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Abstract

A group G belongs to the class W if G has non-nilpotent proper subgroups and is isomorphic to all of
them. The main objects of study are the soluble groups in W that are not finitely generated. It is proved
that there are no torsion-free groups of this sort, and a reasonable classification is given in the finite rank
case.

1991 Mathematics subject classification (Amer. Math. Soc): primary 20F19.

1. Introduction

This paper continues our investigation of groups isomorphic to all their non-nilpotent
subgroups. In [7] we considered groups isomorphic to their non-Abelian subgroups,
and in [8] finitely generated groups isomorphic to their non-nilpotent subgroups. The
special case of groups with all proper subgroups nilpotent has been the object of
much study, for instance in [3,4,6]. The first of these papers contains a description
of the celebrated Heineken-Mohamed groups; these are non-nilpotent p -groups with
all proper subgroups nilpotent and subnormal. A far more elementary example of a
non-nilpotent group with all proper subgroups nilpotent is the extension of C2°° by
an inverting automorphism. A complete description is given in [4] of non-nilpotent
groups with maximal subgroups that have all proper subgroups nilpotent: they are
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400 Howard Smith and James Wiegold [2]

Chernikov p -groups with additional properties, and thus satisfy the minimum con-
dition for subgroups. One of these groups plays a key role in Theorem 1.3 below.
Here we adopt the same approach as in [8], in that we restrict attention to groups that
are isomorphic to all their non-nilpotent subgroups but do not have all their proper
subgroups nilpotent, and denote the class of all such groups by W. Thus /^-groups
do not satisfy the minimum condition, whereas we shall see that they do have maximal
subgroups.

In both [7] and [8] we were concerned with finitely generated groups—no restriction
in the 'non-Abelian case', of course; groups isomorphic to all their non-Abelian
subgroups were referred to as ^T-groups. In each case the discussion split into
consideration of the soluble and insoluble cases. A reasonable classification was
given in [7] for soluble ^"-groups, and modulo this classification, the same may be
said for [8] with regard to finitely generated soluble W-groups. In the insoluble case
things are much less clear, as may be expected when one considers the existence of
Tarski p-groups and other such monsters. Theorem 1 of [7] and Theorem 2 of [8] say
a little about the (finitely generated) insoluble cases.

Turning now to groups that are not finitely generated, we observe that a 3^-group
fails to be finitely generated if and only if it is locally nilpotent (this fact will be
used a number of times without further comment). It seems reasonable to tackle the
soluble case first. Indeed, the general case appears to us to represent an extremely
difficult challenge, and it may be worth noting here that it is not known even whether
a non-trivial locally finite p -group with all proper subgroups nilpotent can be perfect.
For soluble groups we have met with some limited success, and the object of the
present article is to present the results obtained so far. The torsion-free case is very
satisfactorily dealt with by Theorem 1.1: there are no torsion-free groups in W that
are soluble and locally nilpotent. Theorem 1.3 gives a complete description of W-
groups of finite rank. The infinite rank case is much harder, and the best we can say is
that /^-groups of infinite rank are Fitting groups (every element has nilpotent normal
closure). That is the content of Theorem 1.2.

It is possible that some of the techniques illustrated here may be of some use in the
case of soluble p-groups in W, but more likely is that different methods and deeper
insights will be necessary. We conjecture that there are no soluble p -groups in W,
despite the ingenious examples of locally nilpotent groups of infinite rank that have
been constructed in the past. Some quite strong-looking reduction results are provided
in the final Section 5 of the paper, though there is little of a decisive nature to report.

We conclude this section by stating our main results.

THEOREM 1.1. Let G be a soluble group that is not finitely generated, and suppose
that G is isomorphic to each of its non-nilpotent subgroups. If G is torsion-free then
G is nilpotent.
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THEOREM 1.2. Let G be a soluble group in W that is not finitely generated. IfG is
of infinite rank then it is a Fitting group.

THEOREM 1.3. Let G be a soluble group in W that is not finitely generated. The
following three conditions are equivalent:

(a) G has finite rank.
(b) G is not a Fitting group.
(c) G = P]{x) for some divisible Abelian p -group P (p a prime) and some element

x of infinite order such that

(i) [P, x"] = i, so that xp€Z(G);
(ii) P has no infinite proper (x)-invariant subgroups;

(iii) G/ {xp) has all proper subgroups nilpotent but is not itself nilpotent.

The easiest example of a group satisfying the conditions of Theorem 1.3 is provided
by the split extension of a C2~ by an infinite cyclic group inducing the inverting
automorphism.

The lay-out is as follows. We establish some auxiliary results in Section 2, prove
Theorem 1.1 and Theorem 1.3 in Section 3, and Theorem 1.2 in Section 4. This
despite the fact that Theorem 1.2 is used in the proof of Theorem 1.3: our reason
is that Theorem 1.2 takes far longer to prove and thus is left as late as possible. As
stated already, Section 5 contains some reduction results for soluble p -groups in W.
Notation is standard except where otherwise stated.

We thank the referee for some very useful observations.

2. Some preliminary results

Our first preliminary appears in [8, Lemma 1].

LEMMA 1. Let G be a group, N a normal nilpotent subgroup of G and suppose
that G = N(x) for some element x. If M is a G-invariant subgroup of N such that
M(x) is nilpotent, then M < Zn(G) for some integer n.

For our second result, we recall from [2] the definition of isolator. If G is a
locally nilpotent group and H a subgroup of G, then the isolator IG(H) of H in G
is given by IC(H) = {geG : g"eH for some non-zero integer n], and is a subgroup
of G. Although isolators are easily avoided in the case of Lemma 2 (and its proof),
nevertheless they are really useful for the proofs of Lemma 3 and Theorem 1.1.

LEMMA 2. Let G = A]{g) be a countable torsion-free locally nilpotent group with
A Abelian, and suppose that H is isomorphic to G whenever H is a subgroup of G
with IG(H) = G. Then G is free Abelian.
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PROOF. Let 5 = {bt : leN} or {bu b2,... , bk) be a maximal Z-independent subset
of A. Since A\ := {b\)G is contained in {b\,x), it is finitely generated by local
nilpotency. Write l\ = ZA(Ai) and a\ = bx. Now choose i2 least such that b,2eS\Ii
and write B2 = {bh)

G. Then (B2 n ZO/Ai is finitely generated periodic Abelian and
is therefore finite, of order n{ say, so that (B2 C\ /])"' < Ai. Set a2 = b"±\ then
{a2)

G n /, = B2' n /, = (B2 n Z,)"1 < A,. Since (au a2)
G/Ax is free Abelian, it

follows that (ai,a2)
G = A\ x A2 for some finitely generated subgroup A2 of A. Write

l2 = lA (A i A2) and continue in the obvious manner to obtain in the end a (g)-invariant
free Abelian subgroup A* = A( x A2 x • • - of A whose isolator is A. By hypothesis,
G ~ A*(g), and thus we assume that A is free Abelian.

By local nilpotency again, every element of A is in some term Zt(G) of the upper
central series of G, so that A is generated by all the A n Z,(G). We claim that we
may write A = C\ x C2 x • • • (possibly, with finitely many factors), in such a way
that Ci x C2 x • • • x C, = A n Zj(G) for each i. To see this, recall that G = (A,g)
and that A is Abelian, so that the map

d -* [d, ig]

is a homomorphism from A D Zi+i{G) into A with kernel A n Zj{G). Since A is free
Abelian, A n Z,(G) is a direct factor of A n Z,+i(G) and the claim follows.

Suppose that G is not Abelian and choose a prime p such that [QC2, {g)](=
[C2, (g)]) is not contained in Cf. Such exists because Cx is free Abelian. Set
B = CXA" = C, x C\ x C^ x • • •, so that G = B(g) and thus [Z2(B(g», (g)] £
(ZdB{g)))p = C\. But Z2(B{g}) = CXC{ and thus we have [QCP

2, (g)] < Cf, a
contradiction that proves Lemma 2. •

LEMMA 3. Let G be a soluble locally nilpotent group that is isomorphic to each of
its non-nilpotent subgroups. If G is torsion-free it is a Fitting group.

PROOF. Let G be a group that satisfies these hypotheses and suppose for a con-
tradiction that G is not a Fitting group. Since G is not nilpotent it has a countable
non-nilpotent subgroup and so is itself countable. Choose g in G such that (g)G is not
nilpotent, so that G'{g) is not nilpotent. But G' is nilpotent since it has smaller derived
length than G and so is not isomorphic to G. Since G is isomorphic to G'{g), we
deduce that G has a normal nilpotent subgroup N with G = N (x) for some elementx.
From [5, Lemma 6.33] we see that N D{x) = 1 and that N — Fitt G. It follows easily
that W(JC) is not isomorphic to G and is therefore nilpotent, so that N' < Za{G) for
some integer a, by Lemma 1. Let H be an arbitrary subgroup of G containing Za{G)
such that IG(H) = G; again, H is not nilpotent. Now in any torsion-free locally
nilpotent group centralizers are isolated; thus, if geZ(H) then G < CG(g), that is,
g€Z(G) and so Z(G) = Z(H). Furthermore, G/Z(G) is torsion-free and so an easy
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induction shows that Za(G) = Za(H), where a is as above. It follows that Za{G)
is invariant under every isomorphism from G to H; thus, as N' < Za(G), we see
that G/Za(G) is Abelian-by-cyclic. It is also torsion-free, so that Lemma 2 applies
to give that G/Za(G) is Abelian and hence that G = Za+i(G), a contradiction that
establishes the result. •

LEMMA 4. Let G = A(x) be a locally nilpotent, residually nilpotent group, where
A is a normal Abelian p-subgroup of G for some prime p. If G is not nilpotent, then
it has a non-nilpotent subgroup B(x) for some subgroup B of A that is the direct
product of finite G-invariant subgroups.

PROOF. Firstly, there must exist a finite G-invariant subgroup Bt of A such that
[Bux] ^ 1, else G would be nilpotent. Thus there is a normal subgroup Ni of G
such that G/Ni is nilpotent and Nt (1 Bi = 1. Next, since G/(Nl D A) is nilpotent
and G not nilpotent, G does not act nilpotently o n ^ DA; thus , there is a finite
G-invariant subgroup B2 of Nt D A such that [B2,x,x] ^ 1 (that is, B2 is not
second central) and a G-invariant subgroup £N2 of Ni such that G/N2 is nilpotent
and N2D B2 = I. Continuing in the obvious way, we obtain a subgroup B of A of
the form B = B\ x B2 x • • •, where, for each /, 5, is finite and [BJ,,JC] ^ 1. Clearly,
B (x) is a subgroup of the required kind. D

3. Proofs of Theorem 1.1 and Theorem 1.3

We begin by proving Theorem 1.1. Suppose for a contradiction that G is a non-
nilpotent group satisfying the hypotheses of that theorem. Since G' is nilpotent, so
is its isolator /, [5, Lemma 6.33]. There exists a free Abelian subgroup K/I of G/I
such that IG(K) = G, and K is not nilpotent by the same lemma. Therefore, K is
isomorphic to G, which means that G has a normal nilpotent subgroup N with G/N
free Abelian. Now if G is n-Engel for some integer n then it is nilpotent, by [5,
Theorem 7.36] and the fact that G is torsion-free.

Thus G is not n-Engel for any n, whereas it is a Fitting group by Lemma 3.
Let c be the nilpotency class of N. Since G is not (c + 2)-Engel, we may choose
goeG such that {go)

G has nilpotency class n0 > c. Let 70 = IdNigo)), so that
G/N = IQ/N x UQ/N for some subgroup Uo, since G/N is free Abelian. Since
[G, (go)] is nilpotent, so is 70. But G = I0U0 and so Uo is not nilpotent since 70

and Uo are normal. Thus, we may choose gi€ Uo such that the nilpotency class nx of
{gi)G is strictly greater than c + n0. Clearly, {g0, gi) is 2-independent modulo N.
As so often, we iterate. Suppose that for some k > 1 we have constructed a subset
{go, gi, •• • , gk} of G that is /-independent modulo N and such that the nilpotency
class n, of {gj)c is greater than c + n0 H 1- «,-i, for each j = 1, . . . , k. Write
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Ik = IG(N(g0,..., gk)) and G/N = Ik/N x Uk/N. As before, Uk is non-nilpotent
and therefore contains an element gk+i whose normal closure in G has nilpotency
class nk+1 greater than c + n0 + • • • + nk. We have defined inductively an infinite
subset {go, gi, • • •} that is /-independent modulo N and such that the classes n, of
(gi)G satisfy nk+i > c + no-\ 1- nk for all k > 1.

Now set H = N(gu g2,...). Since (gk)
G < (gk)G

f and G' < N, we see that H is
non-nilpotent, and so there is an isomorphism 6 from G onto H. Write y = go0; then
(y)H has nilpotency class n0. Certainly y £ N since n0 > c, and so y = g°" . . . g^h
for integers iu ... , ik with each oc, non-zero, 0 < i{ < • • • < ik and some element h
of N. Put K = (g,,,... ,gik, N), so that yeK. Since a* is non-zero, the subgroup
L =: {y, gi:,... , git-i, N) has finite index in K; here we interpret L as (y, N) if
k = 1. It follows that L has exactly the same nilpotency class as K. Now L is
the product of the //-invariant subgroups N, {y)H, (g^)",... , {g^-i)", so that it has
class at mostd := c+no+ni-\ hi,,.,, by Fitting's Theorem. However, AT contains
the subgroup {g,,)G of class nik, which is certainly greater than d. This contradiction
completes the proof of Theorem 1.1. •

Next we prove Theorem 1.3. It is easily seen that (c) implies (b), for if (JC>G is
nilpotent we have the contradiction that G is nilpotent. Theorem 1.2 means that (b)
implies (a), and thus it suffices to prove that (a) implies (c).

Suppose then that G is a soluble locally nilpotent >^-group of finite rank. As in
the proof of Lemma 3, we have G = N(x) for some normal nilpotent subgroup TV
and element x; without loss we may choose N to be the Fitting subgroup of G. Each
primary component of the torsion subgroup T of G has finite rank and is therefore
Chernikov. Since a W-group does not satisfy the minimum condition for subgroups,
we deduce that G is not a p-group for any prime p . Furthermore, G is not the direct
product of a non-trivial p-group and a non-trivial p'-group (one of them would be
non-nilpotent!), and it follows that G is not a torsion group. Thus T is nilpotent and
therefore contained in N. We claim that T{x) is not nilpotent. If it is, then T < Za(G)
for some integer a, by Lemma 1. But G/ T is a torsion-free locally nilpotent group of
finite rank and therefore nilpotent ([5, Theorem 6.36]) and we have the contradiction
that G is nilpotent, thus establishing our claim. Thus G is isomorphic to T{x) and,
since T < N, v/e may as well assume that G = T(x) = T](x) since x has infinite
order. The next claim is that T is a p -group for some prime p. Otherwise T = P x Q,
where P is a non-trivial p -group and Q a non-trivial p '-group, and we have that
each of P{x) and Q{x) is nilpotent (neither is isomorphic to G). Two applications of
Lemma 1 yield the contradiction that P Q is in some term of the upper central series.

What we have now is that G = P]{x) for some nilpotent p-group P, in the right
direction for establishing (c). Indeed, we show that this P and this x have all the
properties required by (c). Let D denote the divisible part of P. We shall show that
D = P, so that P is divisible Abelian. If D < P, then D(x) is nilpotent; however,
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G/D is finite-by-cyclic since G has finite rank, and so G/D is nilpotent. Lemma 1
then supplies the contradiction that G is nilpotent, and so P is a divisible Abelian
group, as claimed. Since P is certainly not central there is an integer k such that
[Qk(P), x] ^ 1. Since Qk(P) is finite and (Qk(P), x) is nilpotent, there is a positive
integer n such that [Qk(P), xn] = 1. For this n, P{x") is not isomorphic to G and is
therefore nilpotent. Let m be the least positive integer such that P{xm) is nilpotent.
Write m = qr where q is prime-we see that m is itself prime; indeed that m = p. For
P(xr) is not nilpotent and hence isomorphic to G, while P{xrq) is nilpotent, and so
m is prime. There is a finite G-invariant series of P centralized by xm, and we can
choose a factor A of it such that [A, x ] ^ 1. Then x acts on A as an element of prime
order w, and from local nilpotency it follows that the only value possible for m is p.
l\msP{xp) is nilpotent.

We claim that P{x") is in fact Abelian, that is, that [P,xp] = 1. Assume not.
Certainly [P, xp] < P since P(xp) is nilpotent, and it follows without difficulty that
the homomorphism a -»• [a, xp] from P to itself has infinite kernel K, say. If H is
the divisible part of K, then H is normal in G and has smaller rank than P, so that
(H, x) is nilpotent and therefore Abelian, [5, Lemma 3.13]. It follows that CP(x) is
infinite, and that the homomorphism a -*• [a,x] from P to itself is not onto. Since
[P, x] is divisible it has smaller rank than P, so that [P, x] is not isomorphic to P.
Thus ([P,x],x) is nilpotent and so P(x) is nilpotent. This contradiction shows that
[P, xp] — 1 and hence that xpeZ(G). Part (i) of (c) is thereby established.

Now let H be a non-nilpotent subgroup of G. Then H fl P is isomorphic to P,
being the 'periodic part' of H. It follows that H D P = P by rank considerations,
and so H contains P. If now H contains xp then, since P(xp) is Abelian, H must
equal G and this confirms part (iii) of (c) : all proper subgroups of G containing xp

are nilpotent.
Finally, we prove part (ii). As we saw above, [P, x] is isomorphic to P and therefore

is equal to it. It follows that P = G', and hence that the factor-group B =: G/(xp) is
isomorphic to the group B(p, 1,0) see [4, 4.5]. But then [4,4.6] applies to give that
all proper G-invariant subgroups of P are finite, as required to conclude the proof of
Theorem 1.3. •

4. Proof of Theorem 1.2

Let G be an arbitrary soluble locally nilpotent /^-group of infinite rank, and suppose
for a contradiction that G is not a Fitting group. As in the proof of Lemma 3, we have
G = N{x) for some element x, where Af is the Fitting subgroup of G and is itself
nilpotent.

Suppose that T is the torsion subgroup of G, and H any non-nilpotent subgroup of
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G containing T. Then T is the torsion subgroup of H, so that T is invariant under any
isomorphism from G to H and it follows that G/ T is a torsion-free group isomorphic
to each of its non-nilpotent subgroups. If G/ T is finitely generated, it is nilpotent
because G is locally nilpotent; if not, it is nilpotent by Theorem 1.1. If G = T, then G
is a p -group for some prime p.UG ^ T, then G and T are not isomorphic, so that T
is nilpotent and therefore contained in N, and so T{x) is not nilpotent, by Lemma 1.
Also in this case, T is a p -group: see the proof of Theorem 1.3.

Summarising, we have that G = N{x) for some x, where N = Fitt(G), and either
G is a p-group or G = T{x) where T is a p-group and x has infinite order. Further,
N = Fitt H for every subgroup H containing N, and thus G/N is infinite cyclic or of
prime order.

The proof proceeds in several stages.

(a) G is not isomorphic to N'(x), so that N' < Za(G)for some integer a.

PROOF. This is easy if G/N is infinite: just consider the derived length of Fitt(G).
Suppose then that G/N is of prime order p, and assume for a contradiction that
G = N'{x).

We show by induction on i that for each i > 2, there exists y in G (depending on
i) such that G = (y)Yi(N): since N is nilpotent, this gives the contradiction that G
is cyclic. For / = 2, this is the assumption that G = N'{x) that we are contradicting.
Suppose that G = {y)yi(N) and write K = (y)yi(N). Since K/{K n N) has order
p, it is clear that K ON = Fitt K and hence that K = (y)(K n N). Since G = K,
we may write K = (z)(K D N) for some z such that (z)(K D N)' = K. Thus
K = (z)((y)yi(N) n N)' = {z)(yi(N)((y) n N))' < (z)yi+dN). But K is non-
nilpotent, and therefore so is (z)y,+i(A0, and the induction is complete. Thus N'{x)
is not isomorphic to G, is therefore nilpotent and so W < Za{G) for some a, by
Lemma 1. •

(b) The nilpotent residual A of G is central in N and therefore Abelian.

PROOF. Since [Zt(G), y,(G)] = 1 for every positive integer /, we see that A
centralizes Z^G), the 'o> - hypercentre' of G. Let h be an arbitrary element of
N. Then (h,x) is nilpotent, so that {h)GN'/N' is finitely generated (just note that
G/N' = N/N'.(xN')), and therefore it is contained in Z^G/N'). It now follows
from (a) that N < ZW(G), and hence that [N,A] = 1. Since A < G' < N, this
completes the proof of (b). •

(c) {x) A is not nilpotent.

PROOF. Suppose false. Then A < Zs (G) for some integers by Lemma 1, and hence
G/A is not nilpotent. If G/N has prime order p, then {xp)N' < Zb{G) for some
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integer b > a, again by Lemma 1. Thus, in either case (that where G/N is infinite and
that where it is of order p), if U/A := Zb(G/A), then U is nilpotent and therefore
contained in N, so that N/ U is an Abelian p-group: note that N' < Zb(G) < U.
Next, G/ U is residually nilpotent, since X/Z, (Z) is residually nilpotent whenever X
is residually nilpotent and i a positive integer. It follows that U < Zs+b(G). Now
G/ U = N(x)/ U, a group satisfying the requirements of Lemma 4 in the obvious
way. Thus, there is a subgroup B/U of N/U with B(x)/U non-nilpotent and B/ U a
direct product of finite G/ {/-invariant subgroups. Let bU be any non-trivial element
of B/ U. Now finitely generated nilpotent groups are residually finite, so the structure
of B/ U just described yields the existence of a normal subgroup of finite index in
G/ U that does not contain b U.

We now choose an element v{ of B such that [vu,x] £ U but [t>ii(,+1);t]e£/, for
suitable t. Such a choice is possible since B/ U is Abelian and B {x) / U is not nilpotent.
Write VI = (vt)

G U, so that Vi/ U is finite. By the remark in the preceding paragraph,
there is a normal subgroup Nt of G such that U < Ni < B, B/N\ is finite and
Ni n Vi = (/. Now Ni (x)/ U is not nilpotent, for otherwise we have iVi (x) nilpotent
by definition of U, so that Nt < Zn(G) for some integer n (Lemma 1 yet again!)
and hence B is nilpotent, a contradiction. It is now straightforward to construct a
G-invariant subgroup V/ U of B/ U such that V/ U is the direct product of subgroups
Vi/U,i = 1,2, . . . , where V- = (v,)G£/ for some i>, such that [viX2t+i)x] £ U for
each / > 1.

Set W = (Vt : i > 2), so that V/U = Vi/UxW/U. Since neither (x) Vnor (JC) W
is nilpotent, there is an isomorphism 6 from (x) V to (x) W. Note that Fitt((;c) V) = V
and Fitt((;c) WO = W: if G/Af is infinite this is clear, while for G/N of order p we
recall that xpe U < W < V. It follows that V6 = W, and we write v{0 — w. Thus
[i>i,(/+i).*]e {/ implies [w,u+i)x9]€U6 = Y, say. Nowx# = x*-w'for some w'eW and
some integer A. such that {xk)W = {x)W. Since W < Y, we have [w,il+i)x0] =
[if,(,+i) jcxiu'] = [io,(,+i) J:X] mod 7, and that means that [u),(,+1)^;x]ey. If G/N is
infinite then A. = ±1 , while (X, p) = 1 if G/N is finite; in either case we deduce that
[w,{t+l)x]€Y. Since [U,, G] = 1 we have [£/„ (JC) V] = 1 and hence [K,, (*) W] = 1.
From all this it follows that [w,(2,+i)X] = 1. A fortiori, we have [w,2t+i)X]eU. But
w = zj • • • zru for some r, where ue U and Zj € Vj for each j . From the structure of
W/ U we see that [Zj,(2,+\)X]e U for each j , and by the choice of the u, for j > 2 it
follows that zje[Vj,{x)]U and hence we[W, (x)]U.

Next, we note that Y is (x)-invariant, for U < V(JC> implies K = U9 < ( V(JC))^ =
IV(x). Thus, since f/ < W, W < Y and because U and W are also {x)-invariant,
we deduce that the element [w,,x] of [[W, (x)]U,,x] lies in [W,(l+n G][U,t G]Y.
However, [[/,, G] = 1 and thus [w,,x]e[W,(t+1) G]Y. Applying 0~l, we deduce that
[v^.x9"] lies in [V,(t+1) G]UnV1 = U([V,u+n G] n V,) = U[VU+1G] = U. Since
V < U and ;c6>~' = x"u' for some v'e V and integer \x such that (A;'") V = (x) V, we
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deduce as before that [UI,,JC]€ U. This contradiction establishes (c). •

Where does this leave us? It means that (x)A = G and G is Abelian-by-cyclic,
so that G = B(y) for some Abelian normal subgroup B and element y. It is easy to
see that we may assume that B is a p -group and that y — x. Further, with A in its
previous meaning, we have A < B since G' < B.

(d) G/A is not nilpotent.

PROOF. Assume this to be false. Then A is some finite term of the lower central
series, so A = [A, G] = [A, (JC)] = [A,x]. By Lemma 1, A(x) is not nilpotent so
we may suppose that G = A{x) in this case. Choose a non-trivial element a\ of A
with [a!,*] = 1, which is possible by local nilpotency. Since A = [A,JC], we can
construct a sequence a\, a2,... of elements of A with a, = [a,+1, x] for each i > 1.
The subgroup C = (a,- : i > 1) is a G-invariant subgroup of A and C(x) is not
nilpotent. There are two cases to consider.

Firstly, suppose that G/A is finite. Here G/Ap is nilpotent, since the normal
closures in G/Ap of elements of A/Ap have bounded orders. Thus Ap = A and A
is divisible. Let U be an arbitrary Priifer p-subgroup of A; since [U,xp] = 1 we
see that (U, x) has finite rank and is therefore not isomorphic to G. If D denotes the
divisible radical of Uw, then D(x) is nilpotent and it follows from [5, Lemma 3.13]
that [D, x] = 1. Thus [U, x] = 1 and we have the contradiction that [A, x] = 1.

Now suppose that G/A is infinite, so that this time G = A](x) and (x) is infinite
cyclic. Let F be an arbitrary proper G-invariant subgroup of A and let D/F be a
finite non-trivial G-invariant subgroup of A/F, which must exist by local nilpotency.
If F(x) is non-nilpotent, then so is D(x), which is therefore isomorphic to G. But
D has a non-trivial finite image and thus [D, (x)] < D, contradicting the fact that
D = yw(D{x)). Thus F{x) must be nilpotent for every proper G-invariant subgroup
F of A, and it follows that A — C, the group constructed at the beginning of the proof
of this section (d).

Suppose next that G/N is infinite, so that N = A = C. Then Z(G) = (a,). Now
{au a2) < G and so [{ai, a2), x

pt] = 1 for some positive integer k; however, A{xpk)
is isomorphic to G and has centre of order greater than that of a\. This contradiction
shows that G/N must be of order p. If Ap < A then, since Af = A(xp), which is
therefore nilpotent, there is a positive integer r such that [A,rx

p] = 1. Choosing /
so that p' > r, we have [A,pix

p] = 1 and hence [A,xpM] < Ap. Thus, for each
aeA, (a)G has bounded order modulo Ap and it again follows that G/Ap is nilpotent,
contradicting the fact that A = yw(,G). Thus A = A" after all, and A is divisible.
Set D = £2i(A). Since D(x) ^ G, it is nilpotent and we have D < Zd(G) for some
integer d by Lemma 1. From the structure of A we have Zd(G)DA = (ai,... ,ad),so
that D is finite. But then A is of finite rank and thus G has finite rank, a contradiction.
This completes the proof of (d). •
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(e) The final step.

Since G/A is non-nilpotent by (d) and A(x) is isomorphic to G by (c), we have
[A, (x)] < A and we may choose bo€A\[A, {x}]. Recall that G = B{x), where B
is a normal Abelian p-subgroup; we have A = fl^JB,, G] = n ^ J B , , * ] , so that
b0 = [b,,x] for some bxeB\A. Set Bi = {bi)GA; by residual nilpotency of G/A
there is an integer a, such that B{ n ya,(G) = A, since Bx is of course finite. Next,
A = n^Jy^tG), ;*] and so we may choose b2 in yat(G), which is contained in B,
such that b0 = [b2, x, x]. Writing B2 = (b2}

GA, we see that B2/A is finite, so there
is a positive integer a2 such that B2 D ya2(G) = A. Iterating, as so often, we obtain
a subgroup H of B such that A < H and ///A is the direct product of subgroups
Bi/A ,i = 1,2,..., with the following property. For each / we have B, = (&,)GA for
some element b{ with [biu x] = b0. Clearly, H(x) is not nilpotent and so H{x) = G.
However, yu>{H{x)) = (bo)

G, which is finite, in contradiction to (b). This concludes
the proof of Theorem 1.2. •

5. Concluding remarks

In this final section we are concerned for the most part with soluble p -groups in
the class W. There probably are none, and we give here some reduction results that
could perhaps lead to a proof of this fact. If there exists such a group, then there must
exist one that satisfies either (a) or (b) of 5.1 below, and we have a few words to say
about case (a) in particular.

Before restricting our attention to p -groups, we record the following easy but useful
result about maximal subgroups.

LEMMA 5. Let G be a group that is isomorphic to each of its non-nilpotent sub-
groups. If G has no maximal subgroups then every proper subgroup ofG is nilpotent.

PROOF. Suppose the result false, and let H be a proper non-nilpotent subgroup of G.
Choosing x in G\H, we see that {H, x) is non-nilpotent and therefore isomorphic to
G. But H is contained in a maximal subgroup of (H, x), and we have a contradiction.

Now suppose that G is a periodic soluble group in W. By local nilpotency, G is
therefore a p -group for some prime p and of course G' is nilpotent. Let B/G' be
a basic subgroup of G/G' (see [1, Section 33]). If B is not nilpotent, then G has a
normal nilpotent subgroup N such that G/N is a direct product of cyclic groups. If
B is nilpotent, then G has a normal nilpotent subgroup TV such that G/N is divisible
Abelian. In this latter case, suppose that G/N has infinite rank and suppose further
that every subgroup M containing N with G/M of finite rank is non-nilpotent. Then
there is a finite subgroup F\ of G with N Fj of class at least one (note that N F is
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nilpotent for every finite subgroup F of G since G is a Fitting group by Theorem 1.2
and soluble p-groups of finite rank are Chernikov and thus do not lie in W). Next,
there exists a subgroup M\ of G with N F( < M\ and G/N = Mi/N xGi/N for some
G\, where M\/N has finite rank. Since G/ G\ has finite rank, G\ is not nilpotent, so
there exists a finite subgroup F2 of Gi with NF2 of class at least 2. And so on: there
is a subgroup H of G such that N < H and H/N = NFJN x NF2/N x • • •, where
the nilpotency of class of Af F, is at least i. Thus // is not nilpotent and isomorphic to
G. On the other hand, if G/N is divisible and of finite rank r, an easy induction on r
shows that N may be chosen so that G/N has rank 1. •

Summarising, we have:

(5.1) If there exists a soluble p-group in W then there exists such a group G that
has a normal nilpotent subgroup N such that one of the following holds:

(a) G/N^CP~\
(b) G/N is a direct product of cyclic groups.

From this point we assume that G is a group as in (5.1). We record the following
observations about such G.

(5.2) If (a) holds then G is not hypercentral.

We omit the proof, but note that the argument shows that the existence of a group
satisfying 5.1 (a) yields one that is reduced. The following property is reminiscent of
the Heineken-Mohamed examples [3]. Our proof is lengthy and again we omit it.

(5.3) If (a) holds, there is no nilpotent subgroup H of G such that G = N H.

Finally on this topic:

(5.4) If (a) holds then N has infinite exponent.

This time the proof is short enough to record. Suppose for a contradiction that
G/N = Cpx and that N is nilpotent and of finite exponent pk. If AT is an arbitrary
normal subgroup of G with G/K of finite exponent, then G = N K and so G/K
has exponent dividing pk. Let L be the intersection of all such subgroups, so that
G/L also has exponent pk. Since L/<&(L) has exponent dividing p, it follows that
L = 4>(L). But G does have maximal subgroups by Lemma 5, and it follows that L
is nilpotent. Thus NL is nilpotent and, as G/NL has finite exponent and is divisible,
we have the contradiction that G = NL. This establishes 5.4. •

Finally, we mention a result concerning case (b) of 5.1. Its proof is much like that
of Theorem 1.1 and we omit it. Note first that if there exists a y^-group in which G/N
has finite exponent, there is one in which G/N has exponent p.

(5.5) Suppose that G satisfies 5.1(b) and that G/N has exponent p. Then there is a
bound for the nilpotency classes of the subgroups {x)G,for xeG.
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