 

Jvk ^ Vi/+l,l 

> " + /588,1 - 5 8 7 

> Z/+7.68555 

= v+ a587, 

again from (9.1). With a^ — 7.68555, the polynomial (10.2) is positive for 0 < 
v < 1256.7. 

The next value of /i is 1256. The same procedure leads to cri256 = 9.65825 and 
thence to a polynomial (10.2) which is positive for 0 < v < 1959.5. 

The method is now clear and is summarized in the Table below. Column 1 
records the value of //, Column 2 of a^. Column 3 lists a value of v (slightly 
smaller than the largest, due to numerical caution) for which the polynomial (10.2) 
generated by the corresponding // remains positive when five decimal places are 
used from the entry in Column 2. 

Together with earlier theorems, the entries in this Table imply the following 
result: 

THEOREM 10.1. The function fvk is an increasing function of v, for fixed k = 
1,2, 3, . . . , in the interval 0 < v < 3838. For 1 < v < oo, y", is an increasing 

function of v. 

It will be noted that, although a^ increases with /i (as established in [2]), the 
v-intervals lengthen more slowly as fi increases. This is in conformity with the 
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basic result of [2] which establishes that fvk is a concave function of v for each 
fixed k. 

Column 1 Column 2 Column 3 

151 5.173063272 578.05 

587 7.685556889 1256.7 

1256 9.65825044 1959.5 

1959 11.06058306 2553.8 

2553 11.99913859 2995.5 

2995 12.60597476 3299. 8 

3299 12.98925528 3499.6 

3499 13.22867726 3627.4 

3627 13.37713598 3707. 8 

3707 13.46815011 3757.5 

3757 13.52436834 3788.4 

3788 13.55897268 3807.5 

3807 13.58008824 3819.1 

3819 13.59338808 3826.5 

3826 13.60113339 3830.8 

3830.5 13.60610754 3833.55 

3833.5 13.60942145 3835.39 

3835.3 13.61140896 3836.48 

3836.4 13.61262326 3837.16 

3837.15 13.61345106 3837.62 

3837.6 13.61394765 3837.89 

3837.88 13.61425664 3838.06 

3838.06 13.61445529 3838.17 

11. Ordinates of the points of inflection. Monotonicity problems arise also 
for the ordinates Juij'lk) of the points of inflection. Just as fvk appears to have 
properties analogous to those oifvk, so too conjectures for /^ (/'"*) can be motivated 
by such results as the complete monotonicity of {Jl(j'vk)} k — 1,2,3,..., v > 0 
fixed [5, Theorem 7.2]. 

Here v is kept constant and we consider the resulting sequence arising from 
k — 1,2,..., apparently reversing the approach of the previous sections in which 
v varied. However, the formula for dj"/ dv established in Theorem 3.1 reveals 
a potentially useful interplay. From that formula it is clear that if the sequence 
{-^ (/"*)» & = 2,3, . . . , decreases for fixed v > 0, then { dfvkj dv } would increase, 
k = 2 ,3 , . . . for fixed v > 0. 

If this monotonicity of {dj"k/dv}, k — 2, 3 , . . . , could be established, then 
proving that d]"vlj dv > 0, 0 < v < oo (indeed, 3838 < v < oo would suffice), 
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as R. Wong and T. Lang have shown otherwise for 10 < v < oo [12], would 
demonstrate that dfvlj dv > 0, for all k > 2. Unfortunately, we have not been 
able to prove the indicated conjecture, but only to establish a partial result. 

THEOREM 11.1. lfflx > 2 ' /V > 0, then 
(i) {\JfMk)\} and 
(ii) { \Ju(J"k)\ } are decreasing sequences for fc = A,A + l ,A+2 , . . . , with v 

constant. When 0 < v < I/Q — 7. 61690139..., the sequences (i) and (ii) both 
decrease for k = 2 , 3 , . . . , and, when 0 < v ^ 1, for k = 1,2,.... 

The proof depends principally on the Sonin-Butlewski-Polya Theorem [1; 9, 
§7.31, p. 166 fn]. This states: 

Given the differential equation (g(x)yf)f +f(x)y — 0, g(x) > 0,f(x) > 0, g\x), 
f'(x) both continuous, and suppose that the product g(x)f(x) increases [decreases] 
in a < x < b < oo. Then the relative maxima of\y(x)\ form a decreasing [in
creasing] sequence in a < x < b. 

Proof of Theorem 11.1. The differential equation (2.2) can be written, with / = z 
mdpu(x) = x4 — (2v2 + l)x2 + v4 — z/2, as 

(11.1) x2(x2 - is2)z"+x(x2 - 3v2)z' +Pu(x)z = 0, 

and is satisfied by z = J'v(x). It assumes the form 

[g(x)z'(x)]'+f(x)z(x) = 0 

when g(x) = x3(x2 — v2) and/(x) = x(x2 — v2) pu(x). 
Clearly, g(x) > 0 for x > v > 0. To use the Sonin-Butlewski-Pôlya Theorem, 

we need to know that/(x) > 0 for x > j " k > v when/J is chosen greater than v 
and that/(x)g(x) increases for* >j". 

For 0 < v < 1, and fv =j"x, it follows from (11.1) that/^Ot'i) > 0, since here 

But for these z/, the graph of pu(x) crosses the positive x-axis only once and so 
pu(x) > 0,x >flx. Therefore,/(x) > 0,x >fvX, 0 < v < 1. 

For v > 1, we may take/J - fvl{> v). Here J'l'ij'^) > 0, J'v(fl2) < 0. Hence 
Pv(fl2)>0, from (11.1). 

For these z/, the graph of pu(x) crosses the positive jc-axis twice, first when 

*2 = z/2 + - - W + l) , / 2<z/2 

2 2 

and again when 

2 2 
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Since j " 2 > v, it follows that7^2 is found after the second crossing so that pv (JC) > 

0 , * > £ ' 2 , i / > I-
Thus, in both cases, pv(x) > 0, JC > / J , 0 < v < 00, as required. 

To check the monotonicity of/(jc)g(jc), we seek where 

hu(x) = X-x-\x2 - v2f±L{f(x)g{x)} 
1 ax 

= x 6 - 4 z / V + Ï/2(5Z/2 + 4)x2 - 2v\v2 - 1) 

is positive. 

Now, 

Hv{x) = 2JC[3JC4 - 8*/2JC2 + v2(5v2 + 4) ] . 

This can vanish only where 

3x2 = \v2±v{y2 - XT)11. 

Hence, hv{x) > 0, x > 1/, for v2 < 12, since hv(v) = 61/2 > 0, and hv(x) 

increases for x > 0 for these v. 

The Sonin-Butlewski-Polya Theorem therefore applies when v2 < 12; it estab

lishes the assertions of the final sentence of our theorem for the case v2 > 12. 

For v2 > 12, JC > 0, hv(x) has a unique local minimum, say at JC = pu, when 

3JC2 = Av2 + v(v2 - 12)1 / 2 Now, 

21i/~^hv{pv) = - 2 [ i / 3 - 99*/ + (y2 - \T)'\ 

a quantity which vanishes for v — i/o and is positive for 2(31//2) < v < I/Q. 

Thus, /ii/(;t) > 0, x ^ Ï/, 0 < v < i/o, so that the final sentence of the theorem 

is established in respect to sequence (i). 

The final assertion regarding sequence (i) follows from the observations that 

pv < 2{l2v and that hv(2
xl2v) = 10z/4 > 0, v2 > 12 so that hv(x) > 0, 

JC > 21 /2! / , verifying the increasing character of/(jc)g(jc) f o r j c > 2 l / 2 z / , z / 2 > 12. 

There remain only the assertions about the sequence (ii). These follow from the 

properties of sequence (i) since the Bessel differential equation (2.1) implies 

f 
(/Ik) ~v 

Remembering that j " k > v, we note that \j"vkl (j"vk — v2)] decreases as k in

creases, with v fixed. Thus {.A/2(/"*)} anc^ n e n c e { I «A/(/'"*) I} decrease as the in

dicated k increases, as a consequence of what has been demonstrated concerning 

sequence (i). 
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Remarks. 
1. This proof, based on differential equations as it is, covers also the general 

solution of(2.1)d/(x) = Jv(x) cos a — Yv(x) sin a, 0 < a < TT,I/ > 0, beginning 
with zeros, c"vk of C^(JC) larger than v. 

2. The value A of k with which the stated monotonicites have been shown to 
commence depends of course on v. But it appears to grow rather slowly with v. 
For example, A < 3 when v — 30. 

3. Numerical evidence suggests that the sequence (ii), but not sequence (i), be
gins to decrease already from k — 1. When v — | , it turns out that | ./£,(/" i)l < 
\Jl(Jv2)\ > \Jltiv3)\ > > \J'v(J"k)\ > ••% so that some restriction of the sort 
imposed in the theorem is not entirely superfluous. 

4. The monotonicity of the sequence {|C[,(c^)|}, or equivalently, that of 
{[C^(c^)]2}, k = A,A + 2,. . . , c"vk > v > 0, as discussed in Theorem 11.1 
(i) and in Remark 1 above, is partially a special case of a theorem due to J. Vos-
mansky [10, Theorem 4.2, p. 63]. He has shown that the sequence { [^ (c^ ) ] 2 } , 
is monotonie of order n provided the first terms are dropped so as to begin the 
sequence with k = q(n). The quantity q(n) is defined to be the least integer q for 
which 

c'lq > 7„+2(<*) = max z/an+2, 

where an is the unique zero in 1 < s < oo of 

" S n+\ S ' 

s-l 

n+\ 

JTT. 
He showed also [10, Corollary 4.1, p. 63], under the same restriction k > q(n), 

that the following sequences are also monotonie of order n: 

{\{c'lkf}, 0<a<\ 

{{c'lkf}, a<0 

and { ln« t + 1 / (<&)} . 

We thank a Referee for reminding us of these results. 
A sequence {cik} ,k = 0 ,1 , . . . , is said to be monotonie of order n if (—1)' A7â  > 

0, / = 0,1, . . . ,«; k — 0,1,2,..., where A 0^ = a^, A + 1 ^ = A7^+i — A'a*- In 
[10] strict inequality is established. We hazard the guess that these sequences are 
even completely monotonie, i.e., that they are monotonie of order n for all positive 
integers n, beginning perhaps already with k — 2. 

2 1 2 1 1 / 2 
1 / £. 
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Simple decrease of a sequence of non-negative terms corresponds to monotonic-
ity of order 1. In this case, Vosmansky's condition becomes c"vk > 13(a) > a^v, 
where ot^ — 4. 830752 [10, p. 58] is the unique zero in 1 < s < 00 of 

S " 4 S ' 

is- 1-

4 

is + lJ 

Vosmansky's result, while including as a special case that the sequence 
{ I Cf

v(c"k)\ } decreases from a certain k on, requires that c"vk exceed (at least) a^i/, 
whereas in Theorem 11.1 (i) and Remark 1 it suffices to have c"vk >2{l2v. 
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