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ON EMBEDDING ESSENTIAL ANNULI IN M®
C. D. FEUSTEL

1. Introduction. In [7; 8; 11] it is shown that an appropriate map of a
planar surface into a 3-manifold can be replaced by an embedding. In
[1;4;6;7;9;10] conditions are given so that a ‘‘non-trivial’”’ map of a planar
surface (2-sphere) can be replaced by a non-trivial embedding of a planar
surface (2-sphere). In this paper we give conditions on an annular map which
guarantee the existence of a non-trivial embedding of an annulus. It is reported
that F. Waldhausen has proved a similar but stronger ‘“‘annulus theorem”.

The author is greatly in the debt of J. Hemple for his help in clarifying the
details of the proof of Theorem 3.1. The author would also like to thank
W. R. Alford, E. M. Brown, and W. Jaco for conversations.

2. Notation. Throughout this paper all spaces are simplicial complexes and
all maps are piecewise linear. We shall denote the boundary of a manifold NV
by bd(&). An embedding of a manifold X in a manifold YV is proper if
X N bd(Y) = bd(X).

We shall let 4 denote an annulus, ¢; and ¢, the components of bd(4), and M
a compact 3-manifold throughout this paper. We shall let « be an arc properly
embedded in 4 which meets both ¢; and ¢,. Such an arc will be called a spanning
arc. Let f: (4, bd(4)) — (M, bd(M)) be a map such that

(1) fe:mi(4A) — 7 (M) is monic;

(2) the arc f(a) is not homotopic rel its boundary to a map into bd ().

Then we shall say that f isan essential map. Note that condition 2 is independent
of the choice of a. Let X be a simple loop embedded in /. We shall say that X is
orientable if it has a neighborhood homeomorphic to a solid torus. Otherwise A
is non-orientable. A two-sided surface F embedded in M is itncompressible if the
natural map from =(F) into w(M) induced by inclusion is monic.

3. Principal results. We state below the principal results obtained in this
paper.

TraEOREM 3.1. Let f: (A4, bd(A4)) — (M, bd(M)) be an essential map such that

(1) f] bd(A4) is a homeomorphism ;

(2) [f(c1)] generates a free factor of Hi(M);

(3) f(c1) is an orientable loop.
Then there exists an essential embedding g: (A, bd(4)) — (M, bd(M)) such that
f bd(4) = gbd(4).
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COROLLARY 3.2. Let M be the closure of the complement of a tubular netghborhood
of a knot k in S3. Then k is a composite knot if and only iof M admits an essential
map f:(4,bd(4)) — (M, bd(M)) satisfying conditions (1) and (2) in Theorem 3.1.

THEOREM 3.3. Let M be a compact, orientable 3-manifold and f: (A, bd(4)) —
(M, bd(M)) an essential map such that

1) f| bd(A) is a homeomorphism ;

(2) there is an element v in H,(M) which generates a free factor of Hi(M) such
that 2" = [f(c1)] for some positive integer n. Then there exists an essential em-
bedding g: (4, bd(A)) — (M, bd(M)) such that f bd(4A) = g bd(4).

Remark. Theorem 3.3 is false if M is not required to be orientable [2].

THEOREM 3.4. Let M be a compact, orientable, 3-manifold and f: (A, bd(4)) —
(M, bd(M)) an essential map such that

(1) f(c1) does not meet f(cs) ;

(2) there is an element v in Hy(M) such that [f(c1)] = 2™ for some non-negative

integer n and v generates a free factor of Hi(M). Then there is an essential em-
bedding g: (4, bd(4)) — (M, bd(M)).

4. Supporting lemmas. We prove below a number of lemmas useful in the
proof of the theorems above.

LEMMA 4.1. Let (M, p) be a covering of M and f: (A, bd(A4)) — (M, bd(M)) a
map such that fymi(A) C pami(M) and [f(c1)] generates a free factor of Hy(M).

Then of fi:(4,bd(4)) — (M, bd(M)) is a map such that pfi = f, [f1(c1)]
generates a free factor of Hi(M).

Proof. This follows from the commutative diagram in Figure 1 since [cq]
generates H1(A4) and since the bottom row in this diagram is exact.

731 L H)

| 5 -
0—ker & — Hy (M) —2, Z—0
FIGURE 1

It will be convenient to represent the closure of {x € A :f~'f(x) # {x}} by
S,.

LeEmMma 4.2. Let f:(4, bd(4)) — (M, bd(M)) be an essential map such that
fl bd(4) is an embedding. Let M* be a compact 3-manifold, q: M* — M a map,
and f1:(4, bd(4)) — (M*, bd(M*)) a map such that qf, = f. Let (M, p) be a
two-sheeted cover of M* and fy:(A, bd(A)) — (M, bd(M)) an embedding such
that pfe = f1. If [f1(c1)] generates a free factor of Hi(M*), there is an embedding
g1:(4, bd(4)) — (M*, bd(M*)) such that qg1 is an essential map and
g1bd(4) = fibd(4).
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Proof. We may assume that .Sy, is the disjoint union of a collection of simple
loops and that the number of loops in .S, can not be reduced by a small motion
of fs. Suppose that \; and )\, are distinct loops in Sy, such that f1(A\1) = fi(As).
If A1, and thus \s, is nullhomotopic in 4, we may suppose that the spanning
arc « does not meet Ay or \q. It follows from the usual argument that .S,, can be
simplified by cuts. Thus we may suppose that neither \; nor A, is nullhomotopic
on 4, a meets \; in a single point x; for j = 1, 2, and fi(x1) = fi(x2). Denote the
closures of the components of « — (A1 \U \2) by a1, as, and a; where a; lies
between A\; and \s. Then either the arc f(a;) followed by f(as) or the arc f(a:1)
followed by the inverse of f(as) and then by f(a3) is not homotopic rel its
boundary to an arc in bd(M) since

fle) > (flan)f(es) (flan)f(az)f(as)) 7 (flan)f(as).

Thus one can simplify Sy, by cuts.

Suppose that A is a simple loop in .Sy, such that A = fi=Y1(\). If X is null-
homotopic on 4, X bounds a disk & on 4 and we may assume that o does not
meet \. We can now choose a disk &, containing & in its interior and not
meeting a. One can now apply Dehn’s lemma [7] to fi1|<; and it can be seen
that Sy, could have been simplified. If A is not nullhomotopic, A and ¢; bound a
subannulus of 4. Let \; be the simple loop fi(\). Now 2[A{] = [fi(c1)]in H.(M*)
which contradicts our hypothesis that [f1(c1)] generates a free factor of H;(M*).

LEmMmaA 4.3. Let f: (A, bd(4)) — (M, bd(M)) be an essential map such that
f| bd(4) is an embedding. Let M* be a compact, orientable 3-manifold, q: M* — M
amap, and f1:(A,bd (A4)) — (M*, bd(M*)) a map such that gf, = f. Let (M, p) be
a two-sheeted cover of M* and f2: (A, bd(A4)) — (M, bd(M)) an embedding such
that f1 = pfs. Then there exists an embedding gi: (A4, bd(A4)) — (M*, bd(M*))
such that g1 bd(4) = f1bd(4) and qg1 is an essential map.

Proof. The proof of Lemma 4.3 is quite similar to that of Lemma 4.2; the
only difference is that one uses the orientability of M* to show that no loop
in S;,, which is not nullhomotopic on 4, double covers its image in M*. Suppose
\ is a simple loop in .Sy, such that A = fi7}f1\ and X does not bound a disk on 4.
Since M* is orientable we can find a neighborhood 7" of f1(\) homeomorphic to a
solid torus. Now 7' = p=*(T) can be seen to be a solid torus. Let p: 7" — T" be
the covering translation on 7. We may assume that 7"\ .S;, = \ and that
frY(T) is a subannulus 4; of 4. Denote the components of bd(41) by d; and .d.
We observe that bd(7") — (fadi \J pfeds) is the union of two open annuli and
that, since bd(7) is a cover of bd(7), fad: lies in one of these annuli and pfad,
lies in the other. However fo(A4) crosses pf2(A4) only in the loop fa(\). Thus f.d,
and pfed; bound an annulus in bd(Z") which does not meet fods \U pfeds. It
follows that no simple loop A on 4 is a double cover of its image under f;. This
completes the proof of Lemma 4.3.
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Remark. 1f one could prove Lemma 4.3 in case (I, p) is a finite cyclic
covering of M*, one could remove condition 2 in Theorems 3.3 and 3.4.

LEmMA 4.4. Let f:(A, bd(A4)) — (M, bd(M)) be an essential map such that
fler) M flee) s empty. Let M* be a compact, orientable 3-manifold. Let
f1:(4, bd(4)) — (M*, bd(M*)) and q: M* — M be maps such that

(1) gfs = f;

(2) q carries a neighborhood of fi(c;) in bd(M*) into a neighborhood R; of
fle;) in bd(M) for j =1, 2.

Let (M, p) be a two-sheeted cover of M* and fy: (A, bd(A4)) — (M, bd(M)) an
embedding such that pfs = f1. Then there is an embedding g: (A, bd(4)) — (M*,
bd(M*)) such that

(1) qg is an essential map, and

(2) qg(c;) lies in R; for j = 1, 2.

Proof. The proof of Lemma 4.4 is essentially the same as that of 4.3. Thus
one need only consider simple arcs a; and «, in S, properly embedded in 4 such
that fi(a1) = fi(az). If @y has both of its endpoints on ¢y, @ will also have both
its endpoints on ¢ since f(¢1) does not meet f(cs). Thus we can simplify .S;, by
cuts. Note that we do not modify the image of the map f; near fics so that
(gf)s:m(A) — 7 (M) will still be monic and that we may assume that we do
not modify f1 on a. Thus the composition of the resulting map with ¢ will be
essential. Similarly if «; has one endpoint on ¢; and one endpoint of ¢s, as will
have the same property. Let ¢; and as be the closures of the components of
c1 — (a1 \J as). Now fi(a;) is a loop for j = 1, 2 and since f(¢1) is not null-
homotopic either the loop f(a1) or the loop f(«a2) is not nullhomotopic. [t follows
that Sy, can be simplified by cuts. Since Sy, can have only finitely many com-
ponents, Lemma 4.4 is proved.

The following lemma is well-known.

Lemma 4.5. Let f:(A,bd(A4)) — (M, bd(M)) be a map. If foH1(A) s of
nfinite index in Hy(M), there is a two-sheeted cover (M, p) of M and a map
f1:(A4, bd(A4)) — (M, bd(M)) such that pfy = f.

Let K be a fixed triangulation of M, F a surface embedded in M, and
f1(ZD,bd(D)) — (M, bd(M)) a map of a disk & into M. Suppose that f and
the embedding of F are simplicial maps with respect to one fixed triangulation
K. Suppose further that f~1(F) is a simple arc in & which contains only finitely
many points in the closure of .S; (and no triple or branch points). We shall then
say that f is transverse with respect to F.

Let N be a regular neighborhood of f(Z) M F in F. Let us suppose that we
have applied the tower construction used in the proof of the loop theorem [9] to
obtain an embedding g: (&, bd(Z)) — (M, bd(M)). Of course g(Z) N F C N.
In Figure 2 we show a decomposition of a neighborhood Ny C N of a point x in
S, into the union of five disks Do, Y1, D2, D3, Z+. We assume that g(Z) N\ F

https://doi.org/10.4153/CJM-1974-127-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-127-x

EMBEDDING ESSENTIAL ANNULL 1345

is in general position with respect to bd(%,).

fl9)NF

FIiGure 2

We recall that g(2) is the image of pieces of spherical components of the
boundary L of the manifold at the top of the tower. These pieces correspond to
regions in & — S, and there can be at most two pieces in L corresponding to
any one region of & — §,. It follows that &, M g(&) contains at most two
arcs forj =1, 2, 3, 4.

It can now be seen that g(Z) M F can be decomposed into a collection €
of arcs which correspond in a natural way to arcs in (f(Z) M F) — S,. We
observe that no more than two arcs in % correspond to a single arc in

(f(Z)NF) — S,
Lemma 4.6 below can now be seen to be a consequence of the preceding
paragraphs.

LeEMMA 4.6. Let F be a surface properly embedded in M. Let & be a disk and
(2, bd(2)) — (M, bd(M)) a map which is transverse with respect to F
such that f~Y(F) is a simple arc. Then we may assume that any embedding
2:(Z,bd(D)) — (M, bd(M)), constructed via the tower argument from F, meets
F in a collection (possibly empty) of simple arcs and simple loops and that there
1s a fixed finite number of possibilities for g(Z) M F up to ambient isotopy in F.
Furthermore the number of these possibilities is determined by the singular arc

T (EF).

5. Proof of major results.

Proof of Theorem 3.1. It is a consequence of a tower argument involving
Lemma 4.1 and Lemma 4.5 that we may assume the existence of a 3-manifold
M* (the final stage in our tower of two-sheeted coverings), a map ¢: M* — M,
and a map f1:(4, bd(4)) — (M*, bd(M*)) such that f = ¢fi. Note that if f;
is an embedding, Theorem 3.1 will follow after repeated applications of
Lemma 4.2. It is a consequence of Lemma 4.5 that the image of H1(4) under
f1* must be of finite index in H,(M*). It follows from standard arguments
involving the first Betti number of M* that there can be at most one non-
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spherical component of bd(M*) and that component must be a torus or a klein
bottle since M* is the final stage of our tower of two-sheeted coverings. It
follows from the arguments given in [7] or [9] that the tower has finite height.

Since f(¢1) is orientable, fi could be lifted to an orientable two-sheeted
covering of M*. Thus we may assume that M* and bd(M*) are orientable
manifolds and thus the non-spherical component of bd(M*) is a torus.

Since f1(c1) generates a free factor of Hi(M*), we can find a map of M* onto
St which carries fi(¢;) homeomorphically onto S! for j = 1, 2. Using simplicial
techniques, we may assume that the inverse image of some point in S* contains
a connected, two-sided surface F properly embedded in M* and meeting fi(c;)
in a single point for j = 1, 2. Of course fi(c;) crosses F at fi(c;) M Fiorj =1, 2.
We may apply standard techniques so that F may be assumed to be incom-
pressible in M*. After a homotopy of f1 rel bd(4), we may assume that f171(F)
is the union of a spanning arc of 4 together with a collection of simple loops.
We observe that each of these loops must be nullhomotopic on 4 and thus their
image under f; is nullhomotopic on F. It follows that we may assume that
frY(F) is a spanning arc a; of 4.

We will now finish the proof of Theorem 3.1 in two steps. In the first we will
show that there is a positive integer # and an n-sheeted cyclic covering (M, p)
of M* which admits an embedding f2: (A4, bd(A4)) — (M, bd(M)) such that

(1) gpfe is an essential map, and

(2) 2f2(bd(4)) = f1(bd(4)).

In the second we show that # could have been chosen to be 1.

In the following paragraph we find an integer & to associate with f1(a1). Let M1
bea3-manifold and : F — Maproper embedding such that iy :m:1(F) — m1(My)
is 1-1. Let & be a disk and f:(Z, bd(Z)) — (M, bd(M1)) a map such that
(D) N\ B(F) = hfi(a1). (Recall that a; C 4 and fi(a;) C F.) By Lemma 4.6,
there is a positive integer & such that there are at most £ — 2 ways for an em-
bedded disk constructed via the tower argument from f to meet i(F).

Let (V, p1) be the k-sheeted cyclic covering of M* and (4, ¢1) a k-sheeted
cover of A. Let fi:4 — N be a map such that the diagram in Figure 3

commutes.
f1
A — N
q1 ‘[ l 4
fl *
A 2 M
Ficure 3
Let Fy, ..., Fyy1 be the k2 components of p;7'(F). We cut NV along Fy, 1 to ob-

tain a 3-manifold N;. We denote the two portions of bd(V;) coming from
Fy1 by Foand Fi. We denote the natural projection map from Ny — N by po.
We cut 4 along fi1(Fy41) toobtainadisk &. Let f:(2,bd(2)) — (N1, bd(Ny))
be the map induced by f;.
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We can now use a tower argument as in the proof of the loop theorem [9] to
obtain an embedding z: (2, bd(2)) — (N1, bd(IV,)) such that

(1) gbd(2)) — (Fo U F1) = f(bd(Z)) — (Fo\J F1), and

(2) the image of the simple arc g(£) N F, under the map gpip, is not
homotopic rel its boundary to an arc in bd (). It is a consequence of our choice
of k that there exist integers 1 < 2 < j < k such that

p102(8(D) M Fy) = p1pog(D N Fy).

Since F is incompressible, we may assume that

k
gI)N N F,

t=0
is a collection of simple arcs. Let By = g(Z) N Fy and B, = 3(Z) N F, for
0 < ¢ = k. Now (gpips)B: is homotopic rel its boundary to an arc in bd(M)
followed by (gpip2)Bo followed by an arc in bd(M) across a portion of the
singular disk gp1p22(92). Thus gp1p201 is not homotopic rel its boundary to an
arc in bd(M). We observe that F;\J F; together with a portion of bd(N;)
bounds a connected 3-submanifold of N; which we will denote by X. We can
now identify the two components of ps~'p;71(F) in bd(X) in the natural way to
obtain an #-sheeted cyclic covering space (M, p) of M*. Note that 3-1(X) is a
disk. Thus g induces an embedding f2: (4, bd(4)) — (M, bd(M)) in a natural
way.

We claim that gpf. is an essential map. Since gpfs| bd(4) covers f(bd(4)),
(gpf2)% is monic. Since it has been shown above that gpi1ps8; is not homotopic
rel its boundary to an arc in bd(M), we may suppose that gpfs(a) is not
homotopic rel its boundary to an arc in bd(M). Our claim follows.

It remains to be shown that # could have been chosen to be 1. Assume that
n > 1. By construction (pf2)~!(F) is a collection of simple arcs ag, ..., a,
and we may assume that pfa|a, is a homeomorphism for 1 < ¢ < #. It is known
that if pfa(e;) and pfa(ay) are homotopic in F rel their common boundary, they
are ambient isotopic in F rel their common boundaries [3]. It is easily seen from
the construction above that if pfa(a;) is ambient isotopic in F to pfa(a,) for
1 % 7, one could have chosen # smaller.

Let (N*, p) be the covering space of M* associated with the subgroup of
m1(M*) generated by [fi(ci)]. Since (pf2)semi(A) C p*wi(N*), there is a map
f:(4, bd(4)) — (N*, bd(N*)) such that the diagram in Figure 4 commutes.

i
f2 lp
& e

FIGURE 4

A

Since pfa(c1) = fi(c1), we may assume that fo|ci:ci — fa(c1) is an n-fold covering
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of a simple loop which covers f1(c1) once under the map p. It is a consequence of
[11, Theorem, p. 501] that there is an embedded annulus B in N* such that
bd(B) = f. bd(4) since f2(c2) is a simple loop and fs(c;) has a annular neighbor-
hood in bd(N*) for j = 1, 2. Let F be the component of p~(F) which meets
Falen). _

We claim that each component of bd(B) meets F in a single point. Since
fi(c1) meets F in a single point and p|fs(c1) is @ homeomorphism onto f1(c1), it is
clear that one component of bd(B) meets F in a single point. We observe that
the other component of bd(B) is fa(cz) and it follows from an argument in-
volving intersection numbers that (cs, fo|cs) is an n-sheeted cover of fa(cs)
since (¢1, f2|c1) is an n-sheeted cover of fy(ci). Since ¢2 M (pfs)~'F contains n
points, ¢z M fo~2(F) contains at most z points. Let k; be the number of points
in fo(c2) M F. Since each component of bd(B) has intersection number one
with F, k; = 1. Now the number of points in ¢, N f5=1(F) is by - #. It can now be
seen that k; = 1. Thus our claim follows.

Recall that a;, 7 = 1,...,n are the simple arcs in fo=(F). Now fa(a1) \U fo(as)
forms a loop \ lying on F since fa(bd (a1 \J as)) C bd(B) N F. We observe that
X has intersection number zero with F. Since the generator of m;(N*) = Z has
intersection number one with F, \ is homotopic to a point in N*. Thus the loop
P\ is nullhomotopic in M*. As has been observed above this completes the
proof of Theorem 3.1.

The following lemma is useful in the proof of Theorem 3.3.

LeEMMA 5.1. Let o be an element of H1(M) which generates a free factor of
Hy(M). Let (M, p) be a two-sheeted cover of M and oy an element of H,(M) such
that pyor = 20. Suppose that o ¢ peH1(M). Then o1 generates a free factor of
Hy(M).

Proof. The result above follows from the commutative diagram in Figure 5
where {(a) represents the group generated by ¢ and the bottom row in the
diagram is exact.

0 — ker (¢ps) — Hi(JT) << (51)
p- ped
0 — ker ¢ — Hi(M) —2 (5) >0

FIGURE §
Proof of Theorem 3.3. Let ¢:H,(M) — Z be the projection of H;(M) onto
the free factor of H;(M) generated by ». Let.%/,, be the subgroup of Z generated

by 2¥» for 0 < k < n. Let ¢1:m (M) — H,(M) be the Hurewicz homomorphism
and (M, px) the covering space of M associated with (¢¢;)~1%7,. It is known
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that M;,. is a two-sheeted covering of M, for 0 < k < n. Note, as a conse-
quence of 5.1, that ¢p ,«H1(M,) is generated by 2"» and that there is a map
fai(4,bd(4)) — (M,, bd(M,)) such that p,f, = f. It is easily seen that f, is
an essential map satisfying the conditions of Theorem 3.1. Thus there is an
essential (in M,) embedding g,:(4,bd(4)) — (M,, bd(M,)) such that
g, bd(4) = f, bd(4). Now p,g,: A — M can be seen to be an essential map.
Thus we can apply Lemma 4.3 repeatedly to obtain essential (in ;) em-
beddings g;: 4 — M;such thatp,g;: 4 — Misessentialand p,g;bd(4) = fbd(4)
fors =1,...,n — 1. This completes the proof of Theorem 3.3.

Proof of Theorem 3.4. As in the proof of Theorem 3.3 we can find covering
spaces (M,, p,) of M and maps f;: 4 — M, such that

) prfe =1,

(2) [fu(c1)] generates a free factor of H1(M,), and

(8) My is a 2-sheeted cover of M;.

It can now be seen that if f,:(4, bd(4)) — (M,, bd(M,)) were an essential
embedding, the theorem would follow by repeated applications of Lemma 4.4.
Thus we may assume that [v(c1)] generates a free factor of Hy(M).

We proceed using a tower argument. Suppose that M* is the manifold at the
top of the tower. As in the proof of Theorem 3.1 it can be seen that bd (M*) has
only one non-spherical component and that component is a torus. We let
q: M* — M be the composition of the tower’s projection maps and f;: 4 — M*
be a map such that ¢f; = f. We may assume that ¢ maps a neighborhood of
fi(e;) in bd(M*) into a neighborhood of f(c;) in bd(M) for j = 1, 2.

Let T be the component of bd(M*) on which fi(ci) lies and R a regular
neighborhood of fi(¢1) in 7. Now R is a 2-manifold with boundary and fi(c,) lies
in one component of the complement of R in 7. We denote the closure of this
component by R,. We observe that R, is a compact 2-manifold. Let R, be the
closure of the complement of R, in 7. Note that R; is the union of R and the
components of 77 — R which do not meet fi(c2). Now R; and R, are compact,
connected 2-manifolds such that R;\U R, = T" and R; M R, = bd(R;). Since
neither R; nor R, is a disk, Ry and R, are annuli and [fi(c;)] is a non-zero
multiple of the generator 7, of m1(R;) for j = 1, 2. Since [gfic,] is a generator of a
free factor of H1(M*), we may suppose that [fi(c;)] = 7, for j = 1, 2. It follows
that we can find a simple loop A\; C R; such that ¢}, lies in any chosen neighbor-
hood of f(¢;) for j = 1,2 and which has at least one point in common with
f1(¢;) for j = 1, 2. But now we can find a homotopy of fi(c;) to A\, leaving one
point fixed for j = 1, 2. These homotopies together with f; give rise in a natural
was to a map f2:(4, bd(4)) — (M*, A\ \U Np) such that fo(a) = fi(a) and
gf:: A — M is an essential map.

We may assume that ¢fs(c1) does not meet gfz(c2). Using the arguments in the
proof of Theorem 3.1 we may assume that f, is an embedding. We can then
apply Lemma 4.4 to bring the embedding f, down the tower. This completes the
proof of Theorem 3.4.
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