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Abstract

We construct the Λ-adic crystalline and Dieudonné analogues of Hida’s ordinary Λ-adic
étale cohomology, and employ integral p-adic Hodge theory to prove Λ-adic comparison
isomorphisms between these cohomologies and the Λ-adic de Rham cohomology studied
in Cais [The geometry of Hida families I: Λ-adic de Rham cohomology, Math. Ann.
(2017), doi:10.1007/s00208-017-1608-1] as well as Hida’s Λ-adic étale cohomology.
As applications of our work, we provide a ‘cohomological’ construction of the family
of (ϕ,Γ)-modules attached to Hida’s ordinary Λ-adic étale cohomology by Dee [Φ–Γ
modules for families of Galois representations, J. Algebra 235 (2001), 636–664], and we
give a new and purely geometric proof of Hida’s finiteness and control theorems. We
also prove suitable Λ-adic duality theorems for each of the cohomologies we construct.
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B. Cais

1. Introduction

1.1 Motivation

In a series of ground-breaking papers [Hid86a] and [Hid86b], Hida constructed p-adic analytic

families of p-ordinary Galois representations interpolating the Galois representations attached to

p-ordinary cuspidal Hecke eigenforms in integer weights k > 2 by Deligne [Del71, Car86]. At the

heart of Hida’s construction is the p-adic étale cohomology H1
ét := lim

←−rH
1
ét(X1(Npr)Q,Zp) of the

tower of modular curves over Q, which is naturally a module for the ‘big’ p-adic Hecke algebra

H∗ := lim
←−rH

∗
r , which is itself an algebra over the completed group ring Λ := Zp[[∆1]] ' Zp[[T ]]

via the diamond operators ∆r := 1 + prZp. Writing e∗ ∈ H∗ for the idempotent attached to

the (adjoint) Atkin operator U∗p , Hida proved (via explicit computations in group cohomology)

that the ordinary part e∗H1
ét of H1

ét is finite and free as a module over Λ, and that the resulting

Galois representation ρ : GQ
//AutΛ(e∗H1

ét) p-adically interpolates those attached to ordinary

cuspidal eigenforms.

By analyzing the geometry of the tower of modular curves, Mazur and Wiles [MW86] showed

that both the inertial invariants and covariants of the local (at p) representation ρp are free of

the same finite rank over Λ, and hence that the ordinary filtration of the Galois representations

attached to ordinary cuspidal eigenforms interpolates in Hida’s p-adic family. As an application,

they gave examples of cusp forms f and primes p for which the specialization of the associated

Hida family of Galois representations to weight k = 1 is not Hodge–Tate, and so does not arise

from a weight-one cusp form via the construction of Deligne and Serre [DS74]. Shortly thereafter,

Tilouine [Til87] clarified the geometric underpinnings of [Hid86a] and [MW86].

In [Oht95, Oht99] and [Oht00], Ohta initiated the study of the p-adic Hodge theory of

Hida’s ordinary Λ-adic (local) Galois representation ρp. Using the invariant differentials on the

tower of p-divisible groups over R∞ := Zp[µp∞ ] attached to the ‘good quotient’ modular abelian

varieties introduced in [MW84] and studied in [MW86] and [Til87], Ohta constructed a certain

ΛR∞ := R∞[[∆1]]-module e∗H1
Hdg, which is the Hodge cohomology analogue of e∗H1

ét. Via an

integral version of the Hodge–Tate comparison isomorphism [Tat67] for ordinary p-divisible

groups, Ohta established a Λ-adic Hodge–Tate comparison isomorphism relating e∗H1
Hdg and

the semisimplification of the ‘semilinear representation’ ρp ⊗̂OCp . Using Hida’s results, Ohta

showed that e∗H1
Hdg is free of finite rank over ΛR∞ and specializes to finite level exactly as

one expects. As applications of his theory, Ohta provided a construction of two-variable p-adic

L-functions attached to families of ordinary cusp forms differing from that of Kitagawa [Kit94]

and, in a subsequent paper [Oht00], provided a new and streamlined proof of the theorem of

Mazur and Wiles [MW84] (Iwasawa’s main conjecture for Q; see also [Wil90]). We remark that

Ohta’s Λ-adic Hodge–Tate isomorphism is a crucial ingredient in the forthcoming partial proof

of Sharifi’s conjectures [Sha11, Sha07] due to Fukaya and Kato [FK12].

In [Cai17], we continued the trajectory begun by Ohta by constructing the de Rham analogue

of e∗H1
ét. Using the canonical integral structures in de Rham cohomology studied in [Cai09] and

certain Katz and Mazur [KM85] integral models Xr of X1(Npr) over Rr := Zp[µpr ], for each

r > 0 we constructed a canonical short exact sequences of free Rr-modules

0 // H0(Xr, ωXr/Rr) // H1(Xr/Rr) // H1(Xr,OXr) // 0 (1.1.1)

whose scalar extension to Kr := Frac(Rr) recovers the Hodge filtration of the de Rham

cohomology of X1(Npr) over Kr. Extending scalars to R∞, taking projective limits, and passing

to ordinary parts gives a sequence of ΛR∞-modules with semilinear Γ := Gal(K∞/K0)-action
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and commuting H∗-action

0 // e∗H0(ω) // e∗H1
dR

// e∗H1(O) // 0. (1.1.2)

The main result of [Cai17] is that (1.1.2) is the correct de Rham analogue of Hida’s ordinary Λ-
adic étale cohomology and Ohta’s ordinary Λ-adic Hodge cohomology (see [Cai17, Theorem 3.7]).

Theorem 1.1.1. Let d =
∑p+1

k=3 dk for dk := dimFp Sk(Γ1(N); Fp)
ord the Fp-dimension of the

space of mod p weight-k ordinary cusp forms for Γ1(N). Then (1.1.2) is a short exact sequence
of free ΛR∞-modules of ranks d, 2d, and d, respectively. Applying ⊗ΛR∞R∞[∆1/∆r] to (1.1.2)
recovers the ordinary part of the scalar extension of (1.1.1) to R∞.

The natural cup-product auto-duality of (1.1.1) over R′r := Rr[µN ] induces a canonical ΛR′∞-
linear and H∗-equivariant auto-duality of (1.1.2) which intertwines the dual semilinear action of
Γ×Gal(K ′0/K0) ' Gal(K ′∞/K0) with a certain H∗-valued twist of its standard action; see [Cai17,
Proposition 3.8] for the precise statement. We moreover proved that, as one would expect, the
ΛR∞-module e∗H0(ω) is canonically isomorphic to the module eS(N,ΛR∞) of ordinary ΛR∞-adic
cusp forms of tame level N ; see [Cai17, Corollary 3.14].

1.2 Results
In this paper, we complete our study of the geometry and Λ-adic Hodge theory of Hida
families begun in [Cai17] by constructing the crystalline counterpart to Hida’s ordinary Λ-adic
étale cohomology, Ohta’s Λ-adic Hodge cohomology, and our Λ-adic de Rham cohomology.
Via a careful study of the geometry of modular curves and abelian varieties and comparison
isomorphisms in integral p-adic cohomology, we prove the appropriate control and finiteness
theorems, and a suitable Λ-adic version of every integral comparison isomorphism one could
hope for. In particular, we are able to recover the entire family of p-adic Galois representations
ρp (and not just its semisimplification) from our Λ-adic crystalline cohomology. A remarkable
byproduct of our work is a cohomological construction of the family of étale (ϕ,Γ)-modules
attached to e∗H1

ét by Dee [Dee01]. As an application of our theory, we give a new and purely
geometric proof of Hida’s freeness and control theorems for e∗H1

ét.
In order to survey our main results more precisely, we introduce some notation. Throughout

this paper, we fix a prime p > 2 and a positive integer N with Np > 4. Fix an algebraic closure Qp

of Qp as well as a p-power compatible sequence {ε(r)}r>0 of primitive prth roots of unity in Qp. As
above, we set Kr := Qp(µpr) and K ′r := Kr(µN ), and we write Rr and R′r for the rings of integers
in Kr and K ′r, respectively. Denote by GQp := Gal(Qp/Qp) the absolute Galois group and by H
the kernel of the p-adic cyclotomic character χ : GQp → Z×p . Using that K ′0/Qp is unramified, we
canonically identify Γ = GQp/H with Gal(K ′∞/K

′
0). We will denote by 〈u〉 (respectively 〈v〉N )

the diamond operator1 in H∗ attached to u−1 ∈ Z×p (respectively v−1 ∈ (Z/NZ)×) and write ∆r

for the image of the restriction of 〈·〉 : Z×p ↪→ H∗ to 1 + prZp ⊆ Z×p . For convenience, we put
∆ := ∆1 and, for any ring A, we write ΛA := lim

←−rA[∆/∆r] for the completed group ring on ∆
over A; if ϕ is an endomorphism of A, we again write ϕ for the induced endomorphism of ΛA that
acts as the identity on ∆. For any ring homomorphism A→ B, we will write (·)B := (·)⊗AB and
(·)∨B := HomB((·)⊗A B,B) for these functors from A-modules to B-modules.2 If G is any group

1 Note that 〈u−1〉 = 〈u〉∗ and 〈v−1〉N = 〈v〉∗N , where 〈·〉∗ and 〈·〉∗N are the adjoint diamond operators; see the
discussion below [Cai17, Definition A.15 and Appendix B].
2 This convention is somewhat at odds with our notation ΛA, which is generally not isomorphic to the tensor
product Λ⊗Zp A; we hope that this abuse causes no confusion.
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of automorphisms of A and M is an A-module with a semilinear action of G, for any 1-cocycle
ψ : G→ A× we will write M(ψ) for the A-module M with ‘twisted’ semilinear G-action given by
g ·m := ψ(g)gm. Finally, we denote by Xr := X1(Npr) the usual modular curve over Q classifying
(generalized) elliptic curves with a [µNpr ]-structure, and by Jr := J1(Npr) its Jacobian.

We analyze the tower of p-divisible groups attached to the ‘good quotient’ modular abelian
varieties introduced by Mazur and Wiles [MW84]. To avoid technical complications with
logarithmic p-divisible groups, following [MW86] and [Oht95], we will henceforth remove the
trivial tame character by working with the subidempotent e∗′ of e∗ corresponding to projection
to the part where µp−1 ⊆ Z×p acts nontrivially via the diamond operators. As is well known (e.g.
[Hid86a, § 9] and [MW84, ch. 3, § 2]), the p-divisible group Gr := e∗′Jr[p

∞] over Q extends to
a p-divisible group Gr over Rr, and we write Gr := Gr ×Rr Fp for its special fiber. Denoting by
D(·) the contravariant Dieudonné module functor on p-divisible groups over Fp, we form the
projective limits

D?
∞ := lim

←−
r

D(G?r) for ? ∈ {ét,m,null}, (1.2.1)

taken along the mappings induced by Gr→ Gr+1. Each of these is naturally a Λ-module equipped
with linear Frobenius F and Verschiebung V morphisms satisfying FV = V F = p, as well as a
linear action of H∗ and a ‘geometric inertia’ action of Γ that reflects the fact that the generic
fiber of Gr descends to Qp. The Λ-modules (1.2.1) have the expected structure.

Theorem 1.2.1. There is a canonical split short exact sequence of finite and free Λ-modules

0 // Dét
∞ // D∞ // Dm

∞ // 0 (1.2.2)

with linear H∗- and Γ-actions. As a Λ-module, D∞ is free of rank 2d′, while Dét
∞ and Dm

∞ are free
of rank d′, where d′ :=

∑p
k=3 dimFp Sk(Γ1(N); Fp)

ord. For ? ∈ {m, ét,null}, there are canonical
isomorphisms

D?
∞⊗

Λ
Zp[∆/∆r] ' D(G?r) (1.2.3)

which are compatible with the extra structures. Via the canonical splitting of (1.2.2), D?
∞

for ? = ét (respectively ? = m) is identified with the maximal subspace of D∞ on which F
(respectively V ) acts invertibly. The Hecke operator U∗p ∈ H∗ acts as F on Dét

∞ and as 〈p〉NV on

Dm
∞, while Γ acts trivially on Dét

∞ and via 〈χ(·)〉−1 on Dm
∞.

The short exact sequence (1.2.2) is very nearly Λ-adically auto-dual.

Theorem 1.2.2. There is a canonical H∗-equivariant isomorphism of exact sequences of ΛR′0-
modules

0 // Dét
∞(〈χ〉〈a〉N )ΛR′0

//

'
��

D∞(〈χ〉〈a〉N )ΛR′0
//

'
��

Dm
∞(〈χ〉〈a〉N )ΛR′0

//

'
��

0

0 // (Dm
∞)∨ΛR′0

// (D∞)∨ΛR′0
// (Dét
∞)∨ΛR′0

// 0

(1.2.4)

that is Γ×Gal(K ′0/K0)-equivariant and intertwines F (respectively V ) on the top row with V ∨

(respectively F∨) on the bottom.3

3 Here F∨ (respectively V ∨) is the map taking a linear functional f to ϕ−1 ◦ f ◦ F (respectively ϕ ◦ f ◦ V ), where
ϕ is the Frobenius automorphism of R′0 = Zp[µN ].
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In [MW86], Mazur and Wiles related the ordinary filtration of e∗′H1
ét to the étale cohomology

of the Igusa tower studied in [MW83]. We can likewise interpret the slope filtration (1.2.2) in
terms of the crystalline cohomology of the Igusa tower as follows. For each r, let I∞r and I0

r be the
two ‘good’ irreducible components of Xr×Rr Fp (see the discussion preceding Proposition 2.3.3),
each of which is isomorphic to the Igusa curve Ig(pr) of tame level N and p-level pr. For ? ∈
{0,∞}, define

H1
cris(I

?) := lim
←−
r

H1
cris(I

?
r /Zp)

with the projective limit taken along the trace mappings on crystalline cohomology (see [Ber74,
VII, § 2.2]) induced by the canonical degeneracy maps on Igusa curves. Then H1

cris(I
?) is naturally

a Λ-module (via the diamond operators) with commuting linear Frobenius F and Verschiebung V
endomorphisms satisfying FV = V F = p, and we write H1

cris(I
?)Vord (respectively H1

cris(I
?)Ford)

for the maximal V - (respectively F -) stable submodule on which V (respectively F ) acts
invertibly. Letting U∗p act as F (respectively 〈p〉NV ) on H1

cris(I
?) for ? =∞ (respectively ? = 0)

and the Hecke operators outside p (viewed as correspondences on the Igusa curves) act via
pullback and trace at each level r, we obtain an action of H∗ on H1

cris(I
?). Finally, we let Γ act

trivially on H1
cris(I

?) for ? =∞ and via 〈χ−1〉 for ? = 0, and we denote by f ′ the idempotent of
Λ corresponding to projection to the part where µp−1 ⊆ Z×p acts nontrivially via the diamond
operators.

Theorem 1.2.3. There is a canonical H∗- and Γ-equivariant isomorphism of Λ-modules

D∞ = Dm
∞ ⊕Dét

∞ ' f ′H1
cris(I

0)Vord ⊕ f ′H1
cris(I

∞)Ford (1.2.5)

which respects the given direct sum decompositions and is compatible with F and V .

We note that our ‘Dieudonné module’ analogue (1.2.5) is a significant sharpening of its étale
counterpart [MW86, § 4], which is formulated only up to isogeny (i.e. after inverting p). From
D∞, we can recover the Λ-adic Hodge filtration (1.1.2), so the latter is canonically split.

Theorem 1.2.4. There is a canonical Γ- and H∗-equivariant isomorphism of exact sequences

0 // e∗′H0(ω) //

'
��

e∗′H1
dR

//

'
��

e∗′H1(O) //

'
��

0

0 // Dm
∞⊗

Λ
ΛR∞ // D∞⊗

Λ
ΛR∞ // Dét

∞⊗
Λ

ΛR∞ // 0

(1.2.6)

where the mappings on the bottom row are the canonical inclusion and projection morphisms
corresponding to the direct sum decomposition D∞ = Dm

∞ ⊕ Dét
∞. In particular, the Hodge

filtration exact sequence (1.1.2) is canonically split and admits a canonical descent to Λ.

For any subfieldK of Cp with ring of integersR, writing eS(N ; ΛR) for the module of ordinary
ΛR-adic cusp forms of level N in the sense of [Oht95, 2.5.5], we deduce from Theorem 1.2.4 the
following result.

Corollary 1.2.5. There is a canonical isomorphism of finite free Λ (respectively ΛR′0)-modules

e′S(N,Λ) ' Dm
∞ respectively e′H⊗

Λ
ΛR′0 ' Dét

∞(〈a〉N )⊗
Λ

ΛR′0
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that intertwines T ∈ H := lim
←−Hr with T ∗ ∈ H∗ (respectively T ⊗1 with T ∗⊗1), where U∗p acts as

〈p〉NV on Dm
∞ and as F on Dét

∞. The second of these isomorphisms is in addition Gal(K ′0/K0)-
equivariant.

We are also able to recover the semisimplification of e∗′H1
ét from D∞. Writing I ⊆ GQp for

the inertia subgroup at p, for any Zp[GQp ]-module M , let MI (respectively MI := M/MI ) be
the sub (respectively quotient) module of invariants (respectively covariants) under I .

Theorem 1.2.6. There are canonical isomorphisms of ΛW (Fp)-modules with linear H∗-action
and semilinear actions of F , V , and GQp

Dét
∞⊗

Λ
ΛW (Fp) ' (e∗′H1

ét)
I ⊗

Λ
ΛW (Fp), (1.2.7a)

Dm
∞(−1)⊗

Λ
ΛW (Fp) ' (e∗′H1

ét)I ⊗
Λ

ΛW (Fp). (1.2.7b)

Writing ϕ for the Frobenius automorphism of W (Fp), the isomorphism (1.2.7a) intertwines
F ⊗ϕ with id ⊗ϕ and id ⊗ g with g⊗ g for g ∈ GQp , whereas (1.2.7b) intertwines V ⊗ϕ−1 with
id ⊗ϕ−1 and g⊗g with g⊗g, where g ∈ GQp acts on the Tate twist Dm

∞(−1) := Dm
∞⊗Zp Zp(−1)

as 〈χ(g)−1〉 ⊗ χ(g)−1.

Theorem 1.2.6 gives the following ‘explicit’ description of the semisimplification of e∗′H1
ét.

Corollary 1.2.7. For any T ∈ (e∗H∗)×, let λ(T ) : GQp → e∗H∗ be the unique continuous (for
the p-adic topology on e∗H∗) unramified character whose value on (any lift of) Frobp is T . Then
GQp acts on (e∗′H1

ét)
I (respectively (e∗′H1

ét)I ) through the character λ(U∗p
−1) (respectively

χ−1 · 〈χ−1〉λ(〈p〉−1
N U∗p )).

Together, Corollary 1.2.5 and Theorem 1.2.6 provide a refinement of the main result
of [Oht95]. We are also able to recover the main theorem of [MW86] (the ordinary filtration
of e∗′H1

ét interpolates).

Corollary 1.2.8. Let d′ be as in Theorem 1.2.1. Each of (e∗′H1
ét)

I and (e∗′H1
ét)I is a free

Λ-module of rank d′ and, for r > 1, there are canonical H∗- and GQp-equivariant isomorphisms
of Zp[∆/∆r]-modules

(e∗′H1
ét)

I ⊗
Λ

Zp[∆/∆r] ' e∗′H1
ét(XrQp

,Zp)
I , (1.2.8a)

(e∗′H1
ét)I ⊗

Λ
Zp[∆/∆r] ' e∗′H1

ét(XrQp
,Zp)I . (1.2.8b)

To recover the full Λ-adic local Galois representation e∗′H1
ét, rather than just its

semisimplification, we study the Zp-valued GQp-representations Lr = (TpGr)
∨ and the (ϕ,Γ)-

modules associated to them by Fontaine [Fon90]. Since Gr acquires good reduction over Rr,
the GQp-representation Lr ⊗Zp Qp is ‘crystabelline’ in the sense that its restriction to GKr is
crystalline. As such, the theory of Wach modules, initiated by Fontaine [Fon90, §B] and Wach
[Wac96] and refined by Berger [Ber04] and Berger and Breuil [BB10], associates to each Lr a
certain (ϕ,Γ)-module N(Lr) over the power series ring Zp[[u]]. Our aim is to p-adically interpolate
the Wach modules N(Lr) for r > 1 to construct a ‘crystalline avatar’ from which we will be able
to recover all other ordinary Λ-adic cohomologies, as well as the Λ-adic family of (ϕ,Γ)-modules
associated to e∗′H1

ét by [Dee01].
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There are two obstructions to doing this. The first is that the Wach modules N(Lr) of

Berger and Breuil do not enjoy the kind of functoriality properties needed to carry out such an

interpolation. The second, and related, problem is that N(Lr) is not ‘of geometric origin’ in the

sense that it does not enjoy good p-integral comparison isomorphisms with the crystalline or de

Rham cohomology groups of the p-divisible group Gr.
In order to address these problems, we will appeal to the theory of [CL17], which uses

Dieudonné crystals and windows à la Lau and Zink to provide a geometric theory of ‘Wach

modules’ that will allow us to build the desired Λ-adic crystalline realization. To describe this

theory, set Sr := Zp[[ur]], and view Sr as a Zp-subalgebra of Sr+1 via the map sending ur to

ϕ(ur+1) := (1+ur+1)p−1. We write S∞ := lim−→Sr for the rising union4 of the Sr, equipped with

its Frobenius automorphism ϕ and commuting action of Γ determined by γur := (1+ur)
χ(γ)−1.

The main result of [CL17] provides an exact anti-equivalence G Mr(G) between the category of

p-divisible groups over Rr with a descent G of their generic fiber to Qp and a certain subcategory

of the category of (ϕ,Γ)-modules over Sr. By the very construction of Mr, one has a canonical

isomorphism Mr(G)⊗Sr,ϕ Sr ' D(G0)Sr , where Sr is the p-adic completion of the PD envelope

of the surjection Sr � OKr taking ur to ε(r) − 1 and D(G0)? is the Dieudonné crystal of the

p-divisible group G0 := G×OKr
OKr/(p); this isomorphism provides the crucial link with geometry

that we need to carry out our constructions. Moreover, the full GQp-representation (TpG)∨ can

be recovered from Mr(G) by extending scalars to an appropriate period ring and passing to

Frobenius invariants.

To construct our crystalline analogue of Hida’s ordinary Λ-adic étale cohomology, we form

M?
∞ := lim

←−
(
Mr(G?r ) ⊗

Sr
S∞

)
for ? ∈ {ét,m,null}

with the projective limits taken along the mappings induced by Gr ×Rr Rr+1 → Gr+1 via the

functoriality of Mr(·) and its compatibility with base change. These are ΛS∞-modules equipped

with a semilinear action of Γ, a linear and commuting action of H∗, and a ϕ (respectively

ϕ−1) semilinear endomorphism F (respectively V ) satisfying FV = ω and V F = ϕ−1(ω), for

ω := ϕ(u1)/u1 = u0/ϕ
−1(u0) ∈ S∞.

Theorem 1.2.9. There is a canonical short exact sequence of finite free ΛS∞-modules with

linear H∗-action, semilinear Γ-action, and semilinear endomorphisms F , V satisfying FV = ω,

V F = ϕ−1(ω)

0 //Mét
∞ //M∞ //Mm

∞ // 0. (1.2.9)

Each of M?
∞ for ? ∈ {ét,m} is free of rank d′ over ΛS∞ , while M∞ is free of rank 2d′, where d′ is as

in Theorem 1.2.1. Extending scalars on (1.2.9) along the canonical surjection ΛS∞ �S∞[∆/∆r]

yields the short exact sequence

0 //Mr(G ét
r ) ⊗

Sr
S∞ //Mr(Gr) ⊗

Sr
S∞ //Mr(Gm

r ) ⊗
Sr

S∞ // 0

compatibly with H∗, Γ, F , and V . The Frobenius endomorphism F commutes with H∗ and Γ,

whereas the Verschiebung V commutes with H∗ and satisfies V γ = ϕ−1(ω/γω) ·γV for all γ ∈ Γ.

4 The p-adic completion of S∞ is actually a very nice ring: it is canonically and Frobenius equivariantly isomorphic
to W (Fp[[u0]]rad), for Fp[[u0]]rad the perfect closure of the Fp-algebra Fp[[u0]].
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Again, in the spirit of Theorem 1.2.2 and [Cai17, Proposition 3.8], there is a corresponding
‘auto-duality’ result for M∞. To state it, we must work over S′∞ := S∞[µN ].

Theorem 1.2.10. Let µ : Γ → Λ×S∞ be the 1-cocycle given by µ(γ) := (u1/γu1)χ(γ)〈χ(γ)〉.
There is a canonical H∗- and Gal(K ′∞/K0)-compatible isomorphism of short exact sequences

0 //Mét
∞(µ〈a〉N )ΛS′∞

//

'
��

M∞(µ〈a〉N )ΛS′∞
//

'
��

Mm
∞(µ〈a〉N )ΛS′∞

//

'
��

0

0 // (Mm
∞)∨ΛS′∞

// (M∞)∨ΛS′∞

// (Mét
∞)∨ΛS′∞

// 0

(1.2.10)

intertwining F and V on the top row with V ∨ and F∨, respectively, on the bottom. The action
of Gal(K ′∞/K0) on the bottom row is the standard one γ · f := γfγ−1 on linear duals.

The ΛS∞-modules Mét
∞ and Mm

∞ admit canonical descents to Λ.

Theorem 1.2.11. There are canonical H∗-, Γ-, F -, and V -equivariant isomorphisms of ΛS∞-
modules

Mét
∞ ' Dét

∞⊗
Λ

ΛS∞ , (1.2.11a)

intertwining F and V with F ⊗ϕ and F−1 ⊗ϕ−1(ω) ·ϕ−1, respectively, and γ ∈ Γ with γ ⊗ γ,

Mm
∞ ' Dm

∞⊗
Λ

ΛS∞ , (1.2.11b)

intertwining F and V with V −1⊗ω ·ϕ and V ⊗ϕ−1, respectively, and γ with γ⊗χ(γ)−1γu1/u1.
In particular, F (respectively V ) acts invertibly on Mét

∞ (respectively Mm
∞).

From M∞, we can recover D∞ and e∗′H1
dR, with their additional structures.

Theorem 1.2.12. Let τ : ΛS∞ � Λ be the Λ-algebra surjection induced by ur 7→ 0. There is a
canonical Γ- and H∗-equivariant isomorphism of split exact sequences of finite free Λ-modules

0 //Mét
∞ ⊗

ΛS∞ ,τ◦ϕ
Λ

'
��

//M∞ ⊗
ΛS∞ ,τ◦ϕ

Λ //

'
��

Mm
∞ ⊗

ΛS∞ ,τ◦ϕ
Λ //

'
��

0

0 // Dét
∞ // D∞ // Dm

∞ // 0

(1.2.12)

which carries F ⊗ 1 to F and V ⊗ 1 to V .
Let θ : ΛS∞→ ΛR∞ be the Λ-algebra surjection induced by ur 7→ ε(r)−1. There is a canonical

Γ- and H∗-equivariant isomorphism of split exact sequences of finite free ΛR∞-modules

0 //Mét
∞ ⊗

ΛS∞ ,θ◦ϕ
ΛR∞

'
��

//M∞ ⊗
ΛS∞ ,θ◦ϕ

ΛR∞ //

'
��

Mm
∞ ⊗

ΛS∞ ,θ◦ϕ
ΛR∞ //

'
��

0

0 // e∗′H1(O)
i

// e∗′H1
dR j

// e∗′H0(ω) // 0

(1.2.13)

where i and j are the canonical sections given by the splitting in Theorem 1.2.4.
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To recover Hida’s ordinary étale cohomology from M∞, we require the period ring of
Fontaine5 Ẽ+ := lim

←−OCp/(p), with the projective limit taken along the p-power mapping;
this is a perfect valuation ring of characteristic p equipped with a canonical action of GQp

via ‘coordinates’. We write Ẽ for the fraction field of Ẽ+ and Ã := W (Ẽ) for its ring of
Witt vectors, equipped with its canonical Frobenius automorphism ϕ and GQp-action induced

by Witt functoriality. Our fixed choice of p-power compatible sequence {ε(r)}r>0 determines an
element ε := (ε(r) mod p)r>0 of Ẽ+, and we Zp-linearly embed S∞ in Ã via ur 7→ ϕ−r([ε]− 1),
where [·] is the Teichmüller section. This embedding is ϕ- and GQp-compatible, with GQp acting
on S∞ through the quotient GQp � Γ.

Theorem 1.2.13. Twisting the structure map S∞ → Ã by the Frobenius automorphism ϕ,
there is a canonical isomorphism of short exact sequences of Λ

Ã
-modules with H∗-action

0 //Mét
∞ ⊗

ΛS∞ ,ϕ
Λ
Ã

'
��

//M∞ ⊗
ΛS∞ ,ϕ

Λ
Ã

//

'
��

Mm
∞ ⊗

ΛS∞ ,ϕ
Λ
Ã

//

'
��

0

0 // (e∗′H1
ét)

I ⊗
Λ

Λ
Ã

// e∗′H1
ét⊗

Λ
Λ
Ã

// (e∗′H1
ét)I ⊗

Λ
Λ
Ã

// 0

(1.2.14)

that is GQp-equivariant for the ‘diagonal’ action of GQp (with GQp acting on M∞ through Γ) and
intertwines F ⊗ ϕ with id⊗ϕ and V ⊗ ϕ−1 with id⊗ω · ϕ−1. In particular, there is a canonical
isomorphism of Λ-modules, compatible with the actions of H∗ and GQp ,

e∗′H1
ét '

(
M∞ ⊗

ΛS∞ ,ϕ
Λ
Ã

)F⊗ϕ=1
. (1.2.15)

Theorem 1.2.13 allows us to give a new proof of Hida’s finiteness and control theorems for
e∗′H1

ét.

Corollary 1.2.14 (Hida). Let d′ be as in Theorem 1.2.1. Then e∗′H1
ét is a free Λ-module of

rank 2d′. For each r > 1, there is a canonical isomorphism of Zp[∆/∆r]-modules with linear H∗-
and GQp-actions

e∗′H1
ét⊗

Λ
Zp[∆/∆r] ' e∗′H1

ét(XrQp
,Zp),

which is moreover compatible with the isomorphisms (1.2.8a) and (1.2.8b) in the evident manner.

We also deduce a new proof of Ohta’s duality theorem [Oht95, Theorem 4.3.1] (cf.
[MW86, § 6]).

Corollary 1.2.15 (Ohta). Let ν : GQp → H∗ be the character ν := χ〈χ〉λ(〈p〉N ). There is a
canonical H∗- and GQp-equivariant isomorphism of short exact sequences of Λ-modules

0 // (e∗′H1
ét)

I (ν)

'
��

// e∗′H1
ét(ν)

'
��

// (e∗′H1
ét)I (ν)

'
��

// 0

0 // HomΛ((e∗′H1
ét)I ,Λ) // HomΛ(e∗′H1

ét,Λ) // HomΛ((e∗′H1
ét)

I ,Λ) // 0

(1.2.16)

5 Though we use the notation introduced by Berger and Colmez.
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1.3 Overview of the article
In § 2, we introduce and study the tower of p-divisible groups whose cohomology allows us to
construct our Λ-adic Dieudonné and crystalline analogues of Hida’s étale cohomology in § 3
and § 4.2, respectively. We establish Λ-adic comparison isomorphisms between each of these
cohomologies using the integral comparison isomorphisms of [Cai10] and [CL17], the latter of
which is recalled (and specialized to the case of ordinary p-divisible groups) in § 4.1. This enables
us to give a new proof of Hida’s freeness and control theorems and of Ohta’s duality theorem
in § 4.3. A key technical ingredient in our proofs is the commutative algebra formalism developed
in [Cai17, § 3.1] for dealing with projective limits of cohomology and establishing appropriate
‘freeness and control’ theorems by reduction to characteristic p.

As remarked in § 1.2, and following [Oht95] and [MW86], our construction of the Λ-
adic Dieudonné and crystalline counterparts to Hida’s étale cohomology excludes the trivial
eigenspace for the action of µp−1 ⊆ Z×p so as to avoid technical complications with logarithmic
p-divisible groups. In [Oht00], Ohta used the ‘fixed part’ (in the sense of Grothendieck [Gro72,
2.2.3]) of Néron models with semiabelian reduction to extend his results on Λ-adic Hodge
cohomology to allow trivial tame nebentype character. We are confident that by using Kato’s
logarithmic Dieudonné theory [Kat89] one can appropriately generalize our results in §§ 3–4 to
include the missing eigenspace for the action of µp−1.

1.4 Notation
If ϕ : A→ B is any map of rings, we will often write MB := M ⊗A B for the B-module induced
from an A-module M by extension of scalars. When we wish to specify ϕ, we will write M⊗A,ϕB
or simply M ⊗ϕB. If ϕ : T ′→ T is any morphism of schemes, for any T -scheme X we denote by
XT ′ the base change of X along ϕ. If f : X → Y is any morphism of T -schemes, we will write
fT ′ : XT ′ → YT ′ for the morphism of T ′-schemes obtained from f by base change along ϕ. When
T = Spec(R) and T ′ = Spec(R′) are affine, we abuse notation and write XR′ or X×RR′ for XT ′ .
We frequently work with schemes over a discrete valuation ring R, and will write X ,Y, . . . for
schemes over Spec(R), reserving X,Y, . . . (respectively X ,Y, . . .) for their generic (respectively
special) fibers. As this article is a continuation of [Cai17], we will freely use the notation and
conventions therein.

2. Λ-adic Barsotti–Tate groups

To construct the crystalline analogue of Hida’s ordinary Λ-adic étale cohomology, we will study
the crystalline cohomology of a certain ‘tower’ {Gr}r>1 of p-divisible groups (a Λ-adic Barsotti–
Tate group in the sense of Hida [Hid14, Hid05a, Hid05b]) whose construction involves artfully
cutting out certain p-divisible subgroups of the modular Jacobians Jr[p

∞] over Q and the ‘good
reduction’ theorems of Langlands–Carayol–Saito. The construction of {Gr}r>1 is well known
(e.g. [MW86, § 1], [MW84, ch. 3, § 1], and [Til87, Definition 1.2]) but as we shall need finer
information about the Gr than is available in the literature, we devote this section to recalling
their construction and properties.

We will use the notation of § 1.2 and of [Cai17, Appendix B] throughout, which we first briefly
recall. For r > 1, we writeXr :=X1(Npr) for the canonical model over Q with rational cusp at i∞
of the modular curve arising as the quotient of the extended upper-halfplane by the congruence
subgroup Γ1(Npr) (cf. [Cai17, Remark B.7]). There are two natural degeneracy mappings
ρ, σ : Xr+1 ⇒ Xr of curves over Q induced by the self-maps of the upper-halfplane ρ : τ 7→ τ
and σ : τ 7→ pτ ; see [Cai17, Remark B.8]. Denote by Jr := Pic0

Xr/Q
the Jacobian of Xr over Q
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and write Hr(Z) for the Z-subalgebra of EndQ(Jr) generated by the Hecke operators {T`}`-Np,
{U`}`|Np and the Diamond operators {〈u〉}u∈Z×p . We define Hr(Z)∗ similarly, using instead the

‘transpose’ Hecke and diamond operators, and set Hr := Hr(Z)⊗Z Zp and H∗r := Hr(Z)∗ ⊗Z Zp;

see [Cai17, § 1.4 as well as Definitions A.15 and B.26]. As usual, we write er ∈ Hr and e∗r ∈ H∗r
for the idempotents of these semilocal Zp-algebras corresponding to the Atkin operators Up and

U∗p , respectively. We put e := (er)r and e∗ := (e∗r)r for the induced idempotents of the ‘big’

p-adic Hecke algebras H := lim
←−rHr and H∗ := lim

←−rH
∗
r , with the projective limits formed using

the transition mappings induced by the maps on Jacobians Jr ⇒ Jr′ for r′ > r arising (via

Picard functoriality) from σ and ρ, respectively. Let wr be the Atkin–Lehner ‘involution’ of Xr

over Q(µNpr) corresponding to a choice of primitive Nprth root of unity as in the discussion

preceding [Cai17, Proposition B.9]; we simply write wr for the automorphism Alb(wr) of Jr over

Q(µNpr) induced by Albanese functoriality. We note that for any Hecke operator T ∈ Hr(Z),

one has the relation wrT = T ∗wr as endomorphisms of Jr over Q(µNpr).

2.1 Spaces of ordinary modular forms

As in [Cai17, § 3.3], for a ring A, a nonnegative integer k, and a congruence subgroup Γ of SL2(Z),

we write Sk(Γ ;A) for the space of weight-k cusp forms for Γ over A, and for ease of notation we

put Sk(Γ) := Sk(Γ ; Q). If Γ ′, Γ are congruence subgroups, then associated to any γ ∈ GL2(Q)

with γ−1Γ ′γ ⊆ Γ is an injective pullback mapping ιγ : Sk(Γ) �
� //Sk(Γ

′) given by ιγ(f) := f |γ−1 ,

as well as a surjective ‘trace’ mapping

trγ : Sk(Γ
′) // // Sk(Γ) given by trγ(f) :=

∑
δ∈γ−1Γ ′γ\Γ

(f |γ)|δ (2.1.1)

with trγ ◦ιγ multiplication by [Γ : γ−1Γ ′γ] on Sk(Γ). If Γ ′ ⊆ Γ , then, unless specified to the contrary,

we will always view Sk(Γ) as a subspace of Sk(Γ
′) via ιid.

For nonnegative integers i 6 r, we set Γ ir := Γ1(Npi) ∩ Γ0(pr) for the intersection (taken

inside SL2(Z)) and put Γr := Γ rr . We will need the following fact concerning the trace mapping

(2.1.1) attached to the canonical inclusion Γr ⊆ Γi for r > i; for notational clarity, we will write

trr,i : Sk(Γr)→ Sk(Γi) for this map.

Lemma 2.1.1. Fix integers i 6 r and let trr,i : Sk(Γr) → Sk(Γi) be the trace mapping (2.1.1)

attached to the inclusion Γr ⊆ Γi. For α :=
(

1 0
0 p

)
, we have an equality of Q-endomorphisms of

Sk(Γr)

ιαr−i ◦ trr,i = (U∗p )r−i
∑

δ∈∆i/∆r

〈δ〉. (2.1.2)

Proof. This follows immediately from [Oht95, 2.3.3], using the equalities of operators (·)|σδ = 〈δ〉
and U∗p = wrUpw

−1
r on Sk(Γr); cf. also [Til87, p. 339]. 2

Perhaps the most essential ‘classical’ fact for our purposes is that the Hecke operator Up
acting on spaces of modular forms ‘contracts’ the p-level, as is made precise by the following.

Lemma 2.1.2. If f ∈ Sk(Γ ir), then Udp f is in the image of the map ιid : Sk(Γ
i
r−d) ↪→ Sk(Γ

i
r) for

each integer d 6 r − i. In particular, U r−ip f is in the image of Sk(Γi) ↪→ Sk(Γ
i
r).
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Proof of Lemma 2.1.2. As in the proof of [Oht99, 1.2.10], this follows easily from the
decomposition

Γ irα
dΓ ir−d =

pd−1∐
j=0

Γ ir

(
1 j
0 pd

)
,

where α :=
(

1 0
0 p

)
; see [Hid86a, Lemma 4.3 and p. 570] and cf. [Hid14, § 2]. 2

For each integer i and any character ε : (Z/NpiZ)× → Q
×

, we denote by S2(Γi, ε) the
Hi-stable subspace of weight-2 cusp forms for Γi over Q on which the diamond operators act
through ε(·). Define

V r :=

r⊕
i=1

⊕
ε

S2(Γi, ε), (2.1.3)

where the inner sum is over all Dirichlet characters defined modulo Npi whose p-parts are
primitive (i.e. whose conductor has p-part exactly pi). We view V r as a Q-subspace of S2(Γr) in
the usual way (i.e. via the embeddings ιid). We define V

∗
r as the direct sum (2.1.3), but viewed

as a subspace of S2(Γr) via the ‘nonstandard’ embeddings ιαr−i : S2(Γi)→ S2(Γr).
As in [Cai17, 2.33], we write f ′ for the idempotent of Z(p)[F

×
p ] corresponding to ‘projection

away from the trivial F×p -eigenspace’; explicitly, we have

f ′ := 1− 1

p− 1

∑
g∈F×p

g. (2.1.4)

We set h′ := (p− 1)f ′, so that h′2 = (p− 1)h′, and define endomorphisms of S2(Γr):

U∗r := h′ ◦ (U∗p )r+1 = (U∗p )r+1 ◦ h′ and Ur := h′ ◦ (Up)
r+1 = (Up)

r+1 ◦ h′. (2.1.5)

Corollary 2.1.3. As subspaces of S2(Γr), we have wr(V
∗
r) = V r. The space V r (respectively

V
∗
r) is naturally an Hr (respectively H∗r)-stable subspace of S2(Γr) and admits a canonical

descent to Q. Furthermore, the endomorphisms Ur and U∗r of S2(Γr) factor through V r and
V
∗
r , respectively.

Proof. The first assertion follows from the relation wr ◦ ιαr−i = ιid ◦wi as maps S2(Γi)→ S2(Γr),
together with the fact that wi on S2(Γi) carries S2(Γi, ε) isomorphically onto S2(Γi, ε

−1). The
Hr-stability of V r is clear as each of S2(Γi, ε) is an Hr-stable subspace of S2(Γr); that V

∗
r is

H∗r-stable follows from this and the commutation relation T ∗wr = wrT . That V r and V
∗
r admit

canonical descents to Q is clear, as GQ-conjugate Dirichlet characters have equal conductors.
The final assertion concerning the endomorphisms Ur and U∗r follows easily from Lemma 2.1.2,
using the fact that h′ : S2(Γr)→ S2(Γr) has image contained in

⊕r
i=1 Sk(Γ

i
r). 2

Definition 2.1.4. We denote by Vr and V ∗r the canonical descents to Q of V r and V
∗
r ,

respectively.

2.2 Good quotient abelian varieties
Following [MW84, ch. III, § 1] and [Til87, § 2], we recall the construction of certain ‘good’ quotient
abelian varieties of Jr whose cotangent spaces are naturally identified with Vr and V ∗r . In what
follows, we will make frequent use of the following elementary result.
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Lemma 2.2.1. Let f : A→ B be a homomorphism of commutative group varieties over a field
K of characteristic 0. Then:

(i) the formation of Lie and Cot commutes with the formation of kernels and images; in
particular, if A is connected and Lie(f) = 0 (respectively Cot(f) = 0), then f = 0;

(ii) let i : B′ ↪→ B be a closed immersion of commutative group varieties over K with B′

connected. If Lie(f) factors through Lie(i), then f factors (necessarily uniquely) through i;

(iii) let j : A� A′′ be a surjection of commutative group varieties over K with connected kernel.
If Cot(f) factors through Cot(j), then f factors (necessarily uniquely) through j.

Proof. This follows easily from the fact that objects in the category of commutative group
varieties over a field of characteristic zero are automatically smooth, so the functors Lie(·) and
Cot(·) on this category are exact. 2

To proceed with the construction of good quotients of Jr, let Yr := X1(Npr+1;Npr) be
the canonical model over Q with rational cusp at i∞ of the modular curve corresponding to the
congruence subgroup Γ rr+1 (cf. [Cai17, Remark B.22]), and consider the ‘degeneracy mappings’
of curves over Q for i = 1, 2

Xr
π // Yr−1

πi // Xr−1, (2.2.1i)

where π and π2 are induced by the canonical inclusions of subgroups Γr ⊆ Γ r−1
r ⊆ Γr−1 via

the upper-halfplane self-map τ 7→ τ , and π1 is induced by the inclusion α−1Γ r−1
r α ⊆ Γr−1 via the

mapping τ 7→ pτ , where α is as in Lemma 2.1.1; see [Cai17, B.8–B.9 and Remark B.23] for a
moduli-theoretic description of these maps. Note that the composites π ◦ π2 and π ◦ π1 coincide
with ρ and σ, respectively.

These mappings covariantly (respectively contravariantly) induce mappings on the associated
Jacobians via Albanese (respectively Picard) functoriality. Writing JYr := Pic0

Yr/Q
and setting

Ki
0 := JY0 for i = 1, 2, we inductively define abelian subvarieties ιir : Ki

r ↪→ JYr and abelian
variety quotients αir : Jr � Bi

r as follows:

Bi
r := Jr/Pic0(π)(Ki

r−1) and Ki
r := ker

(
JYr

αir◦Alb(πi)−−−−−−−→ Bi
r

)0
(2.2.2i)

for r > 1, i = 1, 2, with αir and ιir the obvious mappings; here (·)0 denotes the connected
component of the identity of (·). As in [Oht95, § 3.2], we have modified Tilouine’s construction
[Til87, § 2] so that the kernel of αir is connected; i.e. is an abelian subvariety of Jr (cf.
Remark 2.2.4). Note that we have a commutative diagram of abelian varieties over Q for i = 1, 2

Jr
αir // // Bi

r

Ki
r
� � ιir // JYr

αir◦Alb(πi) //

Pic0(π)

��

Alb(πi)

OO

Bi
r

Ki
r

Pic0(π)◦ιir
// Jr+1

αir+1

// // Bi
r+1

(2.2.3i)

with bottom two horizontal rows that are complexes.
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Warning 2.2.2. While the bottom row of (2.2.3 i) is exact in the middle by definition of αir+1,

the central row is not exact in the middle: it follows from the fact that Alb(πi) ◦ Pic0(πi) is

multiplication by p on Jr that the component group of the kernel of αir ◦Alb(πi) : JYr → Bi
r is

nontrivial with order divisible by p. Moreover, there is no mapping Bi
r→ Bi

r+1 which makes the

diagram (2.2.3 i) commute.

In order to be consistent with the literature, we adopt the following convention.

Definition 2.2.3. We set Br := B2
r and B∗r := B1

r , with Bi
r defined inductively by (2.2.2i). We

likewise set αr := α2
r and α∗r := α1

r .

Remark 2.2.4. One checks that our quotient αr : Jr � Br coincides with that of Ohta [Oht95,

§ 3.2]. On the other hand, Tilouine constructed6 an abelian variety quotient α′r : Jr � B′r which

factors through αr via an isogeny Br � B′r which has degree divisible by p, as one sees using

Warning 2.2.2. Due to this fact, it is essential for our purposes to work with Br rather than B′r.

On the other hand, our Br is naturally a quotient of the ‘good’ quotient Jr � Ar constructed by

Mazur and Wiles in [MW84, ch. III, § 1], and the kernel of the corresponding surjection Ar � Br
is isogenous to J0 × J0.

Proposition 2.2.5. Over F := Q(µNpr), the automorphism wr of JrF induces an isomorphism

of quotients BrF ' B∗r F . The abelian variety Br (respectively B∗r ) is the unique quotient of Jr
by a Q-rational abelian subvariety with the property that the induced map on cotangent spaces

Cot(Br)
� �

Cot(αr)
// Cot(Jr) ' S2(Γr; Q) respectively Cot(B∗r ) �

�

Cot(α∗r)
// Cot(Jr) ' S2(Γr; Q)

has image precisely Vr (respectively V ∗r ). In particular, there are canonical actions of the Hecke

algebras7 Hr(Z) on Br and H∗r(Z) on B∗r for which αr and α∗r are equivariant.

Proof. By the construction of Bi
r and the fact that ρwr = 〈p〉Nwr−1σ as maps XrF → Xr−1F

[Cai17, Proposition B.9], the automorphism wr of JrF carries ker(αr) to ker(α∗r) and induces an

isomorphism BrF ' B∗r F over F that intertwines the action of Hr on Br with H∗r on B∗r . The

isogeny Br � B′r of Remark 2.2.4 induces an isomorphism on cotangent spaces, compatibly with

the inclusions into Cot(Jr). Thus, the claimed identification of the image of Cot(Br) with Vr
follows from [Til87, Proposition 2.1] (using [Til87, Definition 2.1]). The claimed uniqueness of

Jr � Br follows easily from Lemma 2.2.1(iii). Similarly, since the subspace Vr of S2(Γr) is stable

under Hr, we conclude from Lemma 2.2.1(iii) that for any T ∈ Hr(Z), the induced morphism

Jr
T−→ Jr � Br factors through αr and hence that Hr(Z) acts on Br compatibly (via αr) with

its action on Jr. 2

6 The notation Tilouine uses for his quotient is the same as the notation we have used for our (slightly modified)
quotient. To avoid conflict, we have therefore chosen to alter his notation.
7 We must warn the reader that Tilouine [Til87] writes Hr(Z) for the Z-subalgebra of End(Jr) generated by
the Hecke operators acting via the (·)∗-action (i.e. by ‘Picard’ functoriality) whereas our Hr(Z) is defined using
the (·)∗-action. This discrepancy is due primarily to the fact that Tilouine identifies tangent spaces of modular
abelian varieties with spaces of modular forms, rather than cotangent spaces as is our convention. Our notation
for regarding Hecke algebras as subalgebras of End(Jr) agrees with that of Mazur and Wiles [MW84, ch. II, § 5],
[MW86, § 7], and Ohta [Oht95, 3.1.5].
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Lemma 2.2.6. There exist unique morphisms B∗r � B∗r−1 of abelian varieties over Q making

Jr
α∗r //

Alb(σ)

��

B∗r

��
Jr−1

α∗r−1

// B∗r−1

and

Jr
α∗r // B∗r

Jr−1

Pic0(ρ)

OO

α∗r−1

// B∗r−1

OO

commute; these maps are moreover H∗r(Z)-equivariant. By a slight abuse of notation, we will
simply write Alb(σ) and Pic0(ρ) for the induced maps on B∗r and B∗r−1, respectively.

Proof. Under the canonical identification of Cot(Jr) ⊗Q Q with S2(Γr), the mapping on
cotangent spaces induced by Alb(σ) (respectively Pic0(ρ)) coincides with ια : S2(Γr−1)→ S2(Γr)
(respectively trr,r−1 : S2(Γr)→ S2(Γr−1)). As the kernel of α∗r : Jr�B∗r is connected by definition,
thanks to Lemma 2.2.1(iii) it suffices to prove that ια (respectively trr,r−1) carries V ∗r−1 to V ∗r
(respectively V ∗r to V ∗r−1). On one hand, the composite ια ◦ ιαr−1−i : S2(Γi, ε)→ S2(Γr) coincides
with the embedding ιαr−i , and it follows immediately from the definition of V ∗r that ια carries
V ∗r−1 into V ∗r . On the other hand, an easy calculation using (2.1.2) shows that one has equalities
of maps S2(Γi, ε)→ S2(Γr)

ια ◦ trr,r−1 ◦ ια(r−i) =

{
ια(r−i)pU∗p if i < r,

0 if i = r.

Thus, the image of ια ◦ trr,r−1 : V ∗r → S2(Γr) is contained in the image of ια : V ∗r−1 → S2(Γr);
since ια is injective, we conclude that the image of trr,r−1 : V ∗r → S2(Γr−1) is contained in V ∗r−1,
as desired. 2

For f ′ as in (2.1.4), we write e∗′ := f ′e∗ ∈ H∗ and e′ := f ′e ∈ H for the subidempotents of e∗

and e, respectively, corresponding to projection away from the trivial eigenspace of µp−1.

Proposition 2.2.7. The maps αr and α∗r induce isomorphisms of p-divisible groups over Q

e∗′Jr[p
∞] ' e∗′B∗r [p∞] and e′Jr[p

∞] ' e′Br[p∞], (2.2.4)

respectively, that are H∗- (respectively H)-equivariant and compatible with change in r via Alb(σ)
and Pic0(ρ) (respectively Alb(ρ) and Pic0(σ)).

We view the maps (2.1.5) as endomorphisms of Jr in the obvious way, and again write U∗r
and Ur for the induced endomorphisms of B∗r and Br, respectively. To prove Proposition 2.2.7,
we need the following geometric incarnation of Corollary 2.1.3.

Lemma 2.2.8. There exists a unique H∗r(Z) (respectively Hr(Z))-equivariant map W ∗r : B∗r → Jr
(respectively Wr : Br → Jr) of abelian varieties over Q such that the diagram

Jr

U∗r

��

α∗r // // B∗r

W ∗r

��

U∗r

��
Jr

α∗r

// // B∗r

respectively

Jr

Ur

��

αr // // Br

Wr

��

Ur

��
Jr αr

// // Br

(2.2.5)

commutes.
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Proof. This follows at once from Corollary 2.1.3 and Lemma 2.2.1(iii), using the fact that the
kernels of αr and α∗r are by construction connected. 2

Proof of Proposition 2.2.7. From (2.2.5), we get commutative diagrams of p-divisible groups
over Q

e∗′Jr[p
∞]

U∗r '
��

α∗r // e∗′B∗r [p∞]

W ∗r
xx

U∗r'
��

e∗′Jr[p
∞]

α∗r

// e∗′B∗r [p∞]

and

e′Jr[p
∞]

Ur '
��

αr // e′Br[p
∞]

Wr

xx
Ur'
��

e′Jr[p
∞] αr

// e′Br[p
∞]

(2.2.6)

in which all vertical arrows are isomorphisms due to the very definition of the idempotents e∗′

and e′. An easy diagram chase then shows that all arrows must be isomorphisms. 2

As in the introduction, we put Kr = Qp(µpr), K
′
r := Kr(µN ), and write Rr and R′r

for the valuation rings of Kr and K ′r, respectively. We set Γ := Gal(K∞/K0), and write
a : Gal(K ′0/K0) → (Z/NZ)× for the character giving the tautological action of Gal(K ′0/K0)
on µN .

Proposition 2.2.9. The abelian varieties Br and B∗r acquire good reduction over Kr.

Proof. See [MW84, ch. III, § 2, Proposition 2] and cf. [Hid86a, § 9, Lemma 9]. 2

We will write Br, B∗r , and Jr, respectively, for the Néron models of the base changes (Br)Kr ,
(B∗r )Kr , and (Jr)Kr over Tr := Spec(Rr); due to Proposition 2.2.7, both Br and B∗r are abelian
schemes. The Néron mapping property gives canonical actions of Hr(Z) on Br, Jr and of H∗r(Z)
on B∗r , Jr over Rr extending the actions on generic fibers as well as ‘semilinear’ actions of Γ
encoding the descent of the generic fibers to Qp. For each r, the Néron mapping property further
provides diagrams

Jr ×Tr Tr+1

Pic0(ρ)

��

α∗r // B∗r ×Tr Tr+1

Pic0(ρ)

��
Jr+1

α∗r+1

//

Alb(σ)

OO

B∗r+1

Alb(σ)

OO

respectively

Jr ×Tr Tr+1

Pic0(σ)
��

αr // Br ×Tr Tr+1

Pic0(σ)
��

Jr+1 αr+1

//

Alb(ρ)

OO

Br+1

Alb(ρ)

OO

(2.2.7)

of smooth commutative group schemes over Tr+1 in which the inner and outer rectangles
commute, and all maps are H∗r+1(Z) (respectively Hr+1(Z)) and Γ-equivariant.

Definition 2.2.10. We define Gr := e∗′(B∗r [p∞]) and we write G′r := G∨r for its Cartier dual. For
each r > s, noting that U∗p is an automorphism of Gr, we obtain from (2.2.7) canonical morphisms

ρr,s : Gs ×Ts Tr
Pic0(ρ)r−s // Gr and ρ′r,s : G′s ×Ts Tr

(U∗p
−1 Alb(σ))∨

r−s

// G′r , (2.2.8)

where (·)i denotes the i-fold composition, formed in the obvious manner. In this way, we get
towers of p-divisible groups {Gr, ρr,s} and {G′r, ρ′r,s}; we will write Gr and G′r for the unique
descents of the generic fibers of Gr and G′r to Qp, respectively.8 We let T ∗ ∈ H∗r act on Gr through
the action of H∗r(Z) on B∗r , and on G′r = G∨r by duality (i.e. as (T ∗)∨). The maps (2.2.8) are then
H∗r-equivariant.

8 Of course, G′r = G∨r . Our nonstandard notation G′r for the Cartier dual of Gr is preferable, due to the fact that
ρ′r,s is not simply the dual of ρr,s; indeed, these two mappings go in opposite directions.
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Remark 2.2.11. If G is any p-divisible group over Rr, the data of a descent G of the generic fiber
of G to Qp is, by Tate’s theorem, equivalent to the data of isomorphisms G ' γ∗(G) for each
γ in Γ/Γr satisfying the obvious cocycle condition. Since the formation of the maximal étale
quotient of G and of the maximal connected and multiplicative-type sub-p-divisible groups of G
is functorial in G, it follows that for ? ∈ {ét, 0,m}, the p-divisible group G? is likewise equipped
with a descent of its generic fiber to Qp, which, by a slight abuse of notation, we simply denote
by G?.

By Proposition 2.2.7, Gr is canonically isomorphic to e∗′Jr[p
∞], compatibly with the action of

H∗r . Since Jr is a Jacobian, and hence principally polarized, one might expect that Gr is isomorphic
to its dual. However, this is not quite the case as the canonical isomorphism Jr ' J∨r intertwines
the actions of Hr and H∗r , thus interchanging the idempotents e∗′ and e′. To describe the precise
relationship, we proceed as follows. For each γ ∈ Gal(K ′∞/K0) ' Γ ×Gal(K ′0/K0), let us write

φγ : GrK′r
'−→ γ∗(GrK′r) for the descent data isomorphisms encoding the unique Qp = K0-descent

of GrK′r furnished by Gr. We ‘twist’ this descent data by the AutQp(Gr)-valued character 〈χ〉〈a〉N
of Gal(K ′∞/K0): explicitly, for γ ∈ Gal(K ′r/K0), we set ψγ := φγ ◦ 〈χ(γ)〉〈a(γ)〉N and note
that since 〈χ(γ)〉〈a(γ)〉N is defined over Qp, the map γ  ψγ really does satisfy the cocycle
condition. We denote by Gr(〈χ〉〈a〉N ) the unique p-divisible group over Qp corresponding to
this twisted descent datum. Since the diamond operators commute with the Hecke operators,
there is a canonical induced action of H∗r on Gr(〈χ〉〈a〉N ). By construction, there is a canonical
K ′r-isomorphism Gr(〈χ〉〈a〉N )K′r ' GrK′r . Since Gr acquires good reduction over Kr and the
GKr -representation afforded by the Tate module of Gr(〈χ〉〈a〉N ) is the twist of TpGr by the
unramified character 〈a〉N , we conclude that Gr(〈χ〉〈a〉N ) also acquires good reduction over Kr,
and we denote its corresponding prolongation to Rr by Gr(〈χ〉〈a〉N ).

Proposition 2.2.12. There is a natural H∗r-equivariant isomorphism of p-divisible groups
over Rr

G′r ' Gr(〈χ〉〈a〉N ) (2.2.9)

which is compatible with change in r using ρ′r,s on G′r and ρr,s on Gr.

Proof. Let ϕr : Jr → J∨r be the canonical principal polarization over Qp; one then has the
relation ϕr ◦ T = (T ∗)∨ ◦ ϕr for each T ∈ Hr(Z). On the other hand, the K ′r-automorphism
wr : JrK′r → JrK′r intertwines T ∈ Hr(Z) with T ∗ ∈ H∗r(Z). Thus, the K ′r-morphism

ψr : Jr
∨
K′r

(U∗p
r)∨
// Jr
∨
K′r

ϕ−1
r

'
// JrK′r

wr
'
// JrK′r

is H∗r(Z)-equivariant. Passing to the induced map on p-divisible groups and applying e∗′, we
obtain from Proposition 2.2.7 an H∗r-equivariant isomorphism ψr : G′rK′r ' GrK′r of p-divisible
groups. As

JrK′r
〈χ(γ)〉〈a〉Nwr//

1×γ
��

JrK′r

1×γ
��

(JrK′r)γ γ∗(wr)
// (JrK′r)γ

commutes for all γ ∈ Gal(K ′r/K0) [Cai17, Proposition B.9], the K ′r-isomorphism ψr uniquely
descends to an H∗r-equivariant isomorphism G′r ' Gr(〈χ〉〈a〉N ) of p-divisible groups over Qp.
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By Tate’s theorem, this identification uniquely extends to the desired isomorphism (2.2.9). The
asserted compatibility with change in r boils down to the commutativity of the diagrams

e∗′Js[p
∞]∨

(U∗p
s)∨
//

(U∗p
−1 Alb(σ))∨

r−s

��

e∗′Js[p
∞]∨

Alb(σ)∨r−s

��
e∗′Jr[p

∞]∨
(U∗p

r)∨
// e∗′Jr[p

∞]∨

and

Js
∨
K′r

ϕ−1
s //

Alb(σ)∨r−s

��

JsK′r
ws //

Pic0(σ)r−s

��

JsK′r

Pic0(ρ)r−s

��
Jr
∨
K′r ϕ−1

r

// JrK′r wr
// JrK′r

for all s 6 r. The commutativity of the first diagram is clear, while that of the second follows from
[Cai17, Proposition B.9] and the fact that for any finite morphism f : Y → X of smooth curves
over a field K, one has ϕY ◦Pic0(f) = Alb(f)∨◦ϕX , where ϕ? : J?→ J∨? is the canonical principal
polarization on Jacobians for ? = X,Y (see, for example, [Cai10, proof of Lemma 5.5]). 2

2.3 The special fiber of Gr

We now wish to study the special fiber of Gr, and relate it to the special fibers of the integral
models of modular curves studied in [Cai17, Appendix B]. To that end, let Xr be the Katz–Mazur
integral model ofXr overRr defined in [Cai17, Definition B.6]; it is a regular scheme that is proper
and flat of pure relative dimension 1 over SpecRr with smooth generic fiber naturally isomorphic
to XrKr . According to [Cai17, Proposition B.14], the special fiber X r := Xr×RrFp is the ‘disjoint
union with crossings at the supersingular points’ [KM85, 13.1.5] of smooth and proper Igusa
curves I(a,b,u) := Igmax(a,b) indexed by triples (a, b, u) with a, b running over nonnegative integers

that sum to r and u ∈ (Z/pmin(a,b)Z)×; in particular, X r is geometrically reduced. We write
X n
r for the normalization of X r, which is a disjoint union of Igusa curves I(a,b,u). The canonical

semilinear action of Γ on Xr that encodes the descent data of the generic fiber to Qp [Cai17,
B.2] induces, by base change, an Fp-linear ‘geometric inertia action’ of Γ on X n

r ; in this way
the p-divisible group Pic0

Xn
r/Fp

[p∞] of the Jacobian of X n
r over Fp is equipped with an action

of Γ over Fp and (via the Hecke correspondences [Cai17, Definitions A.15 and B.26]) canonical
actions of Hr and H∗r .

Definition 2.3.1. Define Σr := e∗r
′ Pic0

Xn
r/Fp

[p∞], equipped with the induced actions of H∗r and Γ.

Since Xr is regular, and proper flat over Rr with (geometrically) reduced special fiber,
Pic0
Xr/Rr is a smooth Rr-scheme by [BLR90, § 8.4, Proposition 2 and § 9.4, Theorem 2]. By

the Néron mapping property, we thus have a natural mapping Pic0
Xr/Rr → J 0

r that recovers the

canonical identification on generic fibers, and is an isomorphism by [BLR90, § 9.7, Theorem 1].
Composing with α∗r : Jr → B∗r and passing to special fibers yields a homomorphism of smooth
commutative algebraic groups over Fp

Pic0
X r/Fp

' // J 0
r

// B∗r . (2.3.1)

Due to [BLR90, § 9.3, Corollary 11], the normalization map X n
r → X induces a surjective

homomorphism Pic0
X r/Fp

→ Pic0
Xn
r/Fp

with kernel that is a smooth, connected linear algebraic

group over Fp. As any homomorphism from an affine group variety to an abelian variety is zero,
we conclude that (2.3.1) uniquely factors through this quotient, and we obtain a natural map of
abelian varieties:

Pic0
Xn
r/Fp

// B∗r (2.3.2)
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that is necessarily equivariant for the actions of H∗r(Z) and Γ. The following proposition relates
the special fiber of Gr to the p-divisible group Σr of Definition 2.3.1, and will allow us in
Corollary 2.3.5 to give an explicit description of the special fiber of Gr.

Proposition 2.3.2. The mapping (2.3.2) induces an H∗r- and Γ-equivariant isomorphism

Gr := e∗′B∗r [p∞] ' e∗′ Pic0
Xn
r/Fp

[p∞] =: Σr (2.3.3)

that is compatible with change in r via the maps ρr,s on Gr and the maps Pic0(ρ)r−s on Σr.

Proof. The diagram (2.2.5) induces a corresponding diagram of Néron models over Rr and hence
of special fibers over Fp. Arguing as above, we obtain a commutative diagram of abelian varieties

Pic0
Xn
r/Fp

U∗r

��

α∗r // B∗r

W ∗r
~~

U∗r

��
Pic0
Xn
r/Fp α∗r

// B∗r

(2.3.4)

over Fp. The proof of Proposition 2.2.7 now goes through mutatis mutandis to give the
isomorphism (2.3.3). 2

Via the (absolute) Frobenius map and the Cartier operator [Oda69, Definition 5.5], the
de Rham cohomology of any smooth and proper curve over Fp is naturally a module for the
(commutative) Dieudonné ring A := Zp[F, V ]/(FV − p); see [Oda69, § 5] and cf. [Cai17, § 2.1]
We now apply Oda’s description [Oda69, Theorem 5.10] of Dieudonné modules in terms of
de Rham cohomology and our analysis of H1

dR(X n
r/Fp) from [Cai17, § 2.3] to better understand

the p-divisible group Σr.
For each r, as in [Cai17, Remark B.16] we write I∞r := I(r,0,1) and I0

r := I(0,r,1) for the

two ‘good’ irreducible components of X r. By [Cai17, Proposition 2.21], the ordinary part of the
de Rham cohomology of X n

r is entirely captured by the de Rham cohomology of these two good
components. We reinterpret this fact in the language of Dieudonné modules as follows.

Proposition 2.3.3. For each r, there is a natural isomorphism of A-modules

D(Σr[p]) ' e∗r ′H1
dR(X n

r/Fp) ' f ′H0(I∞r ,Ω
1)Vord ⊕ f ′H1(I0

rO)Ford (2.3.5)

which is compatible with H∗r , Γ, and change in r and which carries D(Σm
r [p])

(respectively D(Σét
r [p])) isomorphically onto the maximal subspace f ′H0(I0

r ,Ω
1)Vord (respectively

f ′H1(I∞r ,O)Ford) of cohomology on which V (respectively F ) acts invertibly. Here D(·) is the
contravariant Dieudonné module on the category of finite flat commutative p-power order group
schemes over Fp. In particular, Σr is ordinary.

Proof. The identifications of [Cai17, Proposition 2.21] are induced by the canonical closed
immersions i?r : I?r ↪→ X

n
r and are therefore compatible with the natural actions of Frobenius

and the Cartier operator. The isomorphism (2.3.5) then follows from [Oda69, § 5] and [Cai17,
Proposition 2.21]. Since this isomorphism is compatible with F and V , we have

D(Σm
r [p]) ' D(Σr[p])

Vord ' f ′H0(I0
r ,Ω

1)Vord (2.3.6a)
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and
D(Σét

r [p]) ' D(Σr[p])
Ford ' f ′H1(I∞r ,O)Ford (2.3.6b)

and, extending D(·) to the category of p-divisible groups as per usual, we conclude that the
canonical inclusion D(Σm

r )⊕D(Σét
r ) ↪→D(Σr) is surjective, whence Σr is ordinary by Dieudonné

theory. 2

With Proposition 2.3.3 as a starting point, we can now completely describe the structure of
Σr in terms of the two good components I?r . Since X n

r is the disjoint union of proper smooth and
irreducible Igusa curves I(a,b,u), we have a canonical identification of abelian varieties over Fp

Pic0
Xn
r/Fp

=
∏

(a,b,u)

Pic0
I(a,b,u)/Fp.

(2.3.7)

For ? = 0,∞, let us write j?r := Pic0
I?r /Fp

for the Jacobian of I?r over Fp. The canonical closed

immersions i?r : I?r ↪→ X
n
r yield (by Picard and Albanese functoriality) homomorphisms of abelian

varieties over Fp

Alb(i?r) : j?r // Pic0
Xn
r/Fp

and Pic0(i?r) : Pic0
Xn
r/Fp

// j?r . (2.3.8)

Via the identification (2.3.7), we know that j?r is a direct factor of Pic0
Xn
r/Fp

; in these terms

Alb(i?r) is the unique mapping which projects to the identity on j?r and to the zero map on all
other factors, while Pic0(i?r) is simply projection onto the factor j?r . As Σr is a direct factor of
f ′ Pic0

Xn
r/Fp

[p∞], these mappings induce homomorphisms of p-divisible groups over Fp

f ′j0
r [p∞]m

Alb(i0r) // f ′ Pic0
Xn
r/Fp

[p∞]m
proj // Σm

r , (2.3.9a)

Σét
r

incl // f ′ Pic0
Xn
r/Fp

[p∞]ét Pic0(i∞r ) // f ′j∞r [p∞]ét, (2.3.9b)

which we (somewhat abusively) again denote by Alb(i0r) and Pic0(i∞r ), respectively. The following
is a sharpening of [MW84, ch. 3, § 3, Proposition 3] (see also [Til87, Proposition 3.2]).

Proposition 2.3.4. The mappings (2.3.9a) and (2.3.9b) are isomorphisms. They induce a
canonical split short exact sequence of p-divisible groups over Fp

0 // f ′j0
r [p∞]m

Alb(i0r)◦V r // Σr
Pic0(i∞r ) // f ′j∞r [p∞]ét // 0 (2.3.10)

which is:

(i) Γ-equivariant for the geometric inertia action on Σr, the trivial action on f ′j∞r [p∞]ét, and
the action via 〈χ(·)〉−1 on f ′j0

r [p∞]m;

(ii) H∗r-equivariant with U∗p acting on f ′j∞r [p∞]ét as F and on f ′j0
r [p∞]m as 〈p〉NV ;

(iii) compatible with change in r via the mappings Pic0(ρ) on j?r and Σr.

Proof. It is clearly enough to prove that the sequence (2.3.10) induced by (2.3.9a) and (2.3.9b)
is exact. By Dieudonné theory, it suffices to prove such exactness after applying D(·). As the
resulting sequence consists of finite free Zp-modules, exactness may be checked modulo p, where
it follows immediately from Proposition 2.3.3 by using [Cai17, Proposition 2.21]. The claimed
compatibility with Γ, H∗r , and change in r follows easily from [Cai17, Propositions B.17, B.18,
and B.25]. 2
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Together, Propositions 2.3.2 and 2.3.4 give the desired description of the special fiber of Gr
(cf. [MW86, §§ 3 and 4, Proposition 1] and [MW84, pp. 267–274]).

Corollary 2.3.5. For each r, the p-divisible group Gr/Rr is ordinary and there is a canonical
exact sequence compatible with change in r via ρr,s on Gr and Pic0(ρ)r−s on j?r [p∞]

0 // f ′j0
r [p∞]m

Alb(i0r)◦V r // Gr
Pic0(i∞r ) // f ′j∞r [p∞]ét // 0, (2.3.11)

where i?r : I?r ↪→ X
n
r are the canonical closed immersions for ? = 0,∞. Moreover, (2.3.11) is

compatible with the actions of H∗ and Γ, with U∗p (respectively γ ∈ Γ) acting on f ′j0
r [p∞]m as

〈p〉NV (respectively 〈χ(γ)〉−1) and on f ′j∞r [p∞]ét as F (respectively id).

3. Λ-adic Dieudonné modules

3.1 Ordinary families of Dieudonné modules
Let {Gr/Rr}r>1 be the tower of p-divisible groups given by Definition 2.2.10. From the canonical
morphisms ρr,s : Gs×TsTr→ Gr, we obtain a map on special fibers Gs→ Gr over Fp for each r > s;
applying the contravariant Dieudonné module functor yields a projective system of finite free
Zp-modules {D(Gr)}r>1 with compatible linear endomorphisms F, V satisfying FV = V F = p.

Definition 3.1.1. We write D∞ := lim
←−rD(Gr) for the projective limit of the system {D(Gr)}r.

For ? ∈ {ét,m}, we write D?
∞ := lim

←−rD(G?r) for the corresponding projective limit.

Since H∗r acts by endomorphisms on Gr, compatibly with change in r, we obtain an action
of H∗ on D∞ and on D?

∞. Likewise, the ‘geometric inertia action’ of Γ on Gr gives an action of
Γ on D∞ and D?

∞. As Gr is ordinary thanks to Corollary 2.3.5, applying D(·) to the (split)
connected-étale sequence of Gr gives, for each r, a functorially split exact sequence

0 // D(G ét
r ) // D(Gr) // D(Gm

r ) // 0 (3.1.1)

with Zp-linear actions of Γ, F , V , and H∗r . Since projective limits commute with finite direct
sums, we obtain a split short exact sequence of Λ-modules with linear H∗- and Γ-actions and
commuting linear endomorphisms F, V satisfying FV = V F = p:

0 // Dét
∞ // D∞ // Dm

∞ // 0. (3.1.2)

We can now prove Theorem 1.2.1, which asserts that each term in (3.1.2) is finite and free over
Λ, and elucidates the structure of each as a Hecke module with Γ-action.

Proof of Theorem 1.2.1. In [Cai17, § 3.1], we established a commutative algebra formalism for
dealing with projective limits of modules and proving structural and control theorems as in the
statement of Theorem 1.2.1. In order to apply the main result of our formalism to the present
situation, we take (in the notation of [Cai17, Lemma 3.2]) Ar = Zp, Ir = (p), and Mr each one
of the terms in (3.1.1), and we must check that the hypotheses

(i) M r := Mr/pMr is a free Fp[∆/∆r]-module of rank d′ (respectively 2d′, d′);

(ii) for all s 6 r, the induced transition maps ρr,s : M r
//M s are surjective
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hold. By Propositions 2.3.2 and 2.3.3, there is a natural isomorphism of split short exact sequences

0 // D(G ét
r )Fp //

'
��

D(Gr)Fp //

'
��

D(Gm
r )Fp //

'
��

0

0 // f ′H1(I0
r ,O)Ford // f ′H0(I∞r ,Ω

1)Vord ⊕ f ′H1(I0
r ,O)Ford // f ′H0(I∞r ,Ω

1)Vord // 0

that is compatible with change in r using the trace mappings attached to ρ : I?r → I?s and the
maps on Dieudonné modules induced by ρr,s : Gs→ Gr. The hypotheses (i) and (ii) are therefore
satisfied thanks to [Cai17, Proposition 2.8 and Lemma 2.20]. It follows that the conclusions of
[Cai17, Lemma 3.2] hold in the present situation, which gives the finite freeness over Λ of each
term in (3.1.2), as well as the fact that this sequence specializes as in (1.2.3). As F (respectively V )

acts invertibly on D(G ét
r ) (respectively D(Gm

r )) for all r, the asserted characterization of D?
∞ as a

submodule of D∞ for ? = m, ét is clear, while Γ and U∗p act as claimed thanks to Corollary 2.3.5.
2

The short exact sequence (3.1.2) is very nearly ‘auto dual’, in a sense made precise by
Theorem 1.2.2, which we now prove.

Proof of Theorem 1.2.2. As in the proof of Theorem 1.2.1, we apply the formalism of [Cai17,

§ 3.1]. Let us write ρ′r,s : G′r → G
′
s for the maps on special fibers induced by (2.2.8). Thanks to

Proposition 2.2.12, the definition 2.2.10 of G′r:=G
∨
r , the identifications

Gr×RrR′r ' Gr(〈χ〉〈a〉N )×RrR′r,
and the compatibility of the Dieudonné module functor with duality, there are isomorphisms of
R′0-modules

D(Gr)(〈χ〉〈a〉N ) ⊗
Zp
R′0 ' D(Gr(〈χ〉〈a〉N )) ⊗

Zp
R′0 ' D(G′r) ⊗

Zp
R′0 = D(G∨r ) ⊗

Zp
R′0 ' (D(Gr))∨R′0

(3.1.3)
that are H∗r-equivariant, Gal(K ′r/K0)-compatible for the standard action σ · f(m) := σf(σ−1m)
on the R′0-linear dual of D(Gr)⊗ZpR

′
0, and compatible with change in r using ρr,s on D(Gr) and

ρ′r,s on D(G′r). We claim that the resulting perfect ‘evaluation’ pairings

〈·, ·〉r : D(Gr)(〈χ〉〈a〉N ) ⊗
Zp
R′0 ×D(Gr) ⊗

Zp
R′0

// R′0 (3.1.4)

are compatible with change in r via the maps ρr,s and ρ′r,s in the sense of [Cai17, 3.3]; i.e. that

〈ρr,sx, ρ′r,sy〉s =
∑

δ∈∆s/∆r

〈x, δ−1y〉r (3.1.5)

holds for all x, y. Indeed, the compatibility of (3.1.3) with change in r and the very definition
(2.2.8) of the transition maps ρ′r,s imply that for r > s

〈D(Pic0(ρ)r−s)x, y〉s = 〈x,D(U∗p
s−r Alb(σ)r−s)y〉r; (3.1.6)

on the other hand, it follows from Lemma 2.1.1 (using Lemma 2.2.1) that we have

Pic(ρ) ◦Alb(σ) = U∗p
∑

δ∈∆r/∆r+1

〈δ−1〉, (3.1.7)
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in EndQp(Jr+1), and together (3.1.6)–(3.1.7) imply the desired compatibility (3.1.5). It follows
that the hypotheses of [Cai17, Lemma 3.4] are verified, and we conclude that the pairings (3.1.4)
give rise to a perfect Gal(K ′∞/K0)-compatible duality pairing

〈·, ·〉 : D∞(〈χ〉〈a〉N )⊗Λ ΛR′0 ×D∞ ⊗Λ ΛR′0 → ΛR′0

with respect to which T ∗ is self-adjoint for all T ∗ ∈ H∗, as this is true at each finite level r thanks
to the H∗r-compatibility of (3.1.3). That the resulting isomorphism (1.2.4) intertwines F with V ∨

and V with F∨ is an easy consequence of the compatibility of the Dieudonné module functor
with duality. 2

Next, we prove Theorem 1.2.3, which relates D?
∞ to the crystalline cohomology of the Igusa

tower.

Proof of Theorem 1.2.3. From the exact sequence (2.3.11), we obtain for each r isomorphisms

D(Gm
r )

'
V r◦D(Alb(i0r))

// f ′D(j0
r [p∞])Vord and f ′D(j∞r [p∞])Ford

'
D(Pic0(i∞r ))

// D(G ét
r ) (3.1.8)

that are H∗- and Γ-equivariant (with respect to the actions specified in Corollary 2.3.5), and
compatible with change in r via the mappings D(ρr,s) on D(G?r) and D(ρ) on D(j?r [p∞]). On
the other hand, for any smooth and proper curve X over a perfect field k of characteristic p,
by [MM74] and [Ill79, II, § 3C, Remarque 3.11.2] there are natural isomorphisms of left modules
over the Dieudonné ring for k

D(JX [p∞]) ' H1
cris(JX/W (k)) ' H1

cris(X/W (k)) (3.1.9)

that for any finite map of smooth proper curves f : Y → X over k intertwine D(Pic(f)) and
D(Alb(f)) with trace and pullback by f on crystalline cohomology, respectively. Applying this to
X = I?r for ? = 0,∞, appealing to (3.1.8), and passing to inverse limits completes the proof. 2

3.2 Λ-adic Hodge comparison isomorphism
We now wish to relate the ‘slope filtration’ (3.1.2) to the Hodge filtration (1.1.2) of the ordinary
Λ-adic de Rham cohomology studied in [Cai17]. In order to do this, we will relate both to the
Dieudonné crystals of the p-divisible groups Gr.

Let R be a complete discrete valuation ring with perfect residue field k of characteristic
p and fraction field K of characteristic 0, and fix a p-divisible group G over R. For n > 0, set
Gn := G×RR/pn+1R and write D(G0)? for the (contravariant) Dieudonné crystal of G0 as defined
in [MM74]; for simplicity, if S� R/pR is a divided power thickening with S a p-adically complete
ring on which p is topologically nilpotent, we write D(G0)S := lim

←−nD(G0)S/pnS for the locally free

S-module obtained by ‘evaluating’ D(G0)? on the (pro-)object S � R/pR of the (big) crystalline
site of R/pR relative to9 Zp. On the other hand, for n > 0 the universal extension E (Gn) of G∨n
by a vector group (in the category of fppf sheaves of abelian groups) exists and is unique up to
canonical isomorphism and compatible with any base change thanks to [MM74, I, § 1.8]. It follows
from the very construction of D(G0)? given in [MM74] that one has a natural isomorphism of free
R-modules D(G0)R ' lim

←−n Lie E (Gn), which provides D(G0)R with a canonical Hodge filtration

0 // ωG // D(G0)R // Lie(G∨) // 0. (3.2.1)

9 With the canonical divided powers on pZp; see [BM79, § 2.2] for generalities on the crystalline site and crystals.
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When G is ordinary, the sequence (3.2.1) is functorially split. More precisely, the connected-étale
sequence of G0 and the exactness of D(·)R provide D(G0)R with a canonical slope filtration

0 // D(G ét
0 )R // D(G0)R // D(Gm

0 )R // 0 (3.2.2)

and we have (cf. [Kat81]) the following result.

Lemma 3.2.1. The compositions deduced from the Hodge and slope filtrations of D(G0)R over R

ωG
� � //D(G0)R // //D(Gm

0 )R and D(G ét
0 )R

� � //D(G0)R // //Lie(G∨) (3.2.3)

are isomorphisms. In particular, the Hodge and slope filtrations of D(G0)R are functorially split.

Proof. Applying D(·)R to the connected-étale sequence of G0 and using the functoriality of (3.2.1)
yields a functorial commutative diagram with exact columns and rows

0

��

0

��
0 //

��

ωG //

��

ωGm //

��

0

0 // D(G ét
0 )R //

��

D(G0)R //

��

D(Gm
0 )R //

��

0

0 // Lie(G ét∨) //

��

Lie(G∨) //

��

0

0 0

(3.2.4)

where we have used the fact that the invariant differentials and Lie algebra of an étale p-divisible
group (such as G ét and Gm∨ ' G∨ét) are both zero. The lemma follows. 2

The structure of D(G?0)R is particularly simple for ? = ét,m. Indeed, writing e for the
ramification index of R over W := W (k), the Frobenius and Verschiebung morphisms of G0

induce isomorphisms

G ét
0 '

F r // (G ét
0 )(pr) ' ϕr∗G ét ×k R/pR, (3.2.5a)

Gm
0 (Gm

0 )(pr) ' ϕr∗Gm ×k R/pR'
V roo (3.2.5b)

for each integer r with pr > e; here we have used the fact that for such r, the map x 7→ xp
r

of
R/pR factors through R/pR� k. We have the following result.

Lemma 3.2.2. With notation as above, for each integer r with pr > e, the rth iterate of the
relative Frobenius (respectively Verschiebung) morphism of G0 induces a natural isomorphism of
R-modules

D(G ét
0 )R ' D(G ét

)W ⊗W,ϕr R respectively D(Gm
0 )R ' D(Gm

)W ⊗W,ϕr R.
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Proof. As the Dieudonné crystal is compatible with base change and the maps ϕr : W → W
and W ↪→ R extend to PD morphisms ϕr : (W,p)→ (W,p) and (W,p)→ (R, p) over ϕr : k→ k
and k→ R/pR, respectively, the asserted isomorphisms follow after applying D(·)R to (3.2.5a)–
(3.2.5b). 2

The key to relating the Hodge (1.1.2) and slope (3.1.2) filtrations is the following comparison.

Proposition 3.2.3. For each positive integer r, there is a natural H∗r- and Γ-equivariant
isomorphism

0 // ωGr //

'
��

D(Gr,0)Rr //

'
��

Lie(G∨r ) //

'
��

0

0 // e∗′H0(ωr) // e∗′H1
dR,r

// e∗′H1(Or) // 0

(3.2.6)

compatible with change in r using the mappings (2.2.8) on the top row and the maps ρ∗ on the
bottom. Here the bottom row, with obvious abbreviated notation, is obtained from (1.1.1) by
applying e∗′.

Proof. We will construct (3.2.6) in two steps. To begin with, for any base scheme T and any
commutative T -group scheme F , denote by E xtrigT (F,Gm) the fppf sheaf of abelian groups
associated to the functor which to each T -scheme T ′ assigns the group of equivalence classes of
pairs (E, σ), where E is an extension of FT ′ by Gm over T ′ (in the category of fppf abelian
sheaves) and σ : Inf1(FT ′) → E is a morphism of T ′-pointed T ′-schemes projecting to the
canonical closed immersion Inf1(FT ′) → FT ′ . Specializing to the case that T = SpecR is the
spectrum of a discrete valuation ring R with fraction field K of characteristic zero and perfect
residue field of characteristic p, let A be an abelian variety over K with Néron model A over
T . Then E xtrigT (A,Gm) is represented on the category of smooth T -schemes by a smooth and
separated T -group scheme, and one has a short exact sequence

0 // ωA // E xtrigT (A,Gm) // A∨0 // 0 (3.2.7)

of smooth group schemes over T , where ωA is the vector group attached to the sheaf of invariant
differentials on A and A∨0 is the identity component of the Néron model over T of the dual
abelian variety A∨/K; see Proposition 2.6 and the discussion following [Cai10, Remark 2.9].

We first claim that the map α∗r : Jr � B∗r arising via the Néron mapping property from
Definition 2.2.3 induces a canonical isomorphism of short exact sequences of free Rr-modules

0 // ωGr

'
��

// D(Gr,0)Rr

'
��

// Lie(G∨r )

'
��

// 0

0 // e∗′ωJr // e∗′ Lie E xtrig(Jr,Gm) // e∗′ Lie(J ∨r 0) // 0

(3.2.8)

that is H∗r- and Γ-equivariant and compatible with change in r using the map on Néron models
induced by Pic0(ρ) and the maps (2.2.8) on Gr. To prove this, we introduce the following notation:
set V := Spec(Rr) and, for n > 0, put Vn := Spec(Rr/p

n+1Rr). For any scheme (or p-divisible
group) T over V , we put Tn := T ×V Vn. If A is a Néron model over V , we write H(A) for the
short exact sequence of free Rr-modules obtained by applying Lie to the ‘canonical extension’
(3.2.7). If G is a p-divisible group or an abelian scheme over V , then for each n we likewise write
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H(Gn) for the short exact sequence obtained by applying Lie to the universal extension of G∨n
by a vector group. We claim that when A is an abelian scheme over V , then there are natural
and compatible (with change in n) isomorphisms of short exact sequences

H(An[p∞]) ' H(An) ' H(A)/pn+1, (3.2.9)

which justifies our slight abuse of notation. Indeed, in this case the short exact sequence (3.2.7)
is naturally isomorphic to the universal extension of A∨ = A∨0 by a vector group thanks to
[MM74, I, § 2.6 and Proposition 2.6.7]. It then follows easily from the universal mapping property
of the universal extension and [MM74, I, 1.12 and II, § 13] that the natural map of fppf abelian
sheaves An[p∞] → An induces the first isomorphism H(An[p∞]) ' H(An) above. The second
isomorphism follows from the fact that the universal extension of A∨ is compatible with arbitrary
base change; see [MM74, I, 1.9 and the proof of Proposition 2.6.7].

Applying the contravariant functor e∗′H(·) to the diagram of Néron models over V induced
by (2.2.5) yields a commutative diagram of short exact sequences of free Rr-modules

e∗′H(Jr) e∗′H(B∗r)oo

e∗′H(Jr)

U∗r

OO 88

e∗′H(Br)

U∗r

OO

oo

(3.2.10)

in which both vertical arrows are isomorphisms by definition of e∗′. As in the proofs of
Propositions 2.2.7 and 2.3.2, it follows that the horizontal maps must be isomorphisms as well:

e∗′H(Jr) ' e∗′H(B∗r). (3.2.11)

Since these isomorphisms are induced via the Néron mapping property and the functoriality of
H(·) by the H∗r(Z)-equivariant map α∗r : Jr � B∗r , they are themselves H∗r-equivariant. Similarly,
since α∗r is defined over Q and compatible with change in r as in Lemma 2.2.6, the isomorphism
(3.2.11) is compatible with the given actions of Γ (arising via the Néron mapping property from
the semilinear action of Γ over Kr giving the descent data of JrKr and BrKr to Qp) and change
in r. Reducing (3.2.11) modulo pn+1 and using the canonical isomorphism (3.2.9) yields the
identifications

e∗′H(Jr)/pn+1 ' e∗′H(B∗r)/pn+1 ' e∗′H(B∗r,n[p∞]) ' H(e∗′B∗r,n[p∞]) =: H(Gr,n), (3.2.12)

which are clearly compatible with change in n, and which are easily checked (using the naturality
of (3.2.9) and our remarks above) to be H∗r- and Γ-equivariant, and compatible with change in
r. Passing to inverse limits (with respect to n) on (3.2.12) then yields the claimed isomorphism
(3.2.8).

To finish the proof of the proposition, it remains to prove that the bottom rows of (3.2.6) and
(3.2.8) are naturally isomorphic. But since Xr is regular and proper flat over Rr with reduced
special fiber (see [Cai17, Propositions B.2, B.3, and B.14]), this follows from [Cai10, Theorem 1.2
and (the proof of) Corollary 5.6]. 2

Corollary 3.2.4. Let r be a positive integer. Then the short exact sequence of free Rr-modules

0 // e∗′H0(ωr) // e∗′H1
dR,r

// e∗′H1(Or) // 0 (3.2.13)
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is functorially split; in particular, it is split compatibly with the actions of Γ and H∗r . Moreover,
(3.2.13) admits a functorial descent to Zp: there is a natural isomorphism of split short exact
sequences

0 // e∗′H0(ωr) //

'
��

e∗′H1
dR,r

//

'
��

e∗′H1(Or) //

'
��

0

0 // D(Gm
r ) ⊗

Zp
Rr // D(Gr) ⊗

Zp
Rr // D(Getr ) ⊗

Zp
Rr // 0

(3.2.14)

that is H∗- and Γ-equivariant, with Γ acting trivially on G ét
r and through 〈χ〉−1 on Gm

r ; here the
mappings on the lower row are inclusion and projection, coming from the canonical splitting

Gr ' Gm
r ×k G

ét
r of the connected-étale sequence of Gr over k. The identification (3.2.14) is

compatible with change in r using the maps ρ∗ on the top row and the maps induced by

Gr = Gm
r × G

ét
r

V −1×F // Gm
r × G

ét
r = Gr

ρ // Gr+1

on the bottom row.

Proof. Consider the isomorphism (3.2.6) of Proposition 3.2.3. As Gr is an ordinary p-divisible
group by Corollary 2.3.5, the top row of (3.2.6) is functorially split by Lemma 3.2.1, and this
gives our first assertion. The rest follows easily from Proposition 3.2.3 and Lemmas 3.2.1–3.2.2,
bearing in mind the construction of the isomorphisms in Lemma 3.2.2 via (3.2.5a)–(3.2.5b). 2

Proof of Theorem 1.2.4. Applying ⊗RrR∞ to (3.2.14) and passing to projective limits yields an
isomorphism of split exact sequences

0 // e∗′H0(ω) //

'
��

e∗′H1
dR

//

'
��

e∗′H1(O) //

'
��

0

0 // lim
←−
ρ◦V −1

(
D(Gm

r ) ⊗
Zp
R∞

)
// lim
←−

ρ◦(V −1×F )

(
D(Gr) ⊗

Zp
R∞

)
// lim
←−
ρ◦F

(
D(Getr ) ⊗

Zp
R∞

)
// 0

On the other hand, the isomorphisms Gr = Gm
r × G

ét
r
V −r×F r //Gm

r × G
ét
r = Gr induce an

isomorphism of projective limits

lim
←−
ρ

(
D(Gr) ⊗

Zp
R∞

)
' // lim

←−
ρ◦(V −1×F )

(
D(Gr) ⊗

Zp
R∞

)
,

which is visibly compatible with the canonical splittings of source and target. The result now
follows from [Cai17, Lemma 3.2(5)] and the proof of Theorem 1.2.1, which guarantee that the
canonical map D∞⊗Λ ΛR∞ → lim

←−ρ(D(Gr)⊗Zp R∞) is an isomorphism respecting the splittings.
2

Proof of Corollary 1.2.5. We claim that there are natural isomorphisms of finite free ΛR∞-
modules

Dm
∞ ⊗Λ ΛR∞ ' e∗′H0(ω) ' e′S(N,ΛR∞) ' e′S(N,Λ)⊗Λ ΛR∞ (3.2.15)
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and that the resulting composite isomorphism intertwines T ∗ ∈ H∗ on Dm
∞ with T ∈ H on

e′S(N,Λ) and is Γ-equivariant, with γ ∈ Γ acting as 〈χ(γ)〉−1 ⊗ γ on each tensor product.
Indeed, the first and second isomorphisms are due to Theorem 1.2.4 and [Cai17, Corollary 3.14],
respectively, while the final isomorphism is a consequence of the definition of e′S(N ; ΛR) and
the facts that this ΛR-module is free of finite rank [Oht95, Corollary 2.5.4] and specializes as in
[Oht95, 2.6.1]. Twisting the Γ-action on the source and target of the composite (3.2.15) by 〈χ〉
therefore gives a Γ-equivariant isomorphism

Dm
∞ ⊗Λ ΛR∞ ' S(N,Λ)⊗Λ ΛR∞ (3.2.16)

with γ ∈ Γ acting as 1 ⊗ γ on source and target. Passing to Γ-invariants on (3.2.16) yields the
first isomorphism in Corollary 1.2.5. Via Theorem 1.2.2 and the natural Λ-adic duality between
eH and eS(N ; Λ) [Oht95, Theorem 2.5.3], we then obtain a canonical Gal(K ′0/K0)-equivariant
isomorphism

e′H⊗
Λ

ΛR′0 ' Dét
∞(〈a〉N )⊗

Λ
ΛR′0

of ΛR′0-modules that intertwines T ⊗ 1 for T ∈ H with T ∗ ⊗ 1, where U∗p acts as F on Dét
∞. 2

In order to relate the slope filtration (3.1.2) of D∞ to the ordinary filtration of e∗′H1
ét, we

require the following result.

Lemma 3.2.5. Let r be a positive integer and, for ? ∈ {ét,m, null}, let G?r be the unique Qp-
descent of the generic fiber of G?r , as in Definition 2.2.10 and Remark 2.2.11. There are canonical
isomorphisms

D(G ét
r ) ⊗

Zp
W (Fp) ' HomZp(TpG

ét
r ,Zp) ⊗

Zp
W (Fp), (3.2.17a)

D(Gm
r )(−1) ⊗

Zp
W (Fp) ' HomZp(TpG

m
r ,Zp) ⊗

Zp
W (Fp) (3.2.17b)

that are H∗r-equivariant and GQp-compatible for the diagonal action on source and target, with

GQp acting trivially on D(G ét
r ) and via χ−1 · 〈χ−1〉 on D(Gm

r )(−1) := D(Gm
r ) ⊗Zp Zp(−1). The

isomorphism (3.2.17a) intertwines F ⊗ ϕ with 1 ⊗ ϕ, while (3.2.17b) intertwines V ⊗ ϕ−1 with
1⊗ ϕ−1.

Proof. The semilinear Γ-action on G?r gives the Zp[GKr ]-module TpG?r := HomOCp
(Qp/Zp,G?rOCp

)

the natural structure of a Zp[GQp ]-module via g · f := g−1 ◦ g∗f ◦ g. It is straightforward to check
that the natural map TpG?r → TpG

?
r , which is an isomorphism of Zp[GKr ]-modules by Tate’s

theorem, is an isomorphism of Zp[GQp ]-modules as well.
For any étale p-divisible group H over a perfect field k, one has a canonical isomorphism of

W (k)-modules with semilinear Gk-action

D(H) ⊗
W (k)

W (k) ' HomZp(TpH,Zp) ⊗
Zp
W (k)

that intertwines F⊗ϕ with 1⊗ϕ and 1⊗g with g⊗g for g ∈ Gk; for example, this can be deduced
by applying [BM79, § 4.1a)] to Hk and using the fact that the Dieudonné crystal is compatible

with base change. In our case, the étale p-divisible group G ét
r lifts G ét

r over Rr, and we obtain a
natural isomorphism of W (Fp)-modules with semilinear GKr -action

D(G ét
r ) ⊗

Zp
W (Fp) ' HomZp(TpG ét

r ,Zp) ⊗
Zp
W (Fp).
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By naturality in Gr, this identification respects the semilinear Γ-actions on both sides (which
are trivial, as Γ acts trivially on G ét

r ); as explained in our initial remarks, it is precisely this
action which allows us to view TpG ét

r as a Zp[GQp ]-module, and we deduce (3.2.17a). The proof
of (3.2.17b) is similar, using the natural isomorphism (proved as above) for any multiplicative
p-divisible group H/k

D(H) ⊗
W (k)

W (k) ' TpH∨ ⊗
Zp
W (k),

which intertwines V ⊗ ϕ−1 with 1⊗ ϕ−1 and 1⊗ g with g ⊗ g, for g ∈ Gk. 2

Proof of Theorem 1.2.6 and Corollary 1.2.8. For a p-divisible group H over a field K, we will
write H1

ét(H) := HomZp(TpH,Zp); our notation is justified by the standard fact that, for JX the
Jacobian of a curve X over K, there is a natural isomorphism of Zp[GK ]-modules

H1
ét(JX [p∞]) ' H1

ét(XK ,Zp). (3.2.18)

It follows from (3.2.17a)–(3.2.17b) and Theorem 1.2.1 that for ? ∈ {ét,m}, the scalar extension
H1

ét(G
?
r) ⊗Zp W (Fp) is a free W (Fp)[∆/∆r]-module of rank d′. Using [Cai17, Lemma 3.3], we

conclude that H1
ét(G

?
r) itself is a free Zp[∆/∆r]-module of rank d′. In a similar manner, using the

faithful flatness of W (Fp)[∆/∆r] over Zp[∆/∆r], we deduce that the canonical trace mappings

H1
ét(G

?
r) // H1

ét(G
?
r′) (3.2.19)

are surjective for all r > r′. From the commutative algebra formalism of [Cai17, Lemma 3.2],
we conclude that H1

ét(G
?
∞) := lim

←−rH
1
ét(G

?
r) is a free Λ-module of rank d′, and that there are

isomorphisms

H1
ét(G

?
∞)⊗

Λ
ΛW (Fp) ' lim

←−
r

(
H1

ét(G
?
r) ⊗

Zp
W (Fp)

)
of ΛW (Fp)-modules for ? ∈ {ét,m}. Since we likewise have canonical identifications

D?
∞⊗

Λ
ΛW (Fp) ' lim

←−
r

(
D(G?r) ⊗

Zp
W (Fp)

)
thanks again to [Cai17, Lemma 3.2] and (the proof of) Theorem 1.2.1, passing to inverse limits
on (3.2.17a)–(3.2.17b) gives, for ? ∈ {ét,m}, a canonical isomorphism of ΛW (Fp)-modules

D?
∞⊗

Λ
ΛW (Fp) ' H1

ét(G
?
∞)⊗

Λ
ΛW (Fp). (3.2.20)

Applying the functor H1
ét(·) to the Qp-descent of the generic fiber of the connected-étale

sequence of Gr yields a short exact sequence of Zp[GQp ]-modules

0 // H1
ét(G

ét
r ) // H1

ét(Gr)
// H1

ét(G
m
r ) // 0

which naturally identifies H1
ét(G

?
r) with the invariants (respectively covariants) of H1

ét(Gr) under
the inertia subgroup I ⊆ GQp for ?= ét (respectively ?= m). As Gr = e∗′Jr[p

∞] by definition, we
deduce from this and (3.2.18) a natural isomorphism of short exact sequences of Zp[GQp ]-modules

0 // H1
ét(G

ét
r ) //

'
��

H1
ét(Gr)

//

'
��

H1
ét(G

m
r ) //

'
��

0

0 // (e∗′H1
ét,r)

I // e∗′H1
ét,r

// (e∗′H1
ét,r)I

// 0

(3.2.21)
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where for notational ease we abbreviate H1
ét,r := H1

ét(XrQp
,Zp). As the trace maps (3.2.19) are

surjective, passing to inverse limits on (3.2.21) yields an isomorphism of short exact sequences

0 // H1
ét(G

ét
∞) //

'
��

H1
ét(G∞) //

'
��

H1
ét(G

m
∞) //

'
��

0

0 // lim
←−r(e

∗′H1
ét,r)

I // lim
←−re

∗′H1
ét,r

// lim
←−r(e

∗′H1
ét,r)I

// 0

(3.2.22)

Since inverse limits commute with group invariants, the bottom row of (3.2.22) is canonically
isomorphic to the ordinary filtration of Hida’s e∗′H1

ét, and Theorem 1.2.6 follows immediately
from (3.2.20). Corollary 1.2.8 is then an easy consequence of Theorem 1.2.6 and [Cai17,
Lemma 3.3]; alternately, one can prove Corollary 1.2.8 directly from [Cai17, Lemma 3.1.2], using
what we have seen above. 2

4. Λ-adic crystals and (ϕ,Γ)-modules

Using the family of Dieudonné crystals attached to the tower of p-divisible groups {Gr/Rr}r>1

given by Definition 2.2.10, we now construct a crystalline analogue of Hida’s ordinary Λ-adic
étale cohomology. To do this, we will make critical use of the theory of [CL17], which we first
briefly recall.

4.1 Dieudonné crystals and (ϕ,Γ)-modules for p-divisible groups
Throughout this section, we fix a perfect field k of characteristic p, write W = W (k) for its
ring of Witt vectors, and set K := Frac(W ). We fix an algebraic closure K of K, as well as a
compatible sequence {ε(r)}r>0 of primitive prth roots of unity in K, and set GK := Gal(K/K).
For r > 0, we put Kr := K(µpr) and Rr := W [µpr ], and we set Γr := Gal(K∞/Kr) and Γ := Γ0.
Let Sr :=W [[ur]] be the power series ring in one variable ur over W , endowed with the (p, ur)-adic
topology and the unique continuous action of Γ and semilinear extension of ϕ determined by
γur := (1 + ur)

χ(γ) − 1 for γ ∈ Γ and ϕ(ur) := (1 + ur)
p − 1. Let θ : Sr � Rr be the continuous

W -algebra surjection sending ur to ε(r)−1, and denote by τ : Sr�W the continuous surjection of
W -algebras determined by τ(ur) = 0. We lift the inclusion Rr ↪→ Rr+1 to a Γ- and ϕ-equivariant
W -algebra injection Sr ↪→ Sr+1 determined by ur 7→ ϕ(ur+1), and identify Sr with its image in
Sr+1, which coincides with ϕ(Sr+1); under this convention, for r > 0 the kernel of θ : Sr � Rr
is principally generated by Er(ur) := ϕr(ur)/ϕ

r−1(ur) = u0/u1, so we simply write ω := Er(ur)
for this common element of Sr for r > 0.

Definition 4.1.1. We write BTϕ,Γ
Sr

for the category whose objects are pairs (M, ϕM), where:

– M is a free Sr-module of finite rank equipped with a continuous semilinear action of Γ;

– ϕM : M→M is a ϕ-semilinear map that commutes with the action of Γ;

– the cokernel of the linearization 1⊗ ϕM : ϕ∗M→M is annihilated by ω;

– the induced action of Γr on M/urM is trivial.

Morphisms in BTϕ,Γ
Sr

are ϕ- and Γ-equivariant Sr-module homomorphisms. We often abuse
notation by writing M for the pair (M, ϕM) and ϕ for ϕM.

If (M, ϕM) is any object of BTϕ,Γ
Sr

, then 1⊗ϕM : ϕ∗M→M is injective with cokernel killed
by ω, so there is a unique Sr-linear homomorphism ψM : M → ϕ∗M with the property that
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the composition of 1 ⊗ ϕM and ψM (in either order) is multiplication by ω. Clearly, ϕM and
ψM determine each other. We warn the reader that the action of Γ does not commute with ψM:
instead, for any γ ∈ Γ, one has

(γ ⊗ γ) ◦ ψM = (γω/ω) · ψM ◦ γ. (4.1.1)

Definition 4.1.2. Let M be an object of BTϕ,Γ
Sr

. The dual of M is the object (M∨, ϕM∨) of

BTϕ,Γ
Sr

whose underlying Sr-module is M∨ := HomSr(M,Sr), equipped with the ϕ-semilinear
endomorphism

ϕM∨ : M∨
1⊗idM∨ // ϕ∗M∨ ' (ϕ∗M)∨

ψ∨M //M∨

and the commuting10 action of Γ given by (γf)(m) := χ(γ)−1ϕr−1(γur/ur) · γ(f(γ−1m)).

For an algebraic extension k′/k, we write W ′ := W (k′), R′r := W ′[µpr ], S
′
r := W ′[[ur]], and

so on. The inclusion W ↪→ W ′ extends to a ϕ- and Γ-compatible injection ιr : Sr ↪→ S′r+1 of

W -algebras extension of scalars along which yields a base-change functor ιr∗ : BTϕ,Γ
Sr
→ BTϕ,Γ

S′r+1
,

which one checks is compatible with duality.
Let us write pdivΓ

Rr for the category of p-divisible groups G over Rr that are equipped with a
descent G of GKr to K = K0. As in Remark 2.2.11, this is equivalent to the category of p-divisible
groups G over Rr that are equipped with isomorphisms G ' γ∗(G) for each γ in Γ/Γr satisfying
the obvious cocycle condition. For any algebraic extension k′/k, base change along the inclusion
ιr : Rr ↪→ R′r+1 gives a covariant functor ιr∗ : pdivΓ

Rr → pdivΓ
R′r+1

. The main result of [CL17] is

the following theorem.

Theorem 4.1.3. For r > 0, there is a contravariant functor Mr : pdivΓ
Rr → BTϕ,Γ

Sr
such that:

(i) the functor Mr is an exact anti-equivalence of categories, compatible with duality;

(ii) the functor Mr is of formation compatible with base change: for any algebraic extension
k′/k, there is a natural isomorphism of composite functors ιr∗ ◦Mr 'Mr+1 ◦ ιr∗ on pdivΓ

Rr ;

(iii) for G ∈ pdivΓ
Rr , put G := G ×Rr k and G0 := G ×Rr Rr/pRr.

(a) There is a functorial and Γ-equivariant isomorphism of W -modules

Mr(G) ⊗
Sr,τ◦ϕ

W ' D(G)W

carrying ϕM⊗ϕ to F : D(G)W →D(G)W and ψM⊗1 to V ⊗1 : D(G)W → ϕ∗D(G)W .

(b) There is a functorial and Γ-equivariant isomorphism of Rr-modules

Mr(G) ⊗
Sr,θ◦ϕ

Rr ' D(G0)Rr .

Here the action of Γ on the right-hand side of each isomorphism above is through the descent
data isomorphisms G ' γ∗(G), via the functoriality of the Dieudonné crystal.

Remark 4.1.4. We warn the reader that, while the action of Γ on Mr(G)⊗θ◦ϕ Rr ' D(G0)R0 is
through the finite quotient Γ/Γr, the natural Γ-action on Mr(G) ⊗θ Rr, which is a p-integral
incarnation of DSen((VpG)∨), is in general not through any finite quotient; cf. [CL17, §§ 4.3–4.4]
and [BB10, 3.2.3].

10 As one checks using the intertwining relation (4.1.1).

749

https://doi.org/10.1112/S0010437X17007680 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007680


B. Cais

The Sr-module Mr(G) is a functorial descent of the evaluation of the Dieudonné crystal
D(G0)? on a certain ‘universal’ PD thickening of Rr/pRr. This descent is determined by the
Hodge filtration of D(G0)Rr coming from the lift of G0 to Rr provided by G, and one should
think of Mr(G) as an incarnation of the first crystalline cohomology of G, enhanced by the data
of the Hodge filtration of D(G0)Rr . As we will need to make use of the relationship between Mr(G)
and the Dieudonné crystal of G0 in what follows, we briefly recall the construction of Mr(G),
and refer to [CL17] for details, including the proofs of Theorems 4.1.3–4.1.6 and Corollary 4.1.7.

Let Sr be the p-adic completion of the PD envelope of Sr with respect to the ideal ker θ,
viewed as a topological ring via the p-adic topology, so that the unique continuous extension
θ : Sr � Rr realizes Sr as a PD thickening of Rr with kernel Fil1 Sr := ker θ that is equipped with
topologically PD-nilpotent11 divided powers. The map τ : Sr �W likewise uniquely extends to
a continuous PD thickening τ : Sr � W , where W is given the PD structure coming from the
ideal (p). One shows that there is a unique continuous extension ϕ : Sr → Sr of ϕ on Sr, and
that ϕ(Fil1 Sr) ⊆ pSr; in particular, we may define ϕ1 : Fil1 Sr→ Sr by ϕ1 := ϕ/p. Similarly, the
action of Γ on Sr uniquely extends to a continuous action by PD endomorphisms that commute
with ϕ on the PD extension Sr � Rr, with Γr acting trivially on Rr. Set t := log(1 + u0),
where u0 = ϕr(ur) ∈ Sr and log(1 + X) : Fil1 Sr → Sr is the usual (convergent for the p-adic
topology) power series, and let vr := ϕ(Er)/p ∈ S×r . Evaluating the Dieudonné crystal of G0 on Sr
yields a finite free Sr-module M (G) := lim

←−nD(G0)Sr/pnSr that is equipped with an integrable and
topologically nilpotent connection ∇ coming from the canonical HPD stratification on the crystal
D(G0)?, as well as a natural horizontal action of Γr. The relative Frobenius of G0 equips M (G)
with a semilinear Frobenius endomorphism ϕM that commutes with the action of Γr, while the
Hodge filtration ωG ⊆D(G0)Rr provides M (G) with a canonical Sr-submodule Fil1 M (G) that is
by definition the preimage of ωG under M (G)�M (G)/(Fil1 S)M (G)'D(G0)Rr . As pullback by
the p-power map kills ωG0 , it follows that the restriction of ϕM to Fil1 M (G) is divisible by p, so
it makes sense to define ϕM ,1 := p−1ϕM : Fil1 M (G)→M (G), and one shows that the image of
ϕM ,1 generates M (G) as an Sr-module. The descent data isomorphisms G ' γ∗(G) for γ ∈ Γ/Γr
provide an extension of the action of Γr on M (G) to all of Γ, and in this way one functorially

obtains from G an object of the category MFϕ,∇,ΓSr
of quadruples (M ,Fil1 M , ϕM ,1,∇), where:

(i) M is a finite free Sr-module with a continuous and semilinear action of Γ;

(ii) Fil1 M ⊆M is a Γ-stable Sr-submodule containing (Fil1 Sr)M ;

(iii) M /Fil1 M is a free Sr/Fil1 Sr = Rr-module, and Γr acts trivially on M ⊗Sr,τ W ;

(iv) ϕM ,1 : Fil1 Mr →M is a ϕ-semilinear, Γ-equivariant map with surjective linearization;

(v) ∇ is an integrable and topologically nilpotent connection on M for which the action of Γ
and ϕM are horizontal, with ϕM : M →M determined by ϕM (α) := v−1

r ϕM ,1(Erα).

Writing MFϕ,ΓSr
for the category of triples (M ,Fil1 M , ϕM ,1) satisfying (i)–(iv), one has functors

MFϕ,∇,ΓSr
//MFϕ,ΓSr

BTϕ,Γ
Sr

oo (4.1.2)

with the first arrow given by forgetting the connection, and the second arrow induced by ‘twisted’
base change M  M := ϕ∗M ⊗Sr Sr. One of the main results of [CL17] is that both of these
functors are exact equivalences, compatible with the natural notions of duality. The point here
is that the action of Γ on an object M of MFϕ,ΓSr

determines an integrable and topologically
nilpotent connection ∇ on M by imposing the condition that the evaluation of ∇ on the

11 Here we use our assumption that p > 2.

750

https://doi.org/10.1112/S0010437X17007680 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X17007680


The geometry of Hida families II

derivation (1 + u0)td/du0 is the differential operator NM := pr limγ→1(γ − 1)/(χ(γ) − 1) on
M (G). That the action of Γ determines a connection and vice versa is well known in the theory
of (ϕ,Γ)-modules and p-adic differential equations (e.g. [Ber02, § 4.1]); the point here is that this
correspondence works p-integrally at the level of Sr-modules, which one shows via a fairly delicate
calculation. Since the functors (4.1.2) are equivalences, we obtain from crystalline Dieudonné
theory in this way the desired functorial association G  Mr(G), and by construction one has a
natural ϕ- and Γ-equivariant isomorphism of Sr-modules ϕ∗Mr(G)⊗Sr Sr ' D(G0)Sr .

Example 4.1.5. For G = Gm and r > 0, one has Mr(G) = Sr, with ϕM = Erϕ and γ ∈ Γ acting
as χ(γ)−1(γu1/u1)γ. In particular, γ ∈ Γ acts in the standard manner on Mr(G) ⊗θ◦ϕ Rr ' Rr
and as χ(γ)−1η(γ) · γ on Mr(G)⊗θ Rr ' Rr, for η(γ) := (γε(1) − 1)/(ε(1) − 1) ∈ R×r .

We now explain how to functorially recover the GK-representation afforded by the p-adic
Tate module TpG from Mr(G). To do so, we first recall the necessary period rings; for a more
detailed synopsis of these rings and their properties, we refer the reader to [Col08, §§ 6–8].

As usual, we put Ẽ+ := lim
←−x 7→xpOK/(p), equipped with its canonical GK-action via

‘coordinates’ and p-power Frobenius map ϕ. This is a perfect valuation ring of characteristic
p with residue field k and fraction field Ẽ := Frac(Ẽ+) that is algebraically closed. We view
Ẽ as a topological field via its valuation topology, with respect to which it is complete. Our
fixed choice of p-power compatible sequence {ε(r)}r>0 induces an element ε := (ε(r) mod p)r>0

of Ẽ+ and we set EK := k((ε − 1)), viewed as a topological subring of Ẽ; note that this is a
ϕ- and GK-stable subfield of Ẽ that is independent of our choice of ε. We write E := Esep

K for

the separable closure of EK in Ẽ. The natural GK-action on Ẽ induces a canonical identification
Gal(E/EK) = H := ker(χ) ⊆ GK , so EH = EK . If E is any subring of Ẽ, we write E+ := E∩Ẽ+

for the intersection (taken inside Ẽ).
We define Ã+ := W (Ẽ+) and Ã := W (Ẽ), equipped with their canonical Frobenius

automorphisms ϕ and GK-actions via Witt functoriality. Set-theoretically identifying W (Ẽ) with∏∞
m=0 Ẽ in the usual way, we endow each factor with its valuation topology and give Ã the

product topology.12 For each r > 0, there is a unique continuous W -algebra map Sr ↪→ Ã+

determined by ur 7→ ϕ−r([ε]−1), and we write A+
K,r for its image. We denote by AK,r the p-adic

completion of the localization of A+
K,r at the ideal (p), which is a complete discrete valuation ring

with uniformizer p and residue field ϕ−r(EK). We henceforth identify Sr with its image A+
K,r in

Ã+. Let Ash
K be the strict Henselization of AK := AK,0 with respect to the separable closure of

its residue field inside Ẽ. Since Ã is strictly Henselian, there is a unique local morphism Ash
K → Ã

recovering the given inclusion on residue fields, and we henceforth view Ash
K as a subring of Ã.

We denote by A the topological closure of Ash
K inside Ã with respect to the strong topology,

which is a ϕ- and GK-stable subring of Ã. If A is any subring of Ã, we define A+ := A∩Ã+, with
the intersection taken inside Ã, and put Ar := ϕ−r(A); observe that this notation is consistent
as A+

K,r = ϕ−r(A+
K) by construction.

Theorem 4.1.6. Let G ∈ pdivΓ
Rr , and write H1

ét(G) := (TpG)∨ for the Zp-linear dual of TpG.
There is a canonical mapping of finite free A+

r -modules with semilinear Frobenius and GK-actions

Mr(G) ⊗
Sr,ϕ

A+
r

// H1
ét(G)⊗Zp A+

r (4.1.3)

12 This is what is called the weak topology on Ã. If each factor of Ẽ is instead given the discrete topology, then
the product topology on Ã = W (Ẽ) is the familiar p-adic topology, called the strong topology.
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that is injective with cokernel killed by u1 = ϕ−1([ε]− 1). Here ϕ acts as ϕMr(G) ⊗ ϕ on source
and as 1 ⊗ ϕ on target, while GK acts diagonally on source and target through the quotient
GK � Γ on Mr(G). In particular, there is a natural ϕ- and GK-equivariant isomorphism

Mr(G) ⊗
Sr,ϕ

Ar ' H1
ét(G)⊗Zp Ar. (4.1.4)

These mappings are compatible with duality and with change in r in the obvious manner.

Corollary 4.1.7. For G ∈ pdivΓ
Rr , there are functorial isomorphisms of Zp[GK ]-modules

TpG ' HomSr,ϕ(Mr(G),A+
r ), (4.1.5a)

H1
ét(G) '

(
Mr(G) ⊗

Sr,ϕ
Ar

)ϕMr(G)⊗ϕ=1
(4.1.5b)

which are compatible with duality and change in r. In the first isomorphism, we view A+
r as a

Sr-algebra via the composite of the usual structure map with ϕ.

Remark 4.1.8. By definition, the map ϕr on AK,r is injective with image AK := AK,0, and
so induces a semilinear isomorphism of W -algebras ϕr : AK,r ' AK . It follows from (4.1.5b)
and Fontaine’s theory of (ϕ,Γ)-modules over AK that Mr(G) ⊗Sr,ϕr AK is the (ϕ,Γ)-module
M(L) associated to L := H1

ét(G). In this way, Mr(G) ⊗Sr,ϕr A+
K is naturally a ϕ- and Γ-stable

A+
K-lattice in the (ϕ,Γ)-module M(L). The literature provides two other distinguished such

lattices: the Wach module N(L) constructed in [BB10] and the module MKR(L) associated to L
by the theory of Kisin and Ren [KR09] applied to the special case of the Lubin–Tate group Ĝm.
By [CL17, §§ 4.4–4.5], one has

Mr(G)⊗Sr,ϕr A+
K = MKR(L) ⊆ N(L) (4.1.6)

inside M(L), with the inclusion MKR(L) ⊆N(L) an equality when r = 1. For r > 1, this inclusion
is in general not an equality, and the precise relationship between MKR(L) and N(L) is more
complicated; see [CL17, Proposition 4.5.3]. It thus follows from [CL17] that the theory of Kisin
and Ren [KR09] does a posteriori provide the ‘right’ A+

K-lattice inside M(L) (cf. § 1), but we
stress that their work makes no connections with geometry, which are essential for this paper.

As in Remark 2.2.11, for any G ∈ pdivΓ
Rr and ? ∈ {ét,m, null}, the p-divisible group G? is

again naturally an object of pdivΓ
Rr . We thus (functorially) obtain objects Mr(G?) of BTϕ,Γ

Sr
which admit particularly simple descriptions when ? = ét or m, as we now explain.

As usual, we write G? for the special fiber of G? and D(G?)W for its Dieudonné module.
Twisting the W -algebra structure on Sr by the automorphism ϕr−1 of W , we define objects

Mét
r (G) := D(G ét

)W ⊗
W,ϕr−1

Sr, ϕMét
r

:= F ⊗ ϕ, γ := γ ⊗ γ, (4.1.7a)

Mm
r (G) := D(Gm

)W ⊗
W,ϕr−1

Sr, ϕMm
r

:= V −1 ⊗ Er · ϕ, γ := γ ⊗ χ(γ)−1ϕr−1(γur/ur) · γ
(4.1.7b)

of BTϕ,Γ
Sr

, with γ ∈ Γ acting as indicated. Note that these formulae make sense and do indeed

give objects of BTϕ,Γ
Sr

as V is invertible13 on D(Gm
)W and γur/ur ∈ S×r .

13 In the sense that there exists a ϕ-semilinear map V −1 whose composition with V in either order is the identity.
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Proposition 4.1.9. Let G be an object of pdivΓ
Rr and let Mét

r (G) and Mm
r (G) be as in (4.1.7a)–

(4.1.7b). The map F r : G0→ G(pr)
0 (respectively V r : G(pr)

0 → G0) induces a natural isomorphism
in BTΓ

Sr

Mr(G ét) 'Mét
r (G) respectively Mr(Gm) 'Mm

r (G) (4.1.8)

which is compatible with change in r in that for ? = ét (respectively ? = m) it intertwines the iso-
morphism of Theorem 4.1.3(ii) with the linear map induced by F (respectively V −1) on D(G?)W .

Proof. For simplicity, we will write M?
r and D? for M?

r(G) and D(G?)W , respectively. Using the

explicit description of the equivalences (4.1.2) in [CL17], one finds that the object of MFϕ,ΓSr

corresponding to Mét
r is given by the triple

M ét
r := (Dét ⊗W,ϕr Sr,Dét ⊗W,ϕr Fil1 Sr, F ⊗ ϕ1) (4.1.9a)

with Γ acting diagonally on the tensor product. Similarly, the object corresponding to Mm
r is

M m
r := (Dm ⊗W,ϕr Sr,Dm ⊗W,ϕr Sr, V −1 ⊗ vr · ϕ), (4.1.9b)

where vr = ϕ(Er)/p as before and γ ∈ Γ acts on Dm⊗W,ϕr Sr as γ⊗χ(γ)−1ϕr(γur/ur) ·γ. Using
the relation γt = χ(γ)t for γ ∈ Γ, one checks that the Sr-module automorphism of Dm ⊗W,ϕr Sr
given by multiplication by λ := t/u0 ∈ S×r carries (4.1.9b) isomorphically onto the the triple

M m
r := (Dm ⊗W,ϕr Sr,Dm ⊗W,ϕr Sr, V −1 ⊗ ϕ) (4.1.10)

of MFϕ,ΓSr
with Γ acting diagonally on the tensor product. As in the proof of Lemma 3.2.2,

using the fact that the Dieudonné crystal is compatible with base change and that the inclusion
W → Sr extends to a PD morphism (W,p) → (Sr, pSr + Fil1 Sr) over k → Rr/pRr, applying
D(·)Sr to (3.2.5a)–(3.2.5b) with R := Rr yields natural isomorphisms D(G?0)Sr ' D? ⊗W,ϕr Sr
for ? = ét,m which carry F to F ⊗ ϕ. Using the construction of Mr(G?) outlined above and
explained in detail in [CL17], one checks that these isomorphisms extend to give isomorphisms

Mr(G ét) 'M ét
r and Mr(Gm) 'M m

r in MFϕ,ΓSr
. The claimed natural isomorphisms (4.1.8) follow

at once from the equivalences (4.1.2), and the asserted compatibility with change in r is a
straightforward exercise that we leave to the reader. 2

Now suppose that G ∈ pdivΓ
Rr is ordinary. As Mr is exact by Theorem 4.1.3(i), applying Mr

to the connected-étale sequence of G gives a contravariantly functorial short exact sequence

0 //Mr(G ét) //Mr(G) //Mr(Gm) // 0 (4.1.11)

in BTϕ,Γ
Sr

. Since ϕMr linearizes to an isomorphism on Mr(G ét) and is topologically nilpotent on
Mr(Gm), we think of (4.1.11) as the ‘slope filtration’ for Frobenius acting on Mr(G).

Proposition 4.1.10. There is a canonical Γ-equivariant isomorphism of short exact sequences

0 //Mr(G ét) ⊗
Sr,τ◦ϕ

W //

'
��

Mr(G) ⊗
Sr,τ◦ϕ

W //

'
��

Mr(Gm) ⊗
Sr,τ◦ϕ

W //

'
��

0

0 // D(G ét
)W // D(G)W // D(Gm

)W // 0

(4.1.12a)
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intertwining ϕMr⊗ϕ with F , and a canonical Γ-equivariant isomorphism of short exact sequences

0 //Mr(G ét) ⊗
Sr,θ◦ϕ

Rr //

'
��

Mr(G) ⊗
Sr,θ◦ϕ

Rr //

'
��

Mr(Gm) ⊗
Sr,θ◦ϕ

Rr //

'
��

0

0 // Lie(Gt)
i

// D(G0)Rr j
// ωG // 0

(4.1.12b)

where i : Lie(Gt) ↪→D(G0)Rr and j : D(G0)Rr � ωG are the canonical splittings of Lemma 3.2.1.

Proof. This follows immediately from Theorem 4.1.3, using Lemma 3.2.1 and its proof. 2

4.2 Ordinary families of (ϕ,Γ)-modules

For each pair of positive integers r > s, we have a morphism ρr,s : Gs ×Ts Tr → Gr in pdivΓ
Rr ;

applying the contravariant functor Mr : pdivΓ
Rr → BTΓ

Sr of Theorem 4.1.3 to the map on
connected-étale sequences induced by ρr,s and using the exactness of Mr and its compatibility
with base change, we obtain morphisms in BTΓ

Sr

0 //Mr(G ét
r ) //

Mr(ρr,s)

��

Mr(Gr) //

Mr(ρr,s)

��

Mr(Gm
r ) //

Mr(ρr,s)

��

0

0 //Ms(G ét
s ) ⊗

Ss
Sr

//Mr(Gs) ⊗
Ss

Sr
//Mr(Gm

s ) ⊗
Ss

Sr
// 0

(4.2.1)

Definition 4.2.1. Let ? = ét or ? = m and define

M∞ := lim
←−
r

(
Mr(Gr) ⊗

Sr
S∞

)
, M?

∞ := lim
←−
r

(
Mr(G?r ) ⊗

Sr
S∞

)
(4.2.2)

with the projective limits taken with respect to the mappings induced by (4.2.1).

Each of (4.2.2) is naturally a module over the completed group ring ΛS∞ and is equipped with
a semilinear action of Γ and a ϕ-semilinear Frobenius morphism defined by F := lim

←−(ϕMr ⊗ ϕ).

Since ϕ is bijective on S∞, we also have a ϕ−1-semilinear Verschiebung morphism defined as
follows. For notational ease, we provisionally set Mr := Mr(Gr)⊗Sr S∞ and we define

Vr : Mr
ψ // ϕ∗Mr

α⊗m7→ϕ−1(α)m //Mr (4.2.3)

with ψ induced by scalar extension from the map ψMr defined above 4.1.1. It is easy to see that
the Vr are compatible with change in r, and we put V := lim

←−Vr on M∞. We define Verschiebung
morphisms on M?

∞ for ? = ét,m similarly. As the composite of ψMr and 1⊗ϕMr in either order
is multiplication by Er(ur) =: ω, one has FV = ω and V F = ϕ−1(ω). Due to the functoriality
of Mr, we moreover have a ΛS∞-linear action of H∗ on each of (4.2.2) which commutes with F ,
V , and Γ.

Proof of Theorem 1.2.9. Since ϕ is an automorphism of S∞, pullback by ϕ commutes with
projective limits of S∞-modules. As the canonical S∞-linear map ϕ∗ΛS∞ → ΛS∞ is an
isomorphism of rings (even of S∞-algebras), it therefore suffices to prove the assertions of
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Theorem 1.2.9 after pullback by ϕ, which is more convenient due to the relation between
ϕ∗Mr(Gr) and the Dieudonné crystal of Gr.

Pulling back (4.2.1) by ϕ gives a commutative diagram with exact rows

0 // ϕ∗Mr(G ét
r ) //

��

ϕ∗Mr(Gr) //

��

ϕ∗Mr(Gm
r ) //

��

0

0 // ϕ∗Ms(G ét
s ) ⊗

Ss
Sr

// ϕ∗Mr(Gs) ⊗
Ss

Sr
// ϕ∗Mr(Gm

s ) ⊗
Ss

Sr
// 0

(4.2.4)

and, as in the proof of Theorem 1.2.1, we apply the commutative algebra formalism of [Cai17,
§ 3.1]. In the notation of [Cai17, Lemma 3.2], we take Ar := Sr, Ir := (ur), B = S∞, and Mr

each one of the terms in the top row of (4.2.4), and we must check that the hypotheses

(i) M r := Mr/urMr is a free Zp[∆/∆r]-module of rank d′;

(ii) for all s 6 r, the induced transition maps ρr,s : M r
//M s are surjective

hold. The isomorphism (4.1.12a) ensures, via Theorem 1.2.1, that hypothesis (i) is satisfied.
Due to the functoriality of (4.1.12a), for any r > s, the mapping obtained from (4.2.4) by

reducing modulo Ir is identified with the mapping on (3.1.1) induced (via functoriality of D(·))
by ρr,s. As was shown in the proof of Theorem 1.2.1, these mappings are surjective for all r > s,
and we conclude that hypothesis (ii) holds as well. Moreover, the vertical mappings of (4.2.4) are
then surjective by Nakayama’s lemma, so as in the proof of Theorem 1.2.1 (keeping in mind that
pullback by ϕ commutes with projective limits of S∞-modules), we obtain, by applying ⊗SrS∞
to (4.2.4), passing to projective limits, and pulling back by ϕ−1, the short exact sequence (1.2.9).
The final assertion is an immediate consequence of the very construction of ϕMr , the definition
(4.2.3) of V , and (4.1.1). 2

We can now prove Theorem 1.2.10, which relates the exact sequence (1.2.9) to its dual over
ΛS′∞ for S′∞ := S∞[µN ].

Proof of Theorem 1.2.10. We first note that there is a natural isomorphism of S′∞[∆/∆r]-
modules

Mr(Gr)(µ〈a〉N )⊗Sr S
′
∞ ' HomS′∞(Mr(Gr)⊗Sr S

′
∞,S

′
∞) (4.2.5)

that is H∗-equivariant and Gal(K ′∞/K0)-compatible for the standard action γ ·f(m) := γf(γ−1m)
on the right-hand side, and that intertwines F and V with V ∨ and F∨, respectively. Indeed, this
follows immediately from the identifications

Mr(Gr)(〈χ〉〈a〉N ) ⊗
Sr

S′∞ 'Mr(G′r) ⊗
Sr

S′∞ =: Mr(G∨r ) ⊗
Sr

S′∞ 'Mr(Gr)∨ ⊗
Sr

S′∞ (4.2.6)

and the definition (Definition 4.1.2) of duality in BTϕ,Γ
Sr

; here the first isomorphism in (4.2.6)
results from Proposition 2.2.12 and Theorem 4.1.3(ii), while the final identification is due to
Theorem 4.1.3(i). The identification (4.2.5) carries F (respectively V ) on its source to V ∨

(respectively F∨) on its target due to the compatibility of the functor Mr(·) with duality.
From (4.2.5), we obtain a natural Gal(K ′r/K0)-compatible evaluation pairing of S′∞-modules

〈·, ·〉r : Mr(Gr)(µ〈a〉N ) ⊗
Sr

S′∞ ×Mr(Gr) ⊗
Sr

S′∞ // S′∞ (4.2.7)
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with respect to which the natural action of H∗ is self-adjoint, due to the fact that (4.2.6)
is H∗-equivariant by Proposition 2.2.12. Due to the compatibility with change in r of the
identification (2.2.9) of Proposition 2.2.12 together with the definitions (2.2.8) of ρr,s and ρ′r,s,

the identification (4.2.6) intertwines the map induced by Pic0(ρ) on its source with the map
induced by U∗p

−1 Alb(σ) on its target. For r > s, we therefore have

〈Mr(ρr,s)x,Mr(ρr,s)y〉s = 〈x,Mr(U
∗
p
s−r Pic0(ρ)r−s Alb(σ)r−s)y〉r =

∑
δ∈∆s/∆r

〈x, δ−1y〉r,

where the final equality follows from (3.1.7). Thus, the perfect pairings (4.2.7) satisfy the
compatibility condition of [Cai17, Lemma 3.4] (as in (3.1.5) of the proof of Theorem 1.2.2),
which, together with Theorem 1.2.9, completes the proof. 2

The ΛS∞-modules Mét
∞ and Mm

∞ have a particularly simple structure, as made precise by
Theorem 1.2.11, which we now prove.

Proof of Theorem 1.2.11. We twist the identifications (4.1.8) of Proposition 4.1.9 to obtain
natural isomorphisms

Mr(G ét
r )

'
F r◦(4.1.8)

// D(G ét
r )Zp ⊗Zp Sr and Mr(Gm

r )
'

V −r◦(4.1.8)
// D(Gm

r )Zp ⊗Zp Sr

that are H∗r-equivariant and, thanks to Proposition 4.1.9, compatible with change in r using the
maps on source and target induced by ρr,s. Passing to inverse limits and appealing again to [Cai17,
Lemma 3.2] and (the proof of) Theorem 1.2.1, we deduce for ? = ét,m natural isomorphisms of
ΛS∞-modules

M?
∞ ' lim
←−
r

(
D(G?r)Zp ⊗Zp S∞

)
' D?

∞ ⊗Λ ΛS∞

that are H∗-equivariant and satisfy the asserted compatibility with respect to Frobenius,
Verschiebung, and the action of Γ due to Proposition 4.1.9 and the definitions (4.1.7a)–
(4.1.7b). 2

4.3 Λ-adic crystalline comparison isomorphism
We now prove Theorem 1.2.12, which asserts that the slope filtration (1.2.9) of M∞ specializes,
on the one hand, to the slope filtration (3.1.2) of D∞, and on the other hand to the Hodge
filtration (1.1.2) (in the opposite direction) of e∗′H1

dR.

Proof of Theorem 1.2.12. To prove the first assertion of Theorem 1.2.12, we apply [Cai17,
Lemma 3.2] with Ar = Sr, Ir = (ur), B = S∞, B′ = Zp (viewed as a B-algebra via τ), and
Mr = ϕ∗M?

r for ? ∈ {ét,m,null} and, as in the proofs of Theorems 1.2.1 and 1.2.9, we must
verify the hypotheses:

(i) M r := Mr/urMr is a free Zp[∆/∆r]-module of rank d′;

(ii) for all s 6 r, the induced transition maps ρr,s : M r
//M s are surjective.

Thanks to (4.1.12a), we have a canonical identification M r := Mr/IrMr ' D(G?r)Zp that is

compatible with change in r in the sense that the induced projective system {M r}r is identified
with that of Definition 3.1.1. It follows from this and Theorem 1.2.1 that the hypotheses (i)–(ii)
are satisfied, and (1.2.12) is an isomorphism by [Cai17, Lemma 3.2(5)].
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In exactly the same manner, the second assertion of Theorem 1.2.12 follows by appealing to

[Cai17, Lemma 3.2] with Ar = Sr, Ir = (Er), B = S∞, B′ = R∞ (viewed as a B-algebra via θ),

and Mr = ϕ∗M?
r , using (4.1.12b) and Proposition 3.2.3 together with Theorem 1.1.1 (see [Cai17,

Theorem 3.7]) to verify the requisite hypotheses in this setting. 2

Proof of Theorem 1.2.13 and Corollary 1.2.14. Applying Theorem 4.1.6 to (the connected-étale

sequence of) Gr gives a natural isomorphism of short exact sequences

0 //Mr(G ét
r ) ⊗

Sr,ϕ
Ar

//

'
��

Mr(Gr) ⊗
Sr,ϕ

Ar
//

'
��

Mr(Gm
r ) ⊗

Sr,ϕ
Ar

//

'
��

0

0 // H1
ét(G

ét
r ) ⊗

Zp
Ar

// H1
ét(Gr) ⊗

Zp
Ar

// H1
ét(G

m
r ) ⊗

Zp
Ar

// 0

(4.3.1)

Due to Theorem 1.2.9, the terms in the top row of 4.3.1 are free of ranks d′, 2d′, and d′ over

Ãr[∆/∆r], respectively, so we conclude from [Cai17, Lemma 3.3] (using A = Zp[∆/∆r] and

B = Ar[∆/∆r] in the notation of that result) that H1
ét(G

?
r) is a free Zp[∆/∆r]-module of rank d′

for ? = {ét,m} and that H1
ét(Gr) is free of rank 2d′ over Zp[∆/∆r]. Using the fact that Zp→Ar

is faithfully flat, it then follows from the surjectivity of the vertical maps in (4.2.4) (which was

noted in the proof of Theorem 1.2.9) that the canonical trace mappings H1
ét(G

?
r) → H1

ét(G
?
r′)

for ? ∈ {ét,m,null} are surjective for all r > r′. Applying [Cai17, Lemma 3.2] with Ar = Zp,

Mr := H1
ét(G

?
r), Ir = (0), B = Zp, and B′ = Ã, we conclude that H1

ét(G
?
∞) is free of rank d′

(respectively 2d′) over Λ for ? = ét, m (respectively ? = null), that the specialization mappings

H1
ét(G

?
∞)⊗

Λ
Zp[∆/∆r] // H1

ét(G
?
r)

are isomorphisms, and that the canonical mappings for ? ∈ {ét,m, null}

H1
ét(G

?
∞)⊗

Λ
Λ
Ã

// lim
←−r

(
H1

ét(G
?
r) ⊗

Zp
Ã
)

(4.3.2)

are isomorphisms. Invoking the isomorphism (3.2.22) gives Corollary 1.2.14. By [Cai17,

Lemma 3.2] with Ar = Sr, Mr = Mr(G?r ), Ir = (0), B = S∞, and B′ = Ã (viewed as a B-algebra

via ϕ), we similarly conclude from (the proof of) Theorem 1.2.9 that the canonical mappings for

? ∈ {ét,m, null}

M?
∞ ⊗

S∞,ϕ
Λ
Ã

// lim
←−r

(
Mr(G?r ) ⊗

Sr,ϕ
Ã
)

(4.3.3)

are isomorphisms. Applying ⊗ArÃ to the diagram (4.3.1), passing to inverse limits, and using

the isomorphisms (4.3.2) and (4.3.3) gives (again invoking (3.2.22)) the isomorphism (1.2.14).

Using the fact that the inclusion Zp ↪→ Ãϕ=1 is an equality, the isomorphism (1.2.15) follows

immediately from (1.2.14) by taking F ⊗ ϕ-invariants. 2

Using Theorems 1.2.13 and 1.2.10, we can give a new proof of Ohta’s duality theorem [Oht95,

Theorem 4.3.1] for the Λ-adic ordinary filtration of e∗′H1
ét.
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Proof of Corollary 1.2.15. As in the proof of Theorem 1.2.2, by using Corollary 1.2.14 and
applying [Cai17, Lemma 3.4], one shows that the pairing

〈·, ·〉Λ : e∗′H1
ét × e∗′H1

ét→ Λ determined by 〈x, y〉Λ ≡
∑

δ∈∆/∆r

(x,wrU
∗
p
r〈δ−1〉∗y)rδ mod Ir

(4.3.4)
is a Λ-bilinear and perfect duality pairing with respect to which the action of H∗ is self-adjoint;
here (·, ·)r is the usual cup-product pairing on H1

ét,r and Ir := ker(Λ� Zp[∆/∆r]). This pairing
is easily seen to induce the claimed isomorphism (1.2.16). 2
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ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21 (Springer, Berlin,
1990).

Cai09 B. Cais, Canonical integral structures on the de Rham cohomology of curves, Ann. Inst. Fourier
(Grenoble) 59 (2009), 2255–2300.
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Kat81 N. Katz, Serre–Tate local moduli, in Algebraic surfaces (Orsay, 1976–78), Lecture Notes in
Mathematics, vol. 868 (Springer, Berlin, 1981), 138–202.

KM85 N. M. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies,
vol. 108 (Princeton University Press, Princeton, NJ, 1985).

KR09 M. Kisin and W. Ren, Galois representations and Lubin–Tate groups, Doc. Math. 14 (2009),
441–461.

Kit94 K. Kitagawa, On standard p-adic L-functions of families of elliptic cusp forms, in p-adic
monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), Contemporary
Mathematics, vol. 165 (American Mathematical Society, Providence, RI, 1994), 81–110.

MM74 B. Mazur and W. Messing, Universal extensions and one dimensional crystalline cohomology,
Lecture Notes in Mathematics, vol. 370 (Springer, Berlin, 1974).

MW83 B. Mazur and A. Wiles, Analogies between function fields and number fields, Amer. J. Math.
105 (1983), 507–521.

MW84 B. Mazur and A. Wiles, Class fields of abelian extensions of Q, Invent. Math. 76 (1984), 179–330.

MW86 B. Mazur and A. Wiles, On p-adic analytic families of Galois representations, Compos. Math.
59 (1986), 231–264.

Oda69 T. Oda, The first de Rham cohomology group and Dieudonné modules, Ann. Sci. Éc. Norm.
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