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ABSTRACT. Mathematical modeling of ice sheets is complicated by the nonlinearity of the governing
equations and boundary conditions. Standard grid-based methods require complex front-tracking
techniques and have a limited capability to handle large material deformations and abrupt changes
in bottom topography. Consequently, numerical methods are usually restricted to shallow ice-sheet
and ice-shelf approximations. We propose a new smoothed-particle hydrodynamics (SPH) model for
coupled ice-sheet and ice-shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable
and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface
flows, large material deformation and material fragmentation. In this paper, we use the SPH model to
study ice-sheet/ice-shelf behavior, and the dynamics of the grounding line. The steady-state position of
the grounding line obtained from SPH simulations is in good agreement with laboratory observations for
a wide range of simulated bedrock slopes and density ratios, similar to those of ice and sea water. The
numerical accuracy of the SPH algorithm is verified by simulating the plane-shear flow of two immiscible
fluids and the propagation of a highly viscous blob of fluid along a horizontal surface. In the experiment,
the ice was represented with a viscous Newtonian fluid. For consistency, in the described SPH model the
ice is also modeled as a viscous Newtonian fluid. Typically, ice sheets are modeled as a non-Newtonian
fluid, accounting for the changes in the mechanical properties of the ice. Implementation of a non-
Newtonian rheology in the SPH model is the subject of our ongoing research.

INTRODUCTION
Most existing ice-sheet models use grid-based Eulerian
discretizations and are based on various approximations
to a steady-state Stokes equation (Marshall, 2005). The
approximations are associated with the shallowness, namely
the small depth-to-width ratio, of ice sheets to simplify
the equations and reduce computational cost (Bueler and
Brown, 2009). The simplest models use the first-order
shallow-ice approximation (Morland and Johnson, 1980) and
the shallow-shelf approximation (Weis and others, 1999).
Under certain conditions, shallow-ice and shallow-shelf
approximations may lead to significant errors. Examples of
this include: large ice-sheet aspect ratio and/or large bedrock
slope; tidewater glaciers; ice streams; surge dynamics;
the dynamics of flow across the grounding line; and the
dynamics in the vicinity of ice-sheet divides (Marshall,
2005). Recently, several models based on the Stokes equation
or its high-order approximations have been proposed (Bueler
and Brown, 2009; Durand and others, 2009; Pollard and
DeConto, 2009; Price and others, 2011; Seddik and others,
2011; Seroussi and others, 2011), but the presence of the free
surface (ice/air interface) still remains a major computational
challenge for the Eulerian grid-based methods.
We propose a new smoothed-particle hydrodynamics

(SPH) model for coupled ice-sheet and ice-shelf dynamics.
SPH is a fully Lagrangian method that uses meshless (particle)
discretization of the computational domain (Monaghan,
2005). SPH particles are used as discretization points
for solving conservation equations. In the proposed SPH
model, we solve the full momentum conservation equation,
coupled with the continuity equation subject to the free
surface boundary condition at the ice/water interface and

the no-slip boundary condition at the ice/rock interface.
Continuity of velocity and the viscous stress are imposed
at the ice/water interface. Lagrangian particle methods do
not require interface-tracking algorithms for modeling free-
surface (e.g. Monaghan, 1994; Tartakovsky and Meakin,
2005) and moving boundary (multiphase) problems (e.g.
Colagrossi and Landrini, 2003; Tartakovsky and others, 2007,
2009). In SPH, each fluid has its own set of particles and
there is no need to define the interface. This makes SPH very
efficient for ice-sheet modeling.
The marine ice sheets terminate in the ocean and exhibit

a balance between snowfall inland and calving of icebergs
into the ocean. Ice sheets thin as they flow toward the
ocean and eventually detach from the bedrock to form
freely floating ice shelves. The location of the detachment is
called the grounding line. Recently, a laboratory experiment
was performed by Robison and others (2010) to explore
the dynamics of the grounding line between marine ice
sheets and the freely floating ice shelves into which they
develop. In this experiment, the ice sheets and shelves were
represented by a viscous Newtonian fluid flowing down
a ramp into a tank containing a denser and much less
viscous fluid. The viscous fluid floated off and formed a shelf
at the grounding line, which proceeded steadily (without
retreating) and eventually reached a steady position. The
experiment captures the fundamental dynamical properties
of flow across a grounding line between a horizontal shear-
dominated ice sheet and an extensional deviatoric shear-
dominated ice shelf. We use the SPH model to simulate
processes studied in the experiment, and we find excellent
agreement between the steady positions of the grounding line
obtained numerically and experimentally for a wide range of
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ramp (bedrock) slopes, density ratios and ice-sheet flow rates.
Numerical results also agree with theoretical prediction for
the location of the grounding line obtained by Robison and
others (2010).
In order to obtain a consistent comparison with the experi-

mental data, in the SPH model the ice sheet and ice shelf are
modeled as a viscous Newtonian fluid. In reality, ice sheets
have a complex rheology and are traditionally modeled as a
non-Newtonian fluid with rheology represented by Glen’s
power law (Huybrechts and others, 1996; Goldsby and
Kohlsted, 2001). However, the rheology of the ice sheet and
ice shelf primarily affects the vertical velocity profiles within
them, and the effect of the rheology on the depth-averaged
quantities and position of the grounding line is unknown.
Implementation of the non-Newtonian rheology in the SPH
method is relatively straightforward (Shao and Lo, 2003;
Hosseini and others, 2007). The effect of the non-Newtonian
rheological properties of ice on the ice-sheet dynamics is a
subject of our ongoing research.
This paper is organized as follows. First we describe

the SPH model. Next, the model is verified against finite-
difference and analytical solutions for the plane-shear flow of
two immiscible fluids and the propagation of gravity current
along a rigid solid surface. Finally, we compare the dynamics
of the grounding line obtained from SPH simulations with the
laboratory experiment of Robison and others (2010).

SPH DISCRETIZATION OF THE NAVIER–STOKES
AND CONTINUITY EQUATIONS
SPH equations of motion
In the proposed model, the SPH method is used to discretize
the governing Navier–Stokes and continuity equations. SPH
uses a meshless (particle) discretization of the computational
domain (see Monaghan, 2005, for a review). The SPH
interpolation scheme, A(r) =

∑
i
mi
ρi
AiW (r − ri ,h), allows

approximation of a continuous field, A(r), using the values
of A at a set of discretization points. Here ri is the position
of discretization point i, Ai = A(ri ), and ρi and mi are the
density and the mass of the phase associated with point i.
Because each point possesses a mass and volume, mi/ρi ,
it is natural to think of discretization points as physical
particles.W is the bell-shaped SPH weighting function with
compact support kh (W (|r − ri | > kh, h) = 0), where |r|
is the magnitude of a vector r, the value of k depends on
a functional form of W and h depends on position r. The
interpolation scheme assumes summation over all the SPH
particles within a distance kh of r. We choose a cubic spline
kernel, which is defined as

W (r,h) =
aD
hD

⎧⎨
⎩
1− 3

2x
2 + 3

4x
3 0 ≤ x ≤ 1

1
4 (2− x)3 1 < x ≤ 2
0 x > 2,

(1)

where x = |r|/h, D is the spatial dimension and aD is a
constant that assures proper normalization of the smoothing
function (aD = 2/3, 10/7π and 1/π for D =1, 2 and 3,
respectively). Here only particles within 2h of the central
particle contribute to the smoothing kernel, which is with
continuous second derivatives for all r . The gradient of the
kernel is

∇W (r,h) = ∇|r| aD
hD+1

⎧⎨
⎩

9
4x

2 − 3x 0 ≤ x ≤ 1
− 3
4 (2− x)2 1 < x ≤ 2

0 x > 2.
(2)

The SPH approximation of continuous fields and their
spatial derivatives allow the continuity and Navier–Stokes
equations to be written in the form of a system of ordinary
differential equations (Monaghan, 2005):

dρi
dt

= ρi
∑
j

mj
ρj
vij · ∇iW

(
rij , h̄

)
, (3)

dvi
dt

=−
∑
j

mj

(
Pi + Pj
ρiρj

+ 0.08

∣∣∣∣Pi + Pjρiρj

∣∣∣∣
∣∣∣∣ρ10 − ρ20
ρ10 + ρ20

∣∣∣∣+Πij
)

×∇iW
(
rij , h̄

)
+ g, (4)

where

Πij = −11215
vij · rij
|rij |

2μiμj(
μi + μj

)
hρiρj

, (5)

rij = ri − rj , vij = vi − vj , h̄ = (hi + hj )/2, Pi is the
fluid pressure and μi is the fluid viscosity at position ri ; ρ10
and ρ20 represent the reference densities of fluids 1 and 2,
respectively. In Eqn (4), the first term inside the summation
is a repulsive force acting between particles i and j that
is obtained from the discretization of the pressure gradient
term in the Navier–Stokes equation. The second term is a
repulsive force that is needed only if the density difference
between two fluids is large (e.g. a density ratio of 5 to 10 or
more (Monaghan, 1994)). The third term is the viscous force
defined in Eqn (5). The attractive feature of Eqn (4) is that the
forces have antisymmetric form with respect to indexes i and
j (forces acting between the SPH particles satisfy Newton’s
third law). Because of this, Eqn (4) satisfies the linear and
angular momentum conservation laws exactly.
Ice, water, bedrock and the ocean bottom are represented

by different sets of particles with different masses, viscosities
and densities. In Eqns (3) and (4),

∑
j indicates summa-

tion over all neighboring particles of particle i. Particles
representing solid walls are fixed in space. They enter into
the calculation of the densities of fluid particles (Eqn (3))
and forces acting on the fluid particles (Eqn (4)). v is the
fluid velocity vector, P is the pressure, g is the gravitational
acceleration vector and Π is the artificial viscosity.
For computational efficiency, we approximate an incom-

pressible fluid as a slightly compressible fluid. The equation

of state, Pi = P0
[(
ρi/ρ0

)7 − 1], was used to close the
system of Eqns (3) and (4). In the equations of state, ρ0 is the
reference density, and P0 is the magnitude of pressure given
by 7P0/ρ0 = 25V 2max = c2i . Here ci is the speed of sound
of particle i. This equation of state limits the relative density
fluctuation to Vmax/c2i = 1/25. Under such conditions, the
SPH fluids behave like incompressible fluids.
One layer of solid (boundary) particles is placed along

the fluid/solid boundary, and forces acting between the
boundary particles and fluid particles near the boundary
are added to Eqn (4) to ensure that the normal velocity is
zero (Monaghan and Kajtar, 2009). To satisfy the no-slip
boundary condition, the boundary particles are included in
the calculation of viscous forces acting on the fluid particles.
The boundary force is calculated as

Fbi =
∑
j

V 2max
2mj

mi +mj
W b

(
rij , h

) rij
|rij |

1
|rij | −Δpb

, (6)
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Table 1. Parameters of the two fluids

Fluid ν = μ/ρ ρ

m2 s−1 kgm−3

1 0.001 1500
2 0.01 1300

where particle j is the neighbor boundary particle of fluid

particle i, W b(r,h) = 1
8

(
1 + 3

2
|r|
h

)(
2− |r|

h

)3
for |r|/h ≤ 2

is proportional to a Wendland one-dimensional (1-D) cubic
kernel. The boundary particle spacing, Δpb, is less than the
fluid particle spacing by a factor of 2 or more. Monaghan
and Kajtar (2009) demonstrated that for Δpb satisfying this
condition, the total boundary force on a fluid SPH particle
acts in the direction perpendicular to the boundary within a
negligible error.
Finally, the smoothing length, h, determines the resolution

and the number of neighbors that contribute to the properties
at a point. The efficiency and the accuracy would therefore
be greater if h was chosen so that it depended on the local
particle number density. Typically, hi is calculated from

dhi
dt

= −
(
hi
Dρi

)
dρi
dt
, (7)

where D is the number of dimensions (Monaghan, 1992).
A symmetric kernel is obtained by replacing h with the
arithmetic mean of the smoothing lengths for the two
particles as h = (hi + hj )/2 (Monaghan, 1992).

Integration and time-stepping
The second-order leapfrog integrator is used to integrate the
SPH equations of motion. For known position, r, velocity, v,
and acceleration, f, at time t , the leapfrog integrator gives
the positions and velocities at time t +Δt as

ri
(
t + Δt

2

)
= ri (t ) + Δt

2 vi (t )
vi
(
t + Δt

2

)
= vi (t ) + Δt

2 fi
(
t − Δt

2

)
vi
(
t +Δt

)
= vi (t ) + Δt fi

(
t + Δt

2

)
ri
(
t +Δt

)
= ri

(
t + Δt

2

)
+ Δt

2 vi
(
t +Δt

)
.

(8)

The smoothing length, hi (t ), and density, ρi (t ), are integrated
as

ρi
(
t + Δt

2

)
= ρi (t ) + Δt

2 Ri (t )

hi
(
t + Δt

2

)
= hi (t )

[
1− 1

Dρi
(
t+Δt

2

) Δt
2 Ri (t )

]
ρi
(
t +Δt

)
= ρi

(
t + Δt

2

)
+ Δt

2 Ri (t )

hi
(
t +Δt

)
= hi

(
t + Δt

2

)
/
[
1 + 1

Dρi (t+Δt )
Δt
2 Ri (t )

]
,

(9)

where Ri (t ) = dρi (t )/dt .
With this integrator, it is crucial that the time-step size is

chosen correctly, both to ensure the accuracy of the evolution
and to ensure numerical stability. The time-step is chosen as
the minimum of the Courant–Friedrichs–Lewy condition,

Δt ≤ min
ij

2h
ci + cj

, (10)

the viscosity condition (Cleary and Monaghan, 1999),

Δt ≤ 0.1min
ij

h2
(
ρi + ρj

) (
μi + μj

)
4μiμj

, (11)

and the boundary force condition (Monaghan and Kajtar,
2009),

Δt ≤ min
ij

|rij −Δpb|
Vb

, (12)

where Vb = max
(|vij |,Vmax).

NUMERICAL RESULTS
To verify our SPH algorithm we applied two tests: (1) the
plane-shear flow of two fluids with different densities and
viscosities, a fixed, no-slip, horizontal bottom boundary and
an upper free surface; and (2) the evolution of a blob of
viscous fluid spreading along a horizontal boundary.

Plane-shear flow of two fluids
We study a two-dimensional (2-D) plane-shear flow of two
immiscible fluids with a free surface. A layer of fluid 1 is
bounded by an impermeable plane boundary at the bottom
moving with velocity u0 and a layer of fluid 2 at the top. The
shear flow is initiated by a sudden stop of the bottom plane.
For this problem, the (2-D) Navier–Stokes and continuity
equations can be reduced to 1-D equations:

ρ1
∂u(t ,y )

∂t = μ1
∂2u(t ,y )
∂y2 0 < y < 0.5

ρ2
∂u(t ,y )

∂t = μ2
∂2u(t ,y )
∂y2 0.5 < y < 1, (13)

subject to initial and boundary conditions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(t , y ) = u0 at 0 ≤ y ≤ 1 t = 0
u(t , y ) = 0 at y = 0 t > 0
∂u
∂y = 0 at y = 1 t > 0

μ1
∂u
∂y = μ2

∂u
∂y at y = 1

2 t > 0.

(14)

The parameters of the two fluids are given in Table 1. We use
the SPHmodel to solve the 2-D continuity and Navier–Stokes
equations and use finite-difference (FD) solutions of Eqns (13)
and (14) to verify the SPH solution. The FD scheme has first-
order accuracy in time and second-order accuracy in space
and has the grid size Δy = 0.005. In the SPH simulations,
pressure and velocity are assumed to be periodic in the x-
direction. The computational domain in the x-direction is
set to 10h (to avoid the effect of the periodic boundary
condition), and SPH particles exiting domain at x = 10h
with velocity vi are returned in the domain at x = 0 with
the same velocity. Figure 1 compares an SPH solution of
the continuity and Navier–Stokes equations, obtained with
different resolution, Δp, with a FD solution of the equivalent
1-D Eqns (13) and (14) for three different times. In the
SPH solution, Δp is the initial spacing between the SPH
particles. The figure shows that SPH solutions approach the
FD solution with decreasing Δp (increasing resolution of the
SPH solution). Figure 2 shows the L2 relative error versus Δp
at three times. At t = 40.7 s, the error is found to decrease
as Δp1.0, while at t = 309.3 s it decreases as Δp1.5, and at
t = 773.2 s the error decreases as Δp0.6. We find that the
shear free surface flow is simulated accurately by the SPH
model and the accuracy is improved with increasing spatial
resolution.

Gravity current along a rigid surface
Next, we study a viscous gravity current propagating over a
rigid horizontal surface, a problem that is often used to verify
ice-sheet codes (Bueler and others, 2007). This test imitates
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Fig. 1. The velocity profiles of the flow at different times.

a volume of ice that spreads as a sheet over a horizontal
surface under gravity. In the absence of surface tension, this
problem allows a 2-D analytical solution (Huppert, 1982).
We simulate the gravity current propagation with the SPH
model in two dimensions and use the analytical solution to
verify the SPH model.
The analytical solution is obtained using the lubrication-

theory approximation as follows. A current of density ρ is
considered to be propagating over a rigid horizontal surface
with depth H(x, t ). Here the vertical velocities are negligibly
small and the pressure is hydrostatic. The balance between
the pressure gradient and the viscous forces then gives the
governing nonlinear partial differential equation for H(x, t )
(Huppert, 1982):

∂H
∂t
− 1
3
g
ν

∂

∂x

(
H3

∂H
∂x

)
= 0, (15)

where ν is the kinematic viscosity of the viscous fluid. For
an incompressible fluid the continuity equation yields∫ L

0
H(x, t ) dx ≡ q, (16)

where q is the constant volume of the current. A similarity
solution of H(x, t ) can be found in terms of the similarity
variable (Huppert, 1982),

η =
(
1
3
gq3/ν

)1/5
xt−1/5, (17)

and the solution is then expressed as (Huppert, 1982)

H(x, t ) = η
2/3
L

(
3q2ν/g

)1/5
t−1/5φ

(
η/ηL

)
, (18)

where ηL is the value of η at x = L(t ), and L(t ) satisfies
H(L, t ) ≡ 0. The function φ(y ) with y = η/ηL satisfies(

φ3φ′
)′
+
1
5
yφ′ +

1
5
φ = 0, (19)

and

ηL =

(∫ 1

0
φ(y ) dy

)−3/5
. (20)
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Fig. 2. The L2 relative error of the velocity.

The analytical solution of Eqns (19) and (20) is obtained as:

φ(y ) =
(
3
10

)1/3 (
1− y2

)1/3
and ηL = 1.411 · · · . (21)

Figure 3 compares the ice-sheet thickness over time,
H(x, t ), obtained from the SPH simulation and the analytical
solution at different times. Figure 4 shows the margin length,
L(t ), as function of time obtained analytically, and from
the SPH simulations with different resolutions. These figures
demonstrate that the SPH solution converges to the analytical
solution with decreasing Δp (increasing resolution).

Dynamics of the grounding line
To demonstrate the capabilities of the SPH ice-sheet
model, we use the model to investigate the dynamics of
the grounding line, and compare it with the laboratory
observations of Robison and others (2010) and their
theoretical prediction.
In Robison and others’ (2010) laboratory experiment, a

Newtonian viscous fluid (golden syrup) was supplied from
a reservoir onto a ramp, down which it flowed into a tank
filled with aqueous potassium carbonate solution. The syrup
is more viscous but less dense than potassium carbonate
solution and is able to float on the top of the ‘ocean’. A
constant head of golden syrup was maintained in the supply
chamber. The flux rate was adjusted by altering the head
height. At a certain point (the grounding line) along the
ramp, the syrup floated off and formed a shelf. A side-view
camera was used to record and measure the positions of the
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Fig. 3. The surface profile of the ice sheet over time as the sheet
spreads under gravity. The dashed curves represent the solution of
Huppert (1982). Here, L0 is the initial margin length and Δp is the
initial particle spacing.
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Fig. 4. Length of the ice sheet as a function of time obtained
analytically and from SPH simulations with different initial particle
spacing, Δp.

grounding line. The grounding line was found to move down
the ramp but eventually reach a steady position.
By approximating the flow of an ice sheet as shear-

dominated and the flow of ice shelves as extensional with
zero shear to leading order, Robison and others (2010)
obtained an approximate analytical solution for the steady
position of the grounding line,

xG = (A + ε)−1, (22)

where the dimensionless grounding line

xG = 2BC
4x (23)

and

A = 2α
(
g ′/g

)−1/2
, B =

(
6νq0/g

)1/3
,

C = (g/g ′)1/6, ε = 2α
(
g ′/g

)1/2 (
ρw/ρ

)
. (24)

Here α is the bed slope, g is the gravity acceleration,
g ′ = g (ρw − ρ)/ρw is the reduced gravity and ρ and ν
are the density and kinematic viscosity of the viscous fluid,
respectively; ρw is the density of the dense fluid and q0 is the
flux of viscous fluid.
The set-up of a typical simulation is illustrated in Figure 5,

which has the same dimensions as the laboratory set-up of
Robison and others (2010). Viscous light (gray) fluid flows
down a rigid ramp with slope α into the denser but less
viscous ‘ocean’ (blue). The gray fluid is supplied through a
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−0.1

−0.05
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y 
(m

)

Fig. 5. The set-up used in our simulation. A viscous light fluid (gray)
flows down onto a ramp and into a dense fluid (blue).
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Experiment (Robison and others, 2010)

x
G

 = 2.61(A +ε)−1.05
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0

 = 1.0 cm2 s−1)

SPH simulation (q
0

 = 12.0 cm2 s−1)

Fig. 6. The steady positions of the grounding line calculated in our
simulations, compared with those measured in the experiment of
Robison and others (2010). Different densities, ρ, and bed slopes,
α, were chosen according to the values used in the experiment
(Table 2) for varied values of A+ ε. xG is dimensionless, as defined
in Eqn (23).

funnel from a reservoir where a constant level of fluid is
maintained. An overflow tank is attached on the right to keep
the constant ‘sea level’.
To initialize a simulation, the particles were placed on

the vertices of a grid of squares with lattice size Δp. Gray
particles were placed inside the reservoir and the funnel, and
blue particles were placed inside the basin. The overflow
tank was initially empty. One layer of ‘boundary’ particles
was placed along the solid boundary (the dark gray line) with
spacing Δpb = Δp/3. At time t = 0, gravity drove the fluid
particles (gray) to flow down the ramp and into the basin
of blue particles. The flux of gray particles was controlled
with the friction force, −kvi, added into the momentum
conservation, Eqn (4), for all particles within the funnel. The
constant level of viscous fluid in the reservoir wasmaintained
by inserting gray particles whenever the level drop exceeded
Δp. The number of particles in the simulations ranged from
15000 to 20 000, and the CPU time was ∼4hours on
a standard single-processor desktop computer. The typical
time-step used in the simulations was Δt = 0.0001s.
Figure 6 compares the steady position of the grounding

line obtained from the SPH simulations and measured in the
experiment (Robison and others, 2010). The good overall
comparison between numerical and experimental results
indicates that the SPHmodel accurately captures the position
of the contact line for a wide range of slopes, fluxes and
density ratios.

Table 2. Values used for the input parameters in the grounding line
simulations

α ν νw ρ ρw

m2 s−1 m2 s−1 kgm−3 kgm−3

0.08–0.25 0.01 0.001 1300–1495 1500
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The convergence of the simulation was also examined.
The position of the grounding line as a function of time
was calculated at different spatial resolutions, Δp. In all
the simulations, the position of the grounding line increased
with time to an asymptotic value. Figure 7 shows that the
asymptotic values (the steady-state position of the grounding
line) converge with decreasing Δp.We find that a sufficiently
accurate value of the steady position of the grounding line
can be obtained with Δp = 0.026, and we chose this
resolution for all the simulations.
The black solid curve in Figure 6 is a linear fit to the

experimental data, has a slope −β = −1.05 and follows
a scaling law:

xG = γ(A+ ε)−β. (25)

The position of the grounding line, xG, obtained from the SPH
simulations has a similar scaling behavior, with β = 1.1. The
slight discrepancy in the values of β for experimental and
numerical data and the significant scatter of the experimental
data around the line given by Eqn (25) can be explained
by several factors. The SPH simulations are 2-D, while the
experiments are 3-D. In the experiment, the side-walls of the
tank exert viscous shear stresses on the fluid, and, in some
experiments, propagation of the syrup on the water surface
was unstable (fingering of the syrup was observed). Both
the experimental and numerical data show scaling behavior
similar to the power law, Eqn (22), obtained theoretically by
Robison and others (2010). However, the theory results in
γ = 1, while both the experimental and numerical results
predict γ ≈ 3. This discrepancy can be explained by the
shallow-ice approximation used in the theoretical model.

CONCLUSIONS
A SPH model for ice-sheet dynamics was developed. The
model was verified using analytical and numerical solutions
for plane-shear flow of two immiscible fluids and the
propagation of a gravity current along a rigid solid surface.
The SPH simulations converge to exact solutions with
sufficient spatial resolution.We have shown that the essential
dynamics of marine ice sheets can be captured by SPH
simulations. The SPH model was validated using data from
an experiment of Robison and others (2010), mimicking the
flow of an ice sheet and ice shelf. The experimental and
numerical results show the migration of the grounding line
between a grounded sheet and a freely floating shelf toward
a steady position. The steady-state positions of the grounding
line, obtained from the SPH simulations and the laboratory
experiments, agree well for a wide range of bedrock slopes,
density ratios and ice-sheet fluxes.
Typically, ice sheets are modeled as a non-Newtonian fluid

(Huybrechts and others, 1996; Goldsby and Kohlsted, 2001),
accounting for nonlinear dependence of the deviatoric stress
on the strain rate. While in contact with bedrock, the flow
of an ice sheet is resisted by shear stresses, both internal
and at its base. However, beyond the grounding line, the ice
shelf is characterized by a weak internal straining flow, with
negligible tangential stress exerted upon it by the air above
it or the ocean beneath. The effect of the non-Newtonian
rheological properties of ice on the ice-sheet dynamics is
the subject of our ongoing research.
Several important processes, such as basal melt-

ing/freezing, ice accumulation and basal sliding were absent
in the experiments of Robison and others (2010). Including
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Fig. 7. The position of the grounding line as a function of time
calculated at different spatial resolutions, Δp. All the variables are
made dimensionless by Eqn (23).

these processes in the SPH ice-sheet model is the subject
of our future research. An SPH framework for modeling
melting/freezing processes was proposed by Monaghan and
others (2005). The SPH deposition model for mineral growth
of Tartakovsky and others (2007, 2008) can be used to model
ice accumulation due to precipitation. Basal sliding in the
SPH model can be modeled by prescribing the basal sliding
velocity to the boundary particles. Implementation of a Robin
boundary condition, which is commonly used in ice-sheet
models to describe basal sliding (Gagliardini and others,
2007), in SPH is described by Ryan and others (2010).
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