
Can. J. Math., Vol. XXVIII, No. 6, 1976, pp. 1320-1331 

REPRESENTING RANK COMPLETE 
CONTINUOUS RINGS 

DAVID HANDELMAN 

Given a suitable regular ring R, we construct a sheaf-like representation for 
R as a ring of continuous sections from a completely regular space to an appro
priately toplogized disjoint union of factor rings corresponding to ''extremal" 
pseudo-rank functions. Applied to rings which are complete with respect to a 
rank function this representation is an isomorphism, the completely regular 
space is extremally disconnected and compact, and the * 'stalks" are the simple 
factor rings. These factor rings are discrete exactly if they are artinian, so the 
construction is not generally a sheaf. In particular, this yields an isomorphic 
representation for continuous geometries complete with respect to a (lattice) 
valuation, in terms of the simple homomorphic images. 

Let R denote a (von Neumann) regular ring. A pseudo-rank function [6] N, 
on R is a function N : R —•> [0, 1], satisfying 

N(l) = 1 

N(rs) ^ N(r), N(s) 

N(e + / ) = N(e) + N(f) if e, f are orthogonal idempotents. 

As a consequence, if aR < bR (for a, b G R, as right /^-modules) then N(a) ^ 
N(b); in general N(r + s) ^ N(r) + N(s), so N induces a uniform topology 
given by the pseudo-metric dN, dN(x, y) = N(x — y). If {TV} is a family of 
pseudo-rank functions on R, we shall abuse our terminology and refer to the 
uniform topology with gauge {dN}, as the topology induced by {N\. 

A pseudo-rank function N is called a rank function if dN is a metric, i.e. 
N(r) = 0 implies r = 0. 

We denote by P(i£), the collection of pseudo-rank functions on R. P(R) is a 
subset of [0, l]R. Endowed with the relative product topology (equivalently, 
the point-open topology) P(R) becomes a compact, convex subset of [0, 1]R 

([6, Lemma 7]). We denote by E(R) or E, the collection of extremal points of 
P(i^). If P(R) is non-empty, the Krein-Milman theorem tells us P(i?) is the 
closure of the convex hull of E(R)> so in particular E(R) is non-empty. 

If N e P(R), then ker N = {r G R\N(r) = 0} is a two-sided ideal (since 
N(r + s) ^ N(r) + N(s)\ N(rs) S N(r), N(s)). We define RN to be R/kevN. 
Then N induces a rank function on RN ([6, Lemma 5]), which we shall also 
call N. 
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If R is a regular ring with a rank function TV, the completion of R a t TV 
(i.e. a t the metric dN) is a regular ring ([8]). U N £ F(R), N £ E(R) if and 
only if the completion of RN a t TV is simple ([6, Corollary 20]). 

Let us form the disjoint union A = \JNCERN- Each r in R induces a function 
r : £ —> A, defined by r (TV) = r + ker TV Ç i ^ . We want to topologize yl so 
the relative topology on RN is the TV-induced topology, so RN becomes a 
topological ring in the relative topology, and so tha t r is continuous. To do so, 
wre first define a (metric) topology on R. 

Each r in R gives rise to a function r : P(R) —> [0, 1], r(N) = N(r). Now 
P(i^) is compact, so it seems reasonable to impose the topology of uniform 
convergence on R. 

At this point, it is necessary to impose additional conditions on R. 
1) R is unit-regular (for all r £ R, there exists a unit u with rwr = r; see 

[8] for the effect this assumption has) . In particular this gurantees 
P ( V M ) 9e 0 for any proper two-sided ideal M of R. 

2) Given nonzero r in i^, there exists TV £ P(i^) with TV(r) > 0. This is 
equivalent to the map r —> r being one to one ; as we are planning to 
represent R via A, this assumption is necessary. All known regular rings 
satisfying 2) are unit regular. 

Define the function TV* : R - » [0, 1] ([11]) by 

N*(r) = Inf {m/n\n(rR) < mR,n > 0} 

(we are using the convention tha t if i f is a module, then nM denotes a direct 
sum of n copies of M; if M' is another module M < M' indicates M is isomor
phic to a submodule of M'). 

By [8, Lemma 3.1, Theorem 3.2], for all r in R, N*(r) = supNeP(R)N(r), and 
there exists TVr Ç P(-R) with Nr(r) = N*(r). I t follows from the supremum 
formula, tha t TV*(r + s) ^ TV*(r) + N*(s), N*(rs) S N*(r), TV*(s), and 
TV*(1) = 1. Thus TV* is a (pseudo-) lower rank function ([11]), and it induces a 
pseudo-metric d*, with respect to which R becomes a topological ring, 
d*(x, y) = TV*(x - y). 

A collection of pseudo-rank functions on R, U C P ( ^ ) is said to be a 
Hausdorff family ([7]) if for all r nonzero in R, there exists TV G U 
with TV(r) > 0. Obviously R satisfies assumption 2) above if and only ~P(R) is 
itself a Hausdorff family. By [8, Theorem 5.1], unit regular R possesses a 
Hausdorff family (equivalently, 2) is satisfied) if and only if TV*(r) > 0 for 
all nonzero r in R; i.e. d* is a metric. 

LEMMA 1. Let R be a unit regular ring, and K a subset of P(R) that is also a 
Hausdorff family. 

(a) The topology of uniform convergence on K is the same as the topology of 
uniform convergence on the closure of the convex hull of K. 

(b) / / K is compact, the function NK* defined by NK*(r) = sup^^TV^) 
induces a metric dK, dK(x, y) = NK*(x — y), which metrizes the topology 
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of uniform convergence on K. Finally, given r in R, there exists TV G K 
with N(r) = NK*(r). 

(c) If K is both compact and convex, then if E{K) is the collection of extremal 
points of K, NK*(r) = supN^E(K)N(r), and if E(K) is itself compact, for 
allr G R there exists TV G E(K) with N(r) = NK*(r). 

Proof, (a) is trivial. 
(b) Each r in R induces f : K —> [0, 1] continuous. So we have a collection 

of functions in C(K, [0, 1]) topologized by uniform convergence. As is well-
known, this topology is the same as the sup-norm topology, which here is 
re-interpreted as NK*. 

Choose r in R. The function f : K —» [0, 1], f(N) = N(r) is a continuous 
function from a compact space to [0, 1]. T h u s the supremum is obtained, i.e. 
there exists Nr G K with r(NT) = supNeKr(N); i.e. Nr(r) = NK*(r). 

(c) By the Krein-AIilman Theorem, K is the closed convex hull of E(K). 
Pick, r in R. There exists TV G K with N(r) = NK*(r). If sup^^c^o 
NK*(r) - 6, for some e > 0, then for all M G cvx E(K), M{r) S NK*(r) - e. 
Now V = {M £ K\M{r) > Nk*r) — e/2\ is a (relatively) open neighbour
hood of N in K, bu t V (^ cvx E(K) = 0, contradict ing the Krein-AIilman 
theorem. Thus supN^E(K)N(r) ^ NK*(r) which by (b) gives equali ty. The final 
s ta tement is a consequence of the final s ta tement of (b). 

COROLLARY 2. If the regular ring R possesses a Hausdorff family of pseudo-
rank functions, then the topology of uniform convergence {as functions P(R) —> 
[0, 1]) is metrizable, and determined by the lower rank function TV*. 

I t is clear t ha t R is a topological ring in the N* metric. Finally, we may pu t 
a topology on A = U A ^ U ) ^ . There is a map 

RxE^A 

(r, N) -> r + ker N G RN. 

P u t the product topology on R X E, and the strong a topology on A (the 
strongest topology on A which allows a to be cont inuous) . I t follows auto
matically t ha t for each r in R, the function E —> A, N —> r + ker N is con
tinuous, and for each TV G E(R), the map R —> A,r —> r + ker TV is continuous. 
I t is clear t ha t the image of R under this lat ter map, RN, has the TV-induced 
metric topology as its relative topology. 

Let r = T(E, A) denote the ring of sections (i.e. continuous maps s : E —> A 
such t ha t s (TV) G RN for all TV G E). The map R —> T is continuous by the 
topology on A. (r(N) = r + ker TV G RN). 

COROLLARY 3. Let R be unit regular. The map R —» T is one to one if and only 
if R possesses a Hausdorff family of p s eudorank functions. 

We assume R does have a Hausdorff family, and identify R with a subring 
of r. 
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Now r is itself a topological ring: every N Ç E(R) extends uniquely to T 
in the obvious manner y—*y(N). We may define an iV*-type norm on T, 
namely 

TV* (7) = supNeEy(N). 

I t is clear t ha t this iV* restricted to (the image of) R is just the original N*, so 
there is no ambiguity in the notat ion. 

Of course we want to determine when R — T. There are two difficulties: the 
first is t ha t E need not be compact, and so the representation would not be very 
satisfactory (however, it turns out tha t if R is iV*-dense in F, and E is totally 
disconnected, then E is compact) . In this case, some sort of representation is 
available via the Stone-Cech compactification. 

The second problem is t ha t E(R) need not be totally disconnected. There is, 
however, a situation where these problems are overcome. 

Let R be a unit regular ring with a Hausdorff family of pseudo-rank func
tions. Suppose R satisfies 

(*) for all N, M £ E(R), N j* M, there exists a central element r in R with 
r Q ker N, r £ ker M. 

This condition is satisfied, if for example, R is directly finite and self-injective, 
or if R is strongly regular. We will show, if R satisfies (*), then E is compact , 
total ly disconnected, and R is 7V*-dense in r . 

LEMMA 4. (effectively in \7, Theorem 6.5]) Let R be a unit regular ring. Let 
B(R) denote the (Boolean algebra of) central idempotents of R, and X = X(R) 
the Stone space of B(R). Then there is a map 

E(R)ÂX(R) 

N-^kerNHB(R). 

This map is continuous and onto. If E is compact, /3 is open. 

Proof. Clearly ker N f~\ B(R) is an ideal of B(R) (even though the ring 
operations in B(R) are distinct from those of R). The map R —» RN = R/^vN 

induces a nonzero Boolean algebra map B{R)/ker^ HB(R) —> B(RN). Now RN is a 
prime ring, so B(RN) = {0, 1), whence ker N P\ B(R) is maximal. 

X has a basis of clopen sets of the form 

Ue = {x e X\e$ X} (e e B(R)). 

Then 0rl(Ue) = {N G E(R)\N(e) > 0} (observe tha t if e G B(R), then 
e - > l G RN) ; this is open in the point-open topology, so /3 is continuous. 

T o show j8 is onto, choose a maximal ideal W of B(R). Then we may find a 
maximal ideal M of R containing WR. As R is uni t regular, R/M is a simple uni t 
regular ring. By [8; Corollary 3.7] R/M has rank functions and therefore by the 
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Krein-Milman Theorem, possesses an extremal pseudo-rank function Nf. Since 
RI'M is simple, N' is a rank function. Now the composition of the maps 

R^*/M%[0,1], 

gives a pseudo-rank function N with ker N = M. As N' is extremal, it easily 
follows tha t TV is extremal. Obviously ker N (^ B(R) = MC\B(R) = W. 
The last s ta tement is completely trivial. 

T o obtain results utilizing (*), we must recall some results from [8]. If R is 
uni t regular, the Grothendieck group of R, K0(R), has the s t ructure of part ial ly 
ordered abelian group, and pseudo-rank functions correspond to isotone 
(order-preserving) group homomorphisms to the addit ive group of the reals, 
sending [R] to 1, called Junctionals. 

FP(R) willl denote the collection of finitely generated projective right 
modules. If P £ FP(R), [P] will denote the image of P in K0(R). 
{[P]\P £ FP(R)} is the positive cone of K0(R). 

A subgroup K of a partially ordered group G is convex if a, b £ K, c Ç G, 
a S c ^ b implies c £ K. K is directed if for all a in K, there exist ft, c in the 
positive cone of K with a — b — c. 

Let 7 be a two-sided ideal of a unit regular ring. We define Gi to be the 
(directed) subgroup of K0(R) having {^2 nt[etR]\et = e{

2 Ç 7, nt> 0} as 
positive cone. FP(I) will denote the collection of finitely generated projective 
modules P with P ^ © etR, e^ d I. Obviously, the image of FP(I) is jus t the 
positive cone of Gj. 

The map R—>R/T induces a map K0(R) -^Ko(R/j) as part ial ly ordered 
abelian groups. We will show tha t Ko(R)/Gl — ^ o ( V / ) (with the quotient 
ordering on the left t e rm) . 

LEMMA 5. Let e, J be idempotents in a unit regular ring R, and suppose Jor a 
two-sided ideal I oj R, eR 0 R/i —JR 0 R/i as right R/j modules. Then there 
exist idempotents m1, m2 in I with eR 0 m\R ^JR © m2R. 

ProoJ. Set T = R/M, and denote the image of r G R in T by f. Since R is 
regular, e • T c^ eR <g) T. Since 7" is unit regular, and we have eT c^Jl\ there 
exists a unit u m T with ueu~l = / , [10, Theorem 2]. The map from the units 
of R to the units of R/M is onto, ([12]) so there exists invertible x £ R with 
x = u, and so xex - 1 — / = m Ç ikf. We have 

mi? + JR = mR + xex~lR. 

T h u s we may find idempotents mt G wi^ C 7 with 

m2R ® JR = ntiR 0 xex~lR. 

Now xex~lR c^ eR, so we have the desired result. 

COROLLARY 6. Let R be unit regular, I a two-sided ideal oj R, and 
P,Q e FP(R). 

https://doi.org/10.4153/CJM-1976-131-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-131-9


CONTINUOUS RINGS 1325 

(a) / / P ® V / — Q ® R 1 1 a>$ RI i-modules, there exist Au A2 £ FP(I) such 
that P © AiC^Q © A2. 

(b) If P ® R/i < Q ® Rli as R/rmodules, there exists A £ FP(I) with 
P <Q® A. 

Proof. P, Q may be regarded as principal right ideals of MnR for suitably 
large n. As MnR is unit-regular [13], and there is a natural bijection between 
ideals of R and those of MnR, Lemma 5 applies, and so (a) is proved, (b) 
Given an idempotent z £ T, there exists an idempotent e in R with eR = zT. 
Thus FP(R) - » FP(R/j) is onto, so there exists P' G T^P(^) such tha t 

(P 0 P ' ) <g> * / / c^ (P <g> * / / ) 0 (P ' <g> * / / ) ~ Ç ® */ / . 

Now apply (a). 

PROPOSITION 7. Pe/ P &<? a unit regular ring, and I a two-sided ideal. The map 
R —> R11 induces an isomorphism (as partially ordered abelian groups) 

*•<«>/„, ~ #„(*//). 
G j is a convex directed group, and the ordering onKo{R)/G7 is the quotient ordering. 

Proof. The map 

[P] ~ [Q] ^[P®T]-{Q®T] 

is onto, isotone, and a maps the positive cone of K0(R) onto the positive cone 

of . M V / ) . Obviously G j C ker a. 

We now show G T = ker a, and G 7 is convex. Suppose [P] — [Q] £ ker a. 
Then P ® T ~ Q <g> P, so there exist (by Lemma 6) A, A' m FP(I) with 

Thus [P] + U J = [Q] + [A2], so [P] - [Q] = [A,] - [A2]. Thus ker « C 

G 7, so equality has been shown. Now if [P] - [Q] ^ [P2] - [Ç2] ^ [Pi] -

[Qi], and the left and right terms belong to ker a, we obtain 

[A] - [A'} ^ [P2] - [Q2] ^ [A,] - [Aa 

the ,4's in FP(I). Thus A © Q2 < P2 © A'\ tensoring with P, we get 
a[Q2] ^ a[P2]. Using the other inequality, a\P2] ^ a[Q2], so a[P 2] = a[Q2]. 
T h u s [P2] — [Q2] G ker a, so ker a is indeed convex, whence G 7 is. Now apply 
[3; Theorem 7, p. 21] (we have: a is an O-epimorphism), so the isomorphism 
holds as ordered groups (with the quotient ordering en Ko{R)/G[). 

PROPOSITION 8. Let R be a unit regular ring, and I be a two-sided ideal of R 
generated by central elements. For an idempotent e in R, there exist functionals on 
Ko(R),f, g such that 
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(a) V * r
 f/oj = 0 

(b) f([eR]) = Inf {m/n\neR • E < m(ER), n > 0, some central E = E2 $ 1} 
(c) g([ei?]) = sup [m/n\mR • F, < neRE, n > 0, some central E = E2 Q I). 

This is similar to [7, Theorem 6.4]; however it requires more tedious com
puta t ion . 

Proof. As in the proof of the Extension Lemma [8, Theorem 3.2, Lemma 3.1], 
if suffices to show t h a t / , g can be so denned on 

Z • [R] + Z • [e] + Z • [FP(I)]Q K0(R). 

There exist f u n c t i o n a l / , g on KQ(R/J) such t ha t (cf. [8, Lemma 4.1]) 

J([eT]) = Inf {m/n\neT < mT} n > 0} 

g([ëT]) = sup {m/n\mT < wëT, w > 0}. 

W e obtain funct ionals / 0 , go on KQ(R) by composing 

X0(i?) >Jro(a)/0/^^o(BA)M (R, +). 

So ' % 7 = 0, and 

fo([eR]) = Inf {m/«|»(ei? ® T) < m l , « > 0}. 

Clearly f0([eR]) S f([eR]). (E -> 1 under i? -> * / / ) • ' Suppose w(ei? ® * / / ) ^ 
m / 7 / - Then by Lemma 6, there exists A G FP(I) with w(e7?) < w7? 0 ,4. 
Now / is generated by central idempotents , so there exists a central idempotent 
1 - E £ I with A <p{\ - E)R, for suitable £. T h u s AE = (0) ; as 
1 — E G / , E (£ I, and we have after tensoring with E • R, n(eR • £ ) < mRE. 
Hence/o([^i?]) = f([eK\). T h u s such a n / may be defined, and similarly with g. 
This completes the proof. 

ex 
Now A = U ^ has been topologized by the strong R X E —* A topology. 

There is an obvious function 

0 : U RN -> [0, 1] 

0( r„ ) = i V ( ^ ) if r^ G 2?„. 

Recall t ha t a function /3 to [0, 1] is upper semicontinuous if /3_1[0, a) is open 
for all a G (0, 1]. 

L E M M A 9. 77£e junction /S : 4̂ —> [0, 1] defined by P(rN) = N(rN) is upper 
semicontinuous. 

Proof. I t suffices to show (3 o a : £ —» [0, 1] is upper semi continuous. Now 
(Pa)-1^, a) = {(r, iV) G RxE\N(r) < a} = UE say. Now R X E has the 
relative topology from R X P(R)> Define 

U = {(r,N) G R XY(R)\N(r) < a}. 
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Choose (r, N) € U. Then 7V(V) < a — t for some e > 0. The set F defined by 

V = {t g i? |M(r - 0 < 6 for all M 6 P(i?)} 

X {Me P ( £ ) | i l f ( r ) < a - c} 

is a product of open sets in R, P(R), so V is open in R X P(-R). Clearly 
(r, TV) G F. If (t, M) e V, 

M if) ^ M(r - t) + M(r) < a, 

so V C U. Thus U is open, and as UE = U C\ (R X E), UE is open, so fia is 
upper semicontinuous. As A possesses the strong a topology, fi is upper semi-
continuous. 

Finally, we get to the main point. 

T H E O R E M 10. Let R be a unit regular ring having a Hausdorff family of pseudo-
rank functions. For the following conditions we have (a) => (b) =» (c) => (d) : 

(a) for all TV, M £ E(R), TV ̂  M, there exists r central in R with r £ ker TV, 
r (t ker M; 

(b) the map E(R) —» X(R) ( = the Stone space of B(R)) is one to one; 
(c) the map E(R) —» X(R) is a homeomorphism; 
(d) R is N*dense in Y. 

Proof. Obviously (a) =» (b) (if r £ R and ^ = rR, where r is central and e 
is an idempotent , then e is central, and N(r) = TV(e) for any TV £ P ( i ? ) ) . 

(b) => (c). We have £(T?) —> X(R) is continuous and onto by Lemma 4. I t 
suffices to show the map is open. Choose N £ E(R); set x = ker N C\ B(R) 
(x £ X). By one to oneness, N is the unique extremal pseudorank function 
whose kernel contains x. Consider 5 = Vkeriv and T = R/xR ; 5 and T are 
unit regular, and T —•> 5 is onto. If Mi £ E(T), then Mi is induced by an M 
in P(R), and clearly M Ç E(R). If M ^ TV, ker M C\ B(R) ^ ker TV H 5(2?) ; 
bu t x £ ker M, so M must equal TV, whence \E(T)\ = 1. Thus , |P (T) | = 1, so 
T has a unique pseudorank function TV, tha t induced by TV. By Proposition 8, 

N(r) = Inf {m/n\nrR • E < mER, n > 0, some £ = E2 £ B(R) - x}. 

Now proceed as in the proof of openness in Theorem 6.5 of [7]. 
(c) =» (d). We have E(R) is homeomorphic to the compact totally discon

nected (Boolean) space X. Choose s £ Y, and e > 0. For each TV £ E(R), 
there exists rN £ R such tha t rN(N) = s(N)(rN(N) = rN + ker TV; we have 
identified R with its image in r ) as R —» i ^ is onto. Define the function y to be 
fi o {rN — s) : E —» [0, 1], where /3 is the function of Lemma 9. As rN — s is 
continuous, y is upper semi-continuous. Thus UN = 7 - 1 [0 , e) is open, and 
TV G UN. Now \JN£E(R) UN is an open covering for E so by compactness and the 
part i t ion property of totally disconnected spaces, there exist finitely many Uu 

corresponding Nu and r1 £ R, and Vt C Uu Vt disjoint clopen and 
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ÛV{ = E(R). As Vt is clopen, the function et : E —» A, 

U N € V, 
e<{N) = ( 0 , Ni Vt 

is continuous, and so et G T. Because of the homeomorphism E <-> X, in fact 
et £ R. The e* are central idempotents. Define / = ^ e^*. Then £ G i?, and 
(/ - s)(N) < e for all N £ E(R). Thus TV*(̂  - s) < e, so R is TV*-dense in r . 

Observe that if E is merely totally disconnected, then R ® ciB) C(T)(C( ) = 
centre) is dense in r . Is R ® C(T) regular? It suffices to show, if R is regular 
with centre a field F} and K is an overfield of Fy then R ® F K is regular. 

For self-injective (directly finite) regular rings 10(c) was proven in [7, 
Theorem 6.5]. 

LEMMA 11 [7, Theorem 6.4]. Let R be direcily finite regular and self-injective. 
Then R satisfies condition (a) of Theorem 10. 

Proof. By [10, Corollary 7] R is unit regular. Pick TV G E(R). Then R/}LeiN 

has an extremal rank function, so is prime. RN satisfies, therefore, comparability 
[4; Lemma 5], so RN is simple and has a unique rank function [11, Proposition 
7]. Now choose M ^ N G E(R). If xN = (ker TV) H B(R), R/XNR is prime 
regular with its ideals totally ordered. In particular R/XNR n a s exactly one 
maximal ideal which must therefore be ker TV. As M ^ TV, and RN has only 
one pseudo-rank function, ker M ^ ker TV, so ker TV is the unique maximal 
ideal sitting atop xN. 

COROLLARY 12. Ij R is directly finite regular self-injective, then R is N*dense 
in T. 

LEMMA 13. Suppose Ris a unit regular ring with a Hausdorff family oj pseudo-
rank functions, and R is ccntained in T densely. Let K be a compact subset of 
J?(R) that is a Hausdorff family, and suppose R is the completion with the respect 
to the metric 

dK(x,y) = supNeKN(x - y). 

Then there is a unique uniformly continuous map T —> R such that 

R-* r 
1 
R 

commutes. 

Proof. If TV is a pseudo-rank function, TV* ^ TV, and then TV* ^ NK*. This 
is routine. 

COROLLARY 14. Let R be a regular ring that is complete with respect to a rank 
function. Then R = V, so R is isomorphic to the ring of continuous sections 
E(R) —* U RN, where E(R) is extremally disconnected, compact. Each RN is a 
right and left self-injective simple regular ring, with its rank-metric topology. 
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Proof. R is right and left self-injective regular [6, Theorem 14], obviously 
has a Hausdorff family of pseudo-rank functions ({N}f if TV is the rank func
t ion), and R is complete with respect to K = {TV}, so by Lemma 13, R ~ T. 
Now E(R) ~ X(R) ; as the centre of R is self-injective, it is complete, so X(R) 
is extremally disconnected. Any simple factor ring of a self-injective ring is 
self-injective, and it easily follows tha t RN is complete. 

In [2], Dauns and Hoffmann showed tha t every biregular ring (for all r in R, 
there exists e = e2 £ B(R) such tha t RrR = eR) is represented as a sheaf of 
simple rings over a Boolean space, and every ring so represented is biregular. 
Here we have a representation with ' ' s ta lks" simple, bu t the thing is not a 
sheaf: the map U RN ~> E, R^N) = Af, is not a local homeomorphism, i.e. 
RN is not (generally) discrete. 

If R is already biregular, and the stalks are discrete, the TV* topology is dis
crete, so this representation yields the biregular representation. In particular 
this applies to strongly regular rings. 

The question arises, if R is right and left self-injective (regular), is R = T ? 
I t would suffice to show R is TV* complete (Corollary 12) bu t I have not been 
able to show this. 

Given a regular ring R with a Hausdorff family of pseudo-rank functions, 
the function TV* induces a metric topology and by [11, Proposition 14], the 
completion, R*, is regular, and of course TV* extends to R* (same definition). 
There is a strong relationship between P(R) and P(R*): they are afffnely 
homeomorphic, and so E(R) and E(R*) are homeomorphic. In particular, R* 
possesses no "new" pseudo-rank functions. 

PROPOSITION 15. Let R be a regular ring with a Hausdorff family of pseudo-
rank functions, let R* denote the TV* completion of R. Then R* is regular, and the 
inclusion R —> R* induces affine homeomorphism s 

E(R) <-E(R*). 

Proof. R* is regular by [11, Proposition 14]. The map R —> R* induces the 
restriction map P(R) <— P(R*). This is continuous by [6], and is obviously 
affine. If TV £ P(R), TV ^ TV*, so TV extends uniquely (and uniformly con
tinuously) to a pseudorank function on P(R*), say TV. Thus fi is onto, and by 
the uniqueness of the extension, /3 is also one to one. I t remains to show /3 is open ; 
bu t any onto, continuous map of a compact space to a Hausdorff space is open. 

As the map is affine, the last s ta tement also holds. 

Now what is the relation between the stalks of R and those of R* ? Because 
we need plenty of central idempotents to give a satisfactory answer, we change 
the problem to the case of R dense in T. Let T = T(E, A) for a specific regular 
ring R (i.e. E = E(R), R is unit regular and has a Hausdorff family of pseudo-
rank functions). Now A = U RN- Denote by RN the completion of RN a t TV, 

https://doi.org/10.4153/CJM-1976-131-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-131-9


1330 DAVID HANDELMAN 

its extremal rank function. T h u s RN is simple self-injective. Define 
A* = U RN with the topology to be determined shortly. We will see 
T* = T(E, A*) if E has a basis of clopen sets. 

Let B(T) denote the collection of central idempotents in T; these correspond 
to clopen sets in E(R). 

L E M M A 16. With the notation and conventions of the preceding two paragraphs, 
if E = E(R) has a basis of clopen sets, then we have: given r, s G R, P G E(R) 
with P{r — s) < e, for some e < 0, there exist rx, S\ belonging to the subring of T 
generated by B(T) and R such that rY — r, s\ — s belong to ker P, and 
N*(ri — Si) < 2e (P , TV* having been extended to T in the obvious manner). 

Proof. Define U = {TV G E(R)\N(r - s) < e}. U is open in E(R), so there 
exists a clopen K with P G K C U. Let e G B(T) be the central idempotent 
corresponding to K, i.e. e(N) = lN if N 6 K, e(N) = 0N if N G K. Define 

Tl = er, Sl = es. If N £ K, Nin - s J = 0 ; if TV G K, N(rx - s J = 
N(r - s) < e, as K C U. T h u s 

N*(n - si) = sup A^(r - s) ^ e < 2e. 

PROPOSITION 17. Suppose R is unit regular with a Hausdorff family of pseudo-
rank functions, and suppose E = E(R) has a basis of clopen sets and R is N*-
dense in T. Then we have: 

(a) E, E(T), E(T*) are homeomorphic naturally; 
(b) the stalks of T* are exactly {RN}NeE(R)', 
(c) T* = T(E,A*),whereA* = UN^B)RN\ 

(d) E(R) is compact, and homeomorphic to the Stone space of B(T*). 

Proof. We already have E(T) ~ E(T*). As R* = T* (since R is TV* dense 
in r ) , E(R) ~ E ( T * ) again by 16. 

(b) Identify E(R) with £ ( T * ) . Clearly RN C ( r * ) N . If y + ker TV G ( r * ) ^ , 
some 7 G T*, there exists r in P with TV*(r — 7) < e, so TV(r — 7) < e, 
whence RN is TV-dense in (T*)N. By Lemma 16, however, it is clear t ha t (T*)N 

is already TV-complete, whence ( IV)* = RN-
(c) Follows from (a) , (b) . 
(d) We show the map E(T*) —>X(T*) described in Theorem 10 is one to 

one, whence, by t ha t theorem, is a homeomorphism. Choose dist inct TV, M in 
P ( F * ) . A s £ ~ P ( T * ) , there exist clopen disjoint neighbourhoods containing 
TV, M respectively ; then the corresponding idempotents satisfy condition (a) 
of Theorem 10» 

T h e representation obtained in [14] for continuous rings is simply the usual 
Pierce sheaf; the stalks are the prime factors corresponding to the minimal 
prime ideals (in [14], " local" takes on the meaning of possessing a unique 
maximal two-sided ideal). 
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