
Adv. Appl. Prob. 46, 496–515 (2014)
Printed in Northern Ireland

© Applied Probability Trust 2014

ON ASYMPTOTICS OF THE BETA COALESCENTS

ALEXANDER GNEDIN,∗ University of London

ALEXANDER IKSANOV ∗∗ and

ALEXANDER MARYNYCH,∗∗∗ National Taras Shevchenko University of Kyiv

MARTIN MÖHLE,∗∗∗∗ University of Tübingen

Abstract

We show that the total number of collisions in the exchangeable coalescent process driven
by the beta (1, b)measure converges in distribution to a 1-stable law, as the initial number
of particles goes to ∞. The stable limit law is also shown for the total branch length
of the coalescent tree. These results were known previously for the instance b = 1,
which corresponds to the Bolthausen–Sznitman coalescent. The approach we take is
based on estimating the quality of a renewal approximation to the coalescent in terms
of a suitable Wasserstein distance. Application of the method to beta (a, b)-coalescents
with 0 < a < 1 leads to a simplified derivation of the known (2 − a)-stable limit. We
furthermore derive asymptotic expansions for the moments of the number of collisions
and of the total branch length for the beta (1, b)-coalescent by exploiting the method of
sequential approximations.
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1. Introduction

Pitman [29] and Sagitov [30] introduced exchangeable coalescent processes with multiple
collisions, also known as �-coalescents. A counting process associated with the �-coalescent
is a Markov chain�n = (�n(t))t≥0 with right-continuous paths, which starts with n particles,
�n(0) = n, and terminates when a sole particle remains. The particles merge according to the
rule: for each t ≥ 0, when the number of particles is �n(t) = m > 1, each k tuple of them
merge into one particle at probability rate

λm, k =
∫ 1

0
xk(1 − x)m−kx−2�(dx), 2 ≤ k ≤ m, (1.1)

where� is a given finite measure on the unit interval. The merging of two or more particles is
called a collision. With every collision, �n jumps to a smaller value. When � is a Dirac mass
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at 0, the�-coalescent is the classical Kingman coalescent [25], in which every pair of particles
merges at the unit rate and only binary mergers are possible. Another eminent instance, known
as the Bolthausen–Sznitman coalescent [6], appears when� is the Lebesgue measure on [0, 1].

The subclass of beta coalescents are the processes driven by some beta measure on [0, 1]
with density

�(dx)

dx
= (B(a, b))−1xa−1(1 − x)b−1, a, b > 0, (1.2)

where B(·, ·) denotes Euler’s beta function. This class is amenable to analysis due to the fact
that the transition rates (1.1) can be expressed in terms of B(·, ·). For this reason and due to
multiple connections with Lévy processes and random trees, beta coalescents have been the
subject of intensive research; see [2], [3], [5], [8], [9], [17], [20], and [29]. We refer the reader
to [4] for a survey and further references.

In this paper we study beta coalescents with parameter 0 < a ≤ 1. Specifically, we are
interested in the total number of collisions Xn and the total branch length of the coalescent
tree Ln. Note that Xn is equal to the total number of particles born through collisions, and Ln
is the cumulative lifetime of all particles from the start of the process to its termination. The
variable Ln is closely related to the number of segregating sitesMn, the connection being that,
given Ln, the distribution ofMn is Poisson with mean rLn for some fixed mutation rate r > 0.

A principal contribution of this paper is the proof of convergence in distribution to a 1-stable
law for Xn and Ln as n → ∞. As in much of the previous work (see, for instance, [13]
and [21]), we use a renewal approximation to�n. A novel element in this context is estimating
the quality of approximation in terms of a Wasserstein distance.

Our second new contribution is the derivation of asymptotic expansions for the moments of
Xn,Ln, andMn for the beta (1, b)-coalescent with arbitrary parameter b > 0. These expansions
are complementary to the results on convergence in distribution. The proofs of these asymptotic
expansions are based on the method of sequential approximations, similarly as in [22].

The rest of the paper is organized as follows. In Section 2 we give a summary of some
results on limit laws related to the beta coalescents. In Section 3 general properties of the block-
counting Markov chain and basic recurrences are discussed, and the main results are stated. In
Section 4 we recall the definition and properties of a Wasserstein distance. In Section 5 we
provide proofs of the main results. Some auxiliary lemmas are collected in Appendix A.

2. A summary of limit laws for beta coalescents

In Tables 1–3 we summarize the limit laws for Xn, Ln, and the absorption time τn :=
min{t : �n(t) = 1} of the coalescent. The distributions that appear in the tables are as
follows.

• N , the standard normal distribution.

• Sα with 1 < α < 2, the (spectrally negative) α-stable distribution with characteristic
function

z �→ exp

{
|z|α

(
cos

(
πα

2

)
+ i sin

(
πα

2

)
sgn(z)

)}
, z ∈ R.

• S1, the (spectrally negative) 1-stable distribution with characteristic function

z �→ exp

{
−|z|

(
π

2
− i log |z| sgn(z)

)}
, z ∈ R.
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• Eγ (a, b) with a, b, γ > 0, the law of the exponential functional
∫ ∞

0 e−γ Sa, b(t) dt , where
(Sa, b(t))t≥0 is a drift-free subordinator with Laplace exponent 	a, b(z) = ∫ 1

0 (1−(1 −
x)z)xa−3(1 − x)b−1 dx, z ≥ 0.

• G, the Gumbel with distribution function x �→ exp{−e−x}, x ∈ R.

• ρ, the convolution of infinitely many exponential laws with rates i(i − 1)/2, i ≥ 2.

Table 1: Limit distributions of (Xn − an)/bn for beta (a, b)-coalescents.

a b an bn Distribution Source

0 < a < 1 b > 0 (1 − a)n (1 − a)n1/(2−a) S2−a This paper, [7], [13],
and [21] (b = 1)

a = 1 b > 0
n log(n log n)

(log n)2
n

(log n)2
S1 This paper and

[9], [20] (b = 1)

1 < a < 2 b > 0 0
�(a)

2 − a
n2−a E2−a(a, b) [14] and [18]

a = 2 b > 0 (2r1)−1(log n)2 (3−1r−3
1 r2 log3 n)1/2 N [14] and [22]

a > 2 b > 0 m−1
1 log n (m−3

1 m2 log n)1/2 N [14] and [15]

Table 2: Limit distributions of (τn − an)/bn for beta (a, b)-coalescents.

a b an bn Distribution Source

a = 0 0 1 ρ [32]
a = 1 b = 1 log log n 1 G [17] and [11]

1 < a < 2 b > 0 m−1 log n (m−3s2 log n)1/2 N [14]
a = 2 b > 0 c−1

1 log n (c−3
1 c2 log n)1/2 N [14]

a > 2 b > 0 (γm1)
−1 log n γ−1(m−3

1 (m2 +m2
1) log n)1/2 N [14] and [15]

Table 3: Limit distributions of (Ln − an)/bn for beta (a, b)-coalescents.

a b an bn Distribution Source

a = 0 2 log n 2 G [8] and [32]

0 < a <
3 − √

5

2
b = 2 − a c1n

a 1 exists [24]

a = 3 − √
5

2
b = 2 − a c1n

a c2(log n)1/α S2−a [24]

3 − √
5

2
< a < 1 b = 2 − a c1n

a c2(βn
−β)1/α S2−a [24]

a = 1 b > 0
n log(n log n)

b(log n)2
n

b(log n)2
S1 This paper and

[8] (b = 1),
a > 1 b > 0 0 B(a, b)n E1(a, b) [26], and [27]
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In Table 1 r1 = ζ(2, b) and r2 = 2ζ(3, b), where ζ(·, ·) is the Hurwitz zeta function;
m1 = �(a − 2 + b)−�(b) and m2 = � ′(b)−� ′(a − 2 + b), where �(·) is the logarithmic
derivative of the gamma function.

For the Bolthausen–Sznitman coalescent, the limit law of Xn was first obtained in [9] using
singularity analysis of generating functions. A probabilistic proof of this result appeared in [20],
where the coupling of a random walk with a barrier was exploited, and the technique was further
extended in [21] to study collisions in the beta (a, 1)-coalescents with a ∈ (0, 2). The afore-
mentioned limit laws for a > 1 are specializations of results for more general �-coalescents
with dust component, i.e. those driven by measures� such that

∫ 1
0 x

−1�(dx) < ∞ [13]–[15],
and [18]. For Kingman’s coalescent, we have Xn = n− 1 for all n ∈ N.

In the next two tables the value a = 0 corresponds to Kingman’s coalescent.
In Table 2,

m = a + b − 1

(a − 1)(2 − a)
(1 − (a + b − 2)(�(a + b − 1)−�(b))),

s2 = a + b − 1

(a − 1)(2 − a)

× (2(�(a + b − 1)−�(b))

− (a + b − 2)((�(a + b − 1)−�(b))2 +� ′(b)−� ′(a + b − 1))),

c1 = b(b+ 1)ζ(2, b), and c2 = 2b(b+ 1)ζ(3, b). The constantsm1 andm2 are the same as in
Table 1, and, for a > 2, γ = (a − 1 + b)(a − 2 + b)/((a − 1)(a − 2)).

For the case in which a ∈ (0, 1) and b > 0, the beta (a, b)-coalescent has the property of
coming down from ∞ [31], which implies that τn weakly converges without any normalization
to some limiting law, which is not known explicitly. The result for a > 1 is a special case of
Theorem 4.3 of [14]. The case in which a = 1 and b �= 1 is open; in this case the coalescent
does not come down from ∞.

In Table 3, α = 2 − a, β = 1 + α − α2, c1 = �(α + 1)(α − 1)/(2 − α), and c2 =
�(α + 1)(α − 1)1+α−1

/(cos (πα/2)�α
−1
(2 − α)).

In [26] the weak convergence of properly normalized Ln was proved for�-coalescents with
a dust component. In particular, that result covered the beta (a, b)-coalescents with a > 1.
Although some partial results for a ∈ (0, 1) and b > 0 were obtained in [7], this case with
b �= 2 − a remains open.

3. Main results

For the general �-coalescent, the Markov chain �n is a pure death process which jumps
from state m to m − k + 1 at rate

(
m
k

)
λm, k , where λm, k, 2 ≤ k ≤ m, is given by (1.1). The

total transition rate from state m ≥ 2 is

λm :=
m∑
k=2

(
m

k

)
λm, k =

∫ 1

0
(1 −mx(1 − x)m−1 − (1 − x)m)x−2�(dx). (3.1)

The first decrement In of �n has distribution

P{In = k} =
(

n

k + 1

)
λn, k+1

λn
, 1 ≤ k ≤ n− 1.
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The strong Markov property of the coalescent entails the distributional recurrences

X1 = 0, Xn
d= 1 +X′

n−In , n ∈ N \ {1}, (3.2)

τ1 = 0, τn
d= Tn + τ ′

n−In , n ∈ N \ {1},
L1 = 0, Ln

d= nTn + L′
n−In , n ∈ N \ {1}, (3.3)

where Tn denotes the time of the first collision (hence, Tn has the exponential law with parameter
λn), and X′

k (respectively τ ′
k and L′

k) is independent of In (are each independent of the pair
(Tn, In)) and is distributed as Xk (respectively τk , Lk) for each k ∈ N.

Letting � be defined as in (1.2) with a ∈ (0, 1], define

p
(a)
n,k := P{In = n− k}, k = 1, . . . , n− 1. (3.4)

Using the leading terms of asymptotic relations (A.3), (A.4), and (A.5) below, we infer that

lim
n→∞p

(a)
n,n−k = (2 − a)�(k + a − 1)

�(a)(k + 1)! =: p(a)k , k ∈ N;

hence (see also [7, Lemma 2.1]),

In
d−→ ξ as n → ∞,

where ξ is a random variable with distribution (p(a)k )k∈N.
Consider a zero-delayed random walk (Sn)n∈N0 defined by S0 := 0 and Sn := ξ1 + · · · + ξn

for n ∈ N, where ξ1, ξ2, . . . are independent copies of ξ with distribution (p(a)k )k∈N, and let
(Nn)n∈N0 be the associated first passage time sequence defined by Nn := inf{k ≥ 0 : Sk ≥ n},
n ∈ N0. It is plain that

N0 = 0, Nn
d= 1 +N ′

n−ξ∧n = 1 +N ′
n−ξ 1{ξ<n}, n ∈ N, (3.5)

where N ′
k is independent of ξ and distributed as Nk for each k ∈ N. Comparing (3.2) and

(3.5) we can expect that, if Nn (properly centered and normalized) converges weakly to some
proper and nondegenerate probability law then the same is true forXn (with the same centering
and normalization). This is what we mean by a renewal approximation mentioned in the
introduction. This idea was exploited in [13] for a ∈ (0, 1) and b > 0, and in [21] for
a ∈ (0, 1] and b = 1 to derive the limit distribution of Xn from that of Nn. For a ∈ (0, 1] and
b > 0, we will use a method based on probability metrics to show the stable limits.

Theorem 3.1. As n → ∞, the number of collisionsXn in the beta (a, b)-coalescent satisfies

(i) for 0 < a < 1 and b > 0,
Xn − (1 − a)n

(1 − a)n1/(2−a)
d−→ S2−a,

(ii) for a = 1 and b > 0,

log2 n

n
Xn − log n− log log n

d−→ S1.

As a consequence of our main theorem, we also obtain a weak limit for the total branch
length Ln and the number of segregating sites Mn (see [26]) of the beta (1, b)-coalescent.
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Corollary 3.1. For the total branch lengthLn in the beta (1, b)-coalescent, we have, asn→ ∞,

b log2 n

n
Ln − log n− log log n

d−→ S1.

Corollary 3.2. For the number of segregating sites Mn in the beta (1, b)-coalescent, we have,
as n → ∞,

b log2 n

rn
Mn − log n− log log n

d−→ S1,

where r > 0 is the rate of the homogeneous Poisson process on branches of the coalescent tree.

We now turn to the moments of Xn, Ln, and Mn. An analysis of these moments provides
further insight into the structure of these functionals. Our next result concerns the asymptotics
of the moments of the number of collisions Xn in the beta (1, b)-coalescent.

Theorem 3.2. Fix b ∈ (0,∞) and j ∈ N0. The j th moment of the number of collisions Xn in
the beta (1, b)-coalescent has the asymptotic expansion

EX
j
n = nj

logj n

(
1 + mj

log n
+O

(
1

log2 n

))
as n → ∞, (3.6)

where the sequence (mj )j∈N0 is recursively defined via m0 := 0 and mj := mj−1 + κj /j for
j ∈ N, with κj := (j + b − 1)�(j + b)+ j − (b − 1)�(b), j ∈ N0.

For further information on the coefficients mj , j ∈ N, we refer the reader to (5.5) below
in the proof of the following corollary, which provides asymptotic expansions for the central
moments of Xn in the beta (1, b)-coalescent.

Corollary 3.3. Fix b ∈ (0,∞) and j ∈ N \ {1}. The j th central moment of the number of
collisions Xn in the beta (1, b)-coalescent has the asymptotic expansion

E(Xn − EXn)
j = (−1)j

j
B(b, j − 1)

nj

logj+1 n
+O

(
nj

logj+2 n

)
as n → ∞. (3.7)

In particular, var(Xn) = (2b)−1n2/log3 n+O(n2/log4 n) as n → ∞.

Remark 3.1. For b = 1, (3.7) reduces to the asymptotic expansion (see [28, p. 277 or
Theorem 2.1 with α = 0])

E(Xn − EXn)
j = (−1)j

j (j − 1)

nj

logj+1 n
+O

(
nj

logj+2 n

)
as n → ∞.

The last result concerns the moments and central moments of the total branch length Ln of
the beta (1, b)-coalescent.

Proposition 3.1. Fix b ∈ (0,∞) and j ∈ N0. The j th moment of the total branch length Ln
of the beta (1, b)-coalescent has the asymptotic expansion

EL
j
n = 1

bj

nj

logj n

(
1 + mj

log n
+O

(
1

log2 n

))
as n → ∞,

where the sequence (mj )j∈N0 is defined as in Theorem 3.2. Moreover, for j ∈ {2, 3, . . .}, the
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j th central moment of Ln has the asymptotic expansion

E(Ln − ELn)
j = (−1)j

jbj
B(b, j − 1)

nj

logj+1 n
+O

(
nj

logj+2 n

)
as n → ∞.

In particular, var(Ln) = (2b3)−1n2/log3 n+O(n2/log4 n) as n → ∞.

Proposition 3.1 indicates that bLn essentially behaves as Xn, in agreement with the com-
parison of Theorem 3.1(ii) and Corollary 3.2. The proof of Proposition 3.1 essentially follows
the same lines as the analogous proofs of Theorem 3.2 and Corollary 3.3 for Xn. Instead
of the distributional recurrence (3.2) for (Xn)n∈N, we have to work with the distributional
recurrence (3.3) for (Ln)n∈N. Since the expansion of ETn = 1/λn is known (see Lemma A.4),
the proofs concerning Xn are readily adapted for Ln. A proof of Proposition 3.1 is therefore
omitted. We finally mention that, for the beta (1, b)-coalescent with mutation rate r > 0,
expansions for the moments and central moments of the number of segregating sites Mn can
be easily obtained, since (see, for example, [8, p. 1417]) the descending factorial moments of
Mn are related to the moments of Ln via E(Mn)j = rjEL

j
n, j ∈ N0, where (Mn)0 := 1 and

(Mn)j := Mn(Mn − 1) · · · (Mn − j + 1) for j ∈ N.

4. Probability distances χT and dq

For T > 0, the χT -distance of two real-valued random variables X and Y is defined by

χT (X, Y ) = sup
|t |≤T

|EeitX − EeitY |.

By the continuity theorem for the characteristic functions, convergence in distributionZn
d−→ Z

holds if and only if limn→∞ χT (Zn, Z) = 0 for every T > 0.
Let Dq, q ∈ (0, 1], be the set of probability laws on R with finite qth absolute moment.

Recall that |x − y|q is a metric on R. The Wasserstein distance on Dq is defined by

dq(X, Y ) = inf E|X̂ − Ŷ |q, (4.1)

where the infimum is taken over all couplings (X̂, Ŷ ) such that X
d= X̂ and Y

d= Ŷ .
For ease of reference, we summarize the properties of dq in the following proposition.

Proposition 4.1. Let X and Y be random variables with finite qth absolute moments. The
Wasserstein distance dq has the following properties.

(Dist) dq(X, Y ) depends only on the marginal distributions of X and Y .

(Inf) The infimum in (4.1) is attained for some coupling.

(Rep) The Kantorovich–Rubinstein representation holds, i.e.

dq(X, Y ) = sup
f∈Fq

|Ef (X)− Ef (Y )|,

where Fq := {f ∈ C(R) : |f (x)− f (y)| ≤ |x − y|q, x, y ∈ R}.
(Hom) dq(cX, cY ) = |c|qd(X, Y ) for c ∈ R.

(Reg) ForX, Y , andZ defined on the same probability space, dq(X+Z, Y +Z) ≤ dq(X, Y )

provided Z ∈ Dq is independent of (X, Y ).
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(Aff) dq(X + a, Y + a) = dq(X, Y ) for a ∈ R.

(Conv) For X,Xn ∈ Dq , the convergence dq(Xn,X) → 0 as n → ∞ implies that Xn
d−→ X

and E|Xn|q → E|X|q .

Proof. We refer the reader to [12] and [23] for most of these facts. To prove (Reg), choose
an independent of Z coupling (X′, Y ′) on which the infimum in the definition of dq is attained.
Then X + Z

d= X′ + Z, Y + Z
d= Y ′ + Z, and the definition of dq entails

dq(X + Z, Y + Z) ≤ E|(X′ + Z)− (Y ′ + Z)|q = E|X′ − Y ′|q = dq(X, Y ).

Property (Conv): the convergence of moments is easy; the rest is a consequence of Lemma 4.1
to follow.

Lemma 4.1. For T > 0 and q ∈ (0, 1], there exists a constant C = CT,q > 0 such that
sup|t |≤T |EeitX − EeitY | ≤ Cdq(X, Y ).

Proof. Assume that the infimum in the definition of dq(X, Y ) is attained on (X̂, Ŷ ). It is easy
to check that |eix − eiy | = 2| sin (x − y)/2| ≤ 21−qMq |x − y|q for q ∈ (0, 1] and x, y ∈ R,
where Mq := supu>0 |sin u|u−q < ∞. Hence,

sup
|t |≤T

|EeitX − EeitY | = sup
|t |≤T

|EeitX̂ − Eeit Ŷ |

≤ sup
|t |≤T

E|eitX̂ − eit Ŷ |

≤ 21−qMq sup
|t |≤T

|t |qE|X̂ − Ŷ |q

= 21−qMqT
qdq(X, Y ),

as required.

5. Proofs

5.1. Proof of Theorem 3.1

Suppose that a = 1. Set an := n−1 log2 n and bn := log n+ log log n for n ∈ N. It suffices
to show that limn→∞ χT (anXn − bn,S1) = 0 for every T > 0. The triangle inequality yields

χT (anXn − bn,S1) ≤ χT (anXn − bn, anNn − bn)+ χT (anNn − bn,S1).

The second term converges to 0 by Proposition 2 of [20] on the stable limit for the number
of renewals. In view of Lemma 4.1, to prove convergence to 0 of the first term, it suffices to
check that limn→∞ dq(anXn − bn, anNn − bn) = 0 for some q ∈ (0, 1], which in view of the
properties (Hom) and (Aff) in Proposition 4.1 amounts to the estimate

dq(Xn,Nn) = o(nq log−2q n) as n → ∞. (5.1)

Now assume that a ∈ (0, 1). By Theorem 7 of [10] we have χT (anNn − bn,S2−a) → 0 for
every T > 0 with an := (1 − a)−1n−1/(2−a) and bn := n(1−a)/(2−a). By the same reasoning
as above, proving Theorem 3.1 for a ∈ (0, 1) reduces to showing that

dq(Xn,Nn) = o(nq/(2−a)) as n → ∞, (5.2)

for some q ∈ (0, 1].
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Using recurrences (3.2) for Xn and (3.5) for Nn, we obtain

tn := dq(Xn,Nn)

= dq(X
′
n−In , N

′
n−(ξ∧n))

≤ dq(N
′
n−In , N

′
n−(ξ∧n))+ dq(X

′
n−In , N

′
n−In)

≤ dq(N
′
n−In , N

′
n−(ξ∧n))+ E|X̂n−In − N̂n−In |q

=: cn +
n−1∑
k=1

P{In = n− k}E|X̂k − N̂k|q

for arbitrary pairs ((X̂k, N̂k))1≤k≤n−1 independent of In such that X̂k
d= Xk and N̂k

d= Nk .
Passing to the infimum over all such pairs leads to

tn ≤ cn +
n−1∑
k=1

P{In = n− k}tk. (5.3)

We will use (5.3) to estimate tn.
First we find an appropriate bound for cn. Let (În, ξ̂ ) be a coupling of In and ξ such

that (recall property (Inf) of Proposition 4.1) dq(In, ξ ∧ n) = E|În − ξ̂ ∧ n|q . Let (N̂k)k∈N

be a copy of (Nk)k∈N independent of (În, ξ̂ ). Since (În, ξ̂ , (N̂k)) is a particular coupling,
we have cn = dq(N

′
n−In , N

′
n−(ξ∧n)) ≤ E|N̂

n−În − N̂
n−(ξ̂∧n)|q . Using the stochastic inequality

Nx+y −Nx
d≤ Ny, x, y ∈ N, yields E|N̂

n−În − N̂
n−ξ̂∧n|q ≤ EN̂

q

|În−ξ̂∧n|. Furthermore, we

obviously have Nn ≤ n; hence, cn ≤ E|În − ξ̂ ∧ n|q = dq(In, ξ ∧ n). Now we invoke the
Kantorovich–Rubinstein representation, property (Rep) of Proposition 4.1, for dq . Set Fq,0 :=
Fq ∩ {f : f (0) = 0}, and note that f ∈ Fq,0 implies that |f (x)| ≤ |x|q, x ∈ R. We have

cn ≤ dq(In, ξ ∧ n)
= sup
f∈Fq

|Ef (In)− Ef (ξ ∧ n)|

= sup
f∈Fq,0

|Ef (In)− Ef (ξ ∧ n)|

= sup
f∈Fq,0

∣∣∣∣
n−1∑
k=1

P{In = k}f (k)−
n−1∑
k=1

P{ξ = k}f (k)− f (n)
∑
k≥n

P{ξ = k}
∣∣∣∣

≤
n−1∑
k=1

|P{In = k} − P{ξ = k}|kq + nqP{ξ ≥ n}.

For appropriate q ∈ (0, 1] (to be specified below) such that a + q > 1, use Lemma A.3
in Appendix A along with the relation P{ξ ≥ n} = O(na−2) to obtain the estimate cn =
O(nq+a−2). With this bound for cn, a O-estimate for tn follows using Lemma A.1.

If a ∈ (0, 1), we can take q = 1. Then Lemma A.1 applies with ψn = n and rn = Mna−1

(large enough M) and gives the estimate dq(Xn,Nn) = O(na), which implies (5.2).
For the case a = 1, application of the same lemma with ψn = n/(log(n + 1)) and rn =

Mnq−1 (large enough M) leads to tn ≤ Mnq(log n)−1. Thus, (5.1) holds for q ∈ (0, 1
2 ). The

proof is complete.
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5.2. Proof of Corollaries 3.1 and 3.2

We follow closely the proofs of Theorem 5.2 and Corollary 6.2 of [8]. In view of

b log2 n

n
Ln − log n− log log n = log2 n

n
Xn − log n− log log n+ log2 n

n
(bLn −Xn),

it is enough to show that ((log2 n)/n)(bLn −Xn) → 0 in L2.
Let the Tj be independent exponential variables with rates λj , j ≥ 2. Assuming that the Tj

are independent of the sequence of states visited by �n, we may identify Tj with the time �n
spends in the state j , provided this state is visited. Given that the sequence of visited states is
n = i0 > i1 > · · · > ik−1 > ik = 1, the total branch length Ln is distributed as

∑k−1
r=0 irTir for

n ∈ N \ {1}.
For k ∈ {1, . . . , n} and î = (i0, . . . , ik) with n = i0 > i1 > · · · > ik−1 > ik = 1, define the

events A
k, î

:={Xn = k, (�n(t0), . . . ,�n(tk)) = î}, where t0 = 0 and t1 < t2 < · · · are the
collision epochs. We have

E(bLn −Xn)
2 =

∑
k, î

P{A
k, î

}E
(k−1∑
r=0

(birTir − 1)

)2

=
∑
k, î

P{A
k, î

}
(k−1∑
r=0

E(birTir − 1)2 +
k−1∑

r,s=0, r �=s
E(birTir − 1)(bisTis − 1)

)
.

Furthermore, λn = bn + O(log n) as n → ∞ for a = 1 and b > 0 (see (A.5) below), which
implies that |E(bkTk − 1)| = O(k−1 log k) and E(bkTk − 1)2 = 1 +O(k−1 log k). Therefore,

E(bLn −Xn)
2 ≤

∑
k, î

P{A
k, î

}
( n∑
r=2

E(brTr − 1)2 +
( n∑
r=2

|E(brTr − 1)|
)2)

=
∑
k, î

P{A
k, î

}(n+O(log4 n))

= n+O(log4 n),

and the convergence in L2 follows. Corollary 3.2 follows from the fact that, given Ln, the
distribution of Mn is Poisson with mean rLn. See Corollary 6.2 of [8] for details.

5.3. Proofs of Theorem 3.2 and Corollary 3.3

Let us verify (3.6) by induction on j ∈ N. From (3.2), it follows that a1 := EX1 = 0 and
an := EXn = 1 + ∑n−1

m=2 p
(1)
n,mam, n ≥ 2. In the following we apply the method of sequential

approximations to the sequence (an)n∈N. The sequence (bn)n∈N, defined via b1 := 0 and
bn := an − n/log n for n ≥ 2, satisfies the recursion

bn = an − n

log n
= 1 +

n−1∑
m=2

p(1)n,m

(
m

logm
+ bm

)
− n

log n
= qn +

n−1∑
m=2

p(1)n,mbm

for n ≥ 2, where qn := 1 − n/log n+ ∑n−1
m=2 p

(1)
n,mm/logm, n ≥ 2. By Corollary A.1 (applied

with α = 1 and p = 1),

qn = 1 − n

log n
+

(
n

log n
− 1 + m1

log n
+O

(
1

log2 n

))
= m1

log n
+O

(
1

log2 n

)
,
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where m1 := cb,1,1 = 2 + �(b). The sequence (cn)n∈N, defined via c1 := 0 and cn :=
bn −m1n/log2 n for n ≥ 2, therefore satisfies the recursion

cn = bn −m1
n

log2 n
= qn +

n−1∑
m=2

p(1)n,m

(
m1

m

log2m
+ cm

)
−m1

n

log2 n
= q ′

n +
n−1∑
m=2

p(1)n,mcm

forn ≥ 2, whereq ′
n := qn −m1n/log2 n+m1

∑n−1
m=2 p

(1)
n,mm/log2m, n≥ 2. By CorollaryA.1

(applied with α = 1 and p = 2),

q ′
n = qn −m1

n

log2 n
+m1

(
n

log2 n
− 1

log n
+O

(
1

log2 n

))
= O

(
1

log2 n

)
,

since qn = m1/log n + O(1/log2 n). By Lemma A.2 (applied with α = 1 and p = 3), it
follows that cn = O(n/log3 n). Thus, (3.6) holds for j = 1. Assume now that j ≥ 2. From
EX

j
In

= E(Xn − 1)j = ∑j−1
i=0

(
j
i

)
(−1)j−iEXin + EX

j
n , it follows that

an,j := EX
j
n =

j−1∑
i=0

(
j

i

)
(−1)j−1−i

EXin + EX
j
In

= qn,j +
n−1∑
m=2

p(1)n,mam,j

for n ≥ 2, where qn,j := ∑j−1
i=0

(
j
i

)
(−1)j−1−i

EXin, n ≥ 2. Since, by induction, for all i < j ,

EXin = ni

logi n

(
1 + mi

log n
+O

(
1

log2 n

))
,

it follows that (the summand for i = j − 1 asymptotically dominates the others)

qn,j = jnj−1

logj−1 n

(
1 + mj−1

log n
+O

(
1

log2 n

))
.

Now apply the method of sequential approximations to the sequence (an,j )n∈N. The sequence
(bn,j )n∈N, defined via b1,j := 0 and bn,j := an,j − nj/logj n for n ≥ 2, satisfies the recursion
bn,j = q ′

n,j + ∑n−1
m=2 p

(1)
n,mbm,j , n ≥ 2, where

q ′
n,j := qn,j − nj

logj n
+

n−1∑
m=2

p
(1)
n,mm

j

logj m
, n ≥ 2.

By Corollary A.1 (applied with α = j and p = j ),

q ′
n,j = j

nj−1

logj−1 n
+ jmj−1

nj−1

logj n
+O

(
nj−1

logj+1 n

)
− nj

logj n

+ nj

logj n
− j

nj−1

logj−1 n
+ κj

nj−1

logj n
+O

(
nj−1

logj+1 n

)

= jmj
nj−1

logj n
+O

(
nj−1

logj+1 n

)
,

where κj := cb,j,j and mj := mj−1 + κj /j . The sequence (cn,j )n∈N, defined via c1,j := 0
and cn,j := bn,j − mjn

j/logj+1 n for n ≥ 2, therefore satisfies the recursion cn,j = q ′′
n,j +∑n−1

m=2 p
(1)
n,mcm,j , n ≥ 2, where q ′′

n,j := q ′
n,j−mjn

j/logj+1 n+mj
∑n−1
m=2 p

(1)
n,mm

j/logj+1m,
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n ≥ 2. By Corollary A.1 (applied with α = j and p = j + 1),

q ′′
n,j = jmj

nj−1

logj n
+O

(
nj−1

logj+1 n

)
−mj

nj

logj+1 n

+mj

(
nj

logj+1 n
− j

nj−1

logj n
+O

(
nj−1

logj+1 n

))

= O

(
nj−1

logj+1 n

)
.

By LemmaA.2 (applied withα := j and withp := j+2), it follows that cn,j = O(nj/logj+2 n).
Thus, (3.6) holds for j , which completes the induction and the proof of Theorem 3.2.

We now turn to the proof of Corollary 3.3. Let us first verify that the sequence (mj )j∈N0 ,
recursively defined in Theorem 3.2, satisfies the inversion formula

j∑
i=0

(
j

i

)
(−1)j−imi = (−1)j

j
B(b, j − 1), j ∈ N \ {1}. (5.4)

Using the formula�(x+1) = �(x)+1/x, x ∈ (0,∞), it is readily checked that κj+1 −κj =
2 +�(b + j), j ∈ N0. For all j ∈ N0, it follows that

κj =
j−1∑
i=0

(κi+1 − κi) =
j−1∑
i=0

(2 +�(b + i)) = 2j +
j−1∑
i=0

�(b + i)

and

mj =
j∑
l=1

(ml −ml−1) =
j∑
l=1

κl

l
=

j∑
l=1

(
2 + 1

l

l−1∑
i=0

�(b + i)

)
= 2j +

j−1∑
i=0

�(b + i)

j∑
l=i+1

1

l
.

(5.5)
By (5.5), for j ∈ {2, 3, . . .},

j∑
i=0

(
j

i

)
(−1)j−imi =

j∑
i=1

(
j

i

)
(−1)j−i

(
2i +

i−1∑
k=0

�(b + k)

i∑
l=k+1

1

l

)

=
j∑
i=1

(
j

i

)
(−1)j−i

i−1∑
k=0

�(b + k)

i∑
l=k+1

1

l

=
j−1∑
k=0

�(b + k)

j∑
l=k+1

1

l

j∑
i=l

(
j

i

)
(−1)j−i

=
j−1∑
k=0

�(b + k)

j∑
l=k+1

1

l

(
j − 1

l − 1

)
(−1)j−l

= 1

j

j−1∑
k=0

�(b + k)

j∑
l=k+1

(
j

l

)
(−1)j−l

= 1

j

j−1∑
k=0

�(b + k)

(
j − 1

k

)
(−1)j−1−k.
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Substituting
(
j−1
k

) = (
j−2
k−1

) + (
j−2
k

)
and reordering with respect to

(
j−2
k

)
leads to

j∑
i=0

(
j

i

)
(−1)j−imi = 1

j

j−2∑
k=0

(−1)j−2−k
(
j − 2

k

)
(�(b + k + 1)−�(b + k))

= (−1)j

j

j−2∑
k=0

(−1)k
(
j − 2

k

)
1

b + k

= (−1)j

j
B(b, j − 1),

where the last equality holds since
n∑
k=0

(−1)k

b + k

(
n

k

)
= B(b, n+ 1)

for all n ∈ N0, which is, for example, readily verified by induction on n ∈ N0. Thus, (5.4) is
established.

Thanks to Theorem 3.2 and the inversion formula (5.4), the proof of Corollary 3.3 is now
straightforward. Basically, the same argument has been used by, e.g. Panholzer [28, p. 277].
Substituting the expansion for the ordinary moments given in (3.6) shows that

E(Xn − EXn)
j

=
j∑
i=0

(
j

i

)
(−1)j−iEXin(EXn)j−i

=
j∑
i=0

(
j

i

)
(−1)j−i ni

logi n

(
1 + mi

log n
+O

(
1

log2 n

))

×
(

n

log n

(
1 + m1

log n
+O

(
1

log2 n

)))j−i

= nj

logj n

j∑
i=0

(
j

i

)
(−1)j−i

(
1 + mi

log n
+O

(
1

log2 n

))

×
(

1 + (j − i)m1

log n
+O

(
1

log2 n

))

= nj

logj n

j∑
i=0

(
j

i

)
(−1)j−i

(
1 + (j − i)m1 +mi

log n
+O

(
1

log2 n

))

= nj

logj n

j∑
i=0

(
j

i

)
(−1)j−i + nj

logj+1 n

j∑
i=0

(
j

i

)
(−1)j−i ((j − i)m1 +mi)

+O

(
nj

logj+2 n

)

= nj

logj+1 n

(−1)j

j
B(b, j − 1)+O

(
nj

logj+2 n

)
,

since
∑j
i=0

(
j
i

)
(−1)j−i = 0,

∑j
i=0

(
j
i

)
(−1)j−i (j − i) = 0, and

∑j
i=0

(
j
i

)
(−1)j−imi =

(−1)j /jB(b, j − 1) for j ≥ 2 by (5.4). This completes the proof of Corollary 3.3.
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Appendix A

For each n ∈ N, let (pn,k)0≤k≤n be an arbitrary probability distribution with pn,n < 1.
Define a sequence (an)n∈N as a (unique) solution to the recursion

an = rn +
n∑
k=0

pn,kak, n ∈ N, (A.1)

with given rn ≥ 0 and given initial value a0 = a ≥ 0.

Lemma A.1. ([14, Lemma 6.1].) Suppose that there exists a sequence (ψn)n∈N such that

(C1) lim infn→∞ ψn
∑n
k=0(1 − k/n)pn,k > 0, and

(C2) the sequence (rkψk/k)k∈N is nonincreasing.

Then an, defined by (A.1), satisfies

an = O

( n∑
k=1

rkψk

k

)
as n → ∞.

Lemma A.2. Let (an)n∈N be a sequence of real numbers satisfying the recursion a1 = 0
and an = qn + ∑n−1

m=2 p
(1)
n,mam, n ∈ N \ {1}, for some given sequence (qn)n∈N\{1}, where p(1)n,m

is defined via (3.4). If qn = O(nα−1/logp−1 n) for some given constants α ∈ (0,∞) and
p ∈ [0,∞), then an = O(nα/logp n).

Proof. Fix some δ such that 0 < δ < α. Set a′
n := |an|/nδ and q ′

n := |qn|/nδ . Then
q ′
n ≤ Mnα−1−δ/logp−1 n =: rn for some M > 0 and all n ≥ 2. Furthermore,

a′
n ≤ q ′

n +
n−1∑
m=2

p(1)n,m
|am|
nδ

≤ q ′
n +

n−1∑
m=2

p(1)n,m
|am|
mδ

= q ′
n +

n−1∑
m=2

p(1)n,ma
′
m ≤ rn +

n−1∑
m=2

p(1)n,ma
′
m.

Set ψn := n/log n. Then both conditions (C1) and (C2) hold. Hence,

a′
n = O

( n∑
k=2

kα−1−δ

logp k

)
= O

(
nα−δ

logp n

)
and |an| = nδa′

n = O

(
nα

logp n

)
.

Lemma A.3. For the first decrement In of the Markov chain (�n) associated with the
beta (a, b)-coalescent (a ∈ (0, 1] and b > 0) and a random variable ξ with distribution
(p
(a)
k )k∈N,

n−1∑
k=1

kq |P{In = k} − P{ξ = k}| = O(na+q−2), (A.2)

whenever 0 < q ≤ 1 and q + a > 1.

Proof. For the beta (a, b)-coalescents, (1.1) reads

λn, k+1 =
∫ 1

0
xk−1(1 − x)n−k−1�(dx) = B(a + k − 1, n− k + b − 1)

B(a, b)
.
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Using the known estimate |�(n+ c)/�(n+d)−nc−d | ≤ Mc, dn
c−d−1, n ≥ 2 and c, d > −2,

for the gamma function (see Formula (6.1.47) of [1]), we obtain(
n

k + 1

)
λn, k+1 =

(
n

k + 1

)
B(a + k − 1, n− k + b − 1)

B(a, b)
(A.3)

= �(n+ 1)�(a + k − 1)�(n− k + b − 1)

�(k + 2)�(n− k)�(n+ a + b − 2)B(a, b)

= �(a + k − 1)

(k + 1)! B(a, b)
(n3−a−b +O(n2−a−b))((n− k)b−1 +O((n− k)b−2)),

uniformly for 1 ≤ k ≤ n− 1 and n ≥ 2.
Using (3.1) with � given by (1.2), we infer (see also Corollary 2 of [13]) that

λn = �(a)

(2 − a)B(a, b)
n2−a +O(n1−a) = �(a)

(2 − a)B(a, b)
n2−a(1 +O(n−1)) (A.4)

when a ∈ (0, 1) and b > 0, and

λn = bn+O(log n) (A.5)

when a = 1 and b > 0. Hence, for 0 < a < 1, b > 0, n ≥ 2, and k = 1, . . . , n− 1,

p
(a)
n,n−k = (2 − a)�(a + k − 1)

�(a)(k + 1)! n1−b((n− k)b−1 +O((n− k)b−2))

(
1 +O

(
1

n

))

= p
(a)
k

((
1 − k

n

)b−1

+O

(
1

n

(
1 − k

n

)b−2))(
1 +O

(
1

n

))

= p
(a)
k

((
1 − k

n

)b−1

+O

(
1

n

(
1 − k

n

)b−2))

= p
(a)
k

(
1 − k

n

)b−1

+O

(
p
(a)
k

1

n

(
1 − k

n

)b−2)
.

Analogously, for a = 1,

p
(1)
n,n−k = p

(1)
k

((
1 − k

n

)b−1

+O

(
1

n

(
1 − k

n

)b−2))
(1 +O(n−1 log n))

= p
(1)
k

((
1 − k

n

)b−1

+O

(
1

n

(
1 − k

n

)b−2)
+O

(
1

n
log n

(
1 − k

n

)b−1))

= p
(1)
k

(
1 − k

n

)b−1

+O

(
p
(1)
k

1

n

(
1 − k

n

)b−2)
+O

(
p
(1)
k

1

n
log n

(
1 − k

n

)b−1)
.

Substituting these expansions into the left-hand side of (A.2) gives

n−1∑
k=1

kq |P{In = k} − P{ξ = k}| ≤
n−1∑
k=1

p
(a)
k kq

∣∣∣∣
(

1 − k

n

)b−1

− 1

∣∣∣∣ + c1

n

n−1∑
k=1

p
(a)
k kq

(
1 − k

n

)b−2

=: S1(a, n)+ S2(a, n) for 0 < a < 1,
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and
n−1∑
k=1

kq |P{In = k} − P{ξ = k}| ≤ S1(1, n)+ S2(1, n)+ c2 log n

n

n−1∑
k=1

p
(1)
k kq

(
1 − k

n

)b−1

=: S1(1, n)+ S2(1, n)+ S3(1, n) for a = 1.

Here and hereafter c1, c2, . . . denote some positive constants whose values are of no importance.
Our aim is to show that Si(a, n) = O(nq+a−2) for i = 1, 2 and S3(1, n) = O(nq−1). By virtue
of p(a)k ≤ c3k

a−3 for all k ∈ N, we infer that

S1(a, n) ≤ c3

n−1∑
k=1

ka+q−3
∣∣∣∣
(

1 − k

n

)b−1

− 1

∣∣∣∣
= c3

[n/2]∑
k=1

ka+q−3
∣∣∣∣
(

1 − k

n

)b−1

− 1

∣∣∣∣ + c3

n−1∑
k=[n/2]+1

ka+q−3
∣∣∣∣
(

1 − k

n

)b−1

− 1

∣∣∣∣
≤ c4

n

[n/2]∑
k=1

ka+q−2 + c3n
a+q−2

(
1

n

n−1∑
k=[n/2]+1

(
k

n

)a+q−3∣∣∣∣
(

1 − k

n

)b−1

− 1

∣∣∣∣
)
,

where the inequality |(1 − x)b−1 − 1| ≤ c5x, x ∈ [0, 1
2 ], has been utilized. The expression

in the parentheses converges to
∫ 1

1/2 x
a+q−3|(1 − x)b−1 − 1| dx < ∞. Hence, S1(a, n) =

O(nq+a−2). Similarly,

S2(a, n) ≤ c6

n

n−1∑
k=1

ka+q−3
(

1 − k

n

)b−2

= c6

n

[n/2]∑
k=1

ka+q−3
(

1 − k

n

)b−2

+ c6

n

n−1∑
k=[n/2]+1

ka+q−3
(

1 − k

n

)b−2

≤ c6

n

[n/2]∑
k=1

ka+q−3
(

1 − k

n

)b−2

+ c6

n−1∑
k=[n/2]+1

ka+q−3
(

1 − k

n

)b−1

= c6

n

[n/2]∑
k=1

ka+q−3
(

1 − k

n

)b−2

+ c6n
a+q−2

(
1

n

n−1∑
k=[n/2]+1

(
k

n

)a+q−3(
1 − k

n

)b−1)

= O(na+q−2),

since the first term is O(n−1) and the second term is O(na+q−2) by the same reasoning as for
S1(a, n). Finally,

S3(1, n) ≤ c7 log n

n

n−1∑
k=1

kq−2
(

1 − k

n

)b−1

≤ c7 log n

n

n−1∑
k=1

kq−2
∣∣∣∣
(

1 − k

n

)b−1

− 1

∣∣∣∣ + c7 log n

n

n−1∑
k=1

kq−2

= O(nq−2 log n)+O(n−1 log n),

in view of the estimate for S1(a, n). Thus, S3(1, n) = O(nq−1). This completes the proof.
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We provide a basic lemma concerning the total rates of the beta (1, b)-coalescent.

Lemma A.4. The total rates λn, n ∈ N, of the beta (1, b)-coalescent are given by

λn = b

n−1∑
k=1

k

b + k − 1
= b(n− 1)− b(b − 1)(�(n+ b − 1)−�(b)), n ∈ N. (A.6)

Moreover, the total rates have the asymptotic expansion

λn = bn− b(b − 1) log n− b + b(b − 1)�(b)+O(n−1) as n → ∞, (A.7)

and the inverse of the total rate λn has the asymptotic expansion

1

λn
= 1

bn

(
1 + (b − 1)

log n

n
+ 1 − (b − 1)�(b)

n
+O

(
log2 n

n2

))
as n → ∞. (A.8)

Proof. Equation (A.6) is known (see, for example, [19, Equation (19)]). Expansion (A.7)
follows from (A.6), since�(n+ b− 1) = log n+O(n−1) as n → ∞. Equation (A.8) follows
from

bn

λn
− 1 − (b − 1)

log n

n
− 1 − (b − 1)�(b)

n

= bn2 − λn(n+ (b − 1) log n+ 1 − (b − 1)�(b))

nλn

= O(log2 n)

nλn

= O

(
log2 n

n2

)
,

where the last equality holds since λn ∼ bn, and the equality before follows by substituting the
λn term in the numerator for the expression given in (A.7) and multiplying everything out.

The next lemma provides asymptotic expansions as n → ∞ for the sum

sn(p, α) :=
n−1∑
m=2

mα

(n−m)(n−m+ 1) logp m
, p ∈ [0,∞), α ∈ R. (A.9)

Lemma A.5. Fix p ∈ [0,∞). Then, as n → ∞, the sum sn(p, α) defined in (A.9) satisfies
sn(p, α) = O(nα/logp n) for α ∈ (−2,∞),

sn(p, α) = nα

logp n

(
1 +O

(
log n

n

))
for α ∈ (−1,∞),

and

sn(p, α) = nα

logp n

(
1 − α

log n

n
+ α�(α)+ p

n
+O

(
1

n log n

))
for α ∈ (0,∞).

For a proof of Lemma A.5, we refer the reader to [16], which is a preprint version of this
article. The following corollary provides an asymptotic expansion which is a key tool in the
proof of Theorem 3.2.
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Corollary A.1. Fix α ∈ [1,∞) and p ∈ [0,∞). For the beta (1, b)-coalescent with parameter
b ∈ (0,∞),

n−1∑
m=2

p(1)n,m
mα

logp m
= nα

logp n

(
1 − α

log n

n
+ cb,α,p

n
+O

(
1

n log n

))
as n → ∞, (A.10)

where cb,α,p := (α + b− 1)�(α + b− 1)+ p+ 1 + (1 − b)�(b) = (α + b− 1)�(α + b)+
p − (b − 1)�(b).

Remark A.1. The following proof shows that Corollary A.1 holds even for the slightly larger
range of parameters α, b ∈ (0,∞) satisfying α+ b− 1 > 0. However, we need Corollary A.1
only for α ∈ [1,∞) and b ∈ (0,∞), in which case α + b − 1 > 0 automatically holds.

Proof of Corollary A.1. Let gnm := λnP{In = n − m} denote the rate at which the block
counting process moves from state n to state m ∈ {1, . . . , n− 1}. It suffices to verify that

n−1∑
m=2

gnm
mα

logp m
= bnα+1

logp n

(
1 − (α + b − 1)

log n

n
+ (α + b − 1)�(α + b − 1)+ p

n

+O

(
1

n log n

))
, (A.11)

since (A.10) then follows from p
(1)
n,m = gnm/λn by multiplying (A.11) with (A.8). Note that

gnm = b
n!

�(b + n− 1)

1

(n−m)(n−m+ 1)

�(b +m− 1)

(m− 1)! , 1 ≤ m < n.

Since the first fraction has expansion

n!
�(b + n− 1)

= 1

nb−2

(
1 −

(
b − 1

2

)
1

n
+O

(
1

n2

))
, (A.12)

it hence suffices to verify that

n−1∑
m=2

1

(n−m)(n−m+ 1)

�(b +m− 1)

(m− 1)!
mα

logp m

= nα+b−1

logp n

(
1 − (α + b − 1)

log n

n
+

(
b−1

2

) + (α + b − 1)�(α + b − 1)+ p

n

+O

(
1

n log n

))
, (A.13)

since (A.11) then follows by multiplying (A.13) with (A.12). Thus, it remains to verify (A.13).
Since, for allm ∈ N and all b ∈ (0,∞), the Pochhammer-like expression�(b+m−1)/(m−1)!
appearing on the left-hand side of (A.13) is bounded below and above by

mb−1 +
(
b − 1

2

)
mb−2 ≤ �(b +m− 1)

(m− 1)! ≤ mb−1 +
(
b − 1

2

)
mb−2 +Kbm

b−3,

where Kb := �(b)− 1 − (
b−1

2

)
, (A.13) follows by substituting these lower and upper bounds

into the left-hand side of (A.13), then applying the last expansion in Lemma A.5 with α replaced
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by α + b − 1 > 0, and noting that

n−1∑
m=2

mα+b−2

(n−m)(n−m+ 1) logp m
= nα+b−2

logp n

(
1 +O

(
log n

n

))

and
n−1∑
m=2

mα+b−3

(n−m)(n−m+ 1) logp m
= O

(
nα+b−3

logp n

)
,

again by Lemma A.5. This completes the proof.
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