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Abstract

Chen and Gu [ 1 ] have given some results relating to normal families, and, in this paper, we give versions
of these results valid for normal functions. In the process, we improve some of our previous results
involving products of certain spherical derivatives as they relate to normal functions. Some examples are
given to show the sharpness of our results.

1991 Mathematics subject classification (Amer. Math. Soc): primary 30D05; secondary 30D35.

1. Introduction

Let C denote the complex plane. In [ 1 ], the first author and Y. Gu proved the following
results about families of meromorphic functions.

THEOREM CG1. [ 1, Theorem 1, page 677] Let k be a positive integer and let F be
a family of functions meromorphic on a domain G C C, where each function in F
has only zeros of multiplicity at least k. If for each compact subset K ofG there exist
positive numbers 8, M, ot\, fi\,..., a^-i, pk-\ such thatoij +fij = I for 1 < j < k — 1
and \f(k)(z)\ < M whenever both f e F and

J2 \fWM\ + E 4 .
J

then F is a normal family.

COROLLARY 1. [1, Corollary 2, page 677] Let k be a positive integer and let F be
a family of functions meromorphic in a domain G c C where each function in F has
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232 Chen Huaihui and Peter Lappan [2]

only zeros of multiplicity at least k. If for each compact subset K of G there exist
positive numbers a, S, and M such that \f{k)(z)\ < M whenever f € F and

zeKf = {weK : \f(w)\a \fk)(w)\ < S),

then F is a normal family.

THEOREM CG2. [ 1, Theorem 2, page 677] Let kbea positive integer and let F be a
family of functions meromorphic in a domain G c C such that each function in F has
only zeros of multiplicity at least k. IfF is not a normal family in some neighborhood
of the point z0 e G then, for each positive number a < k, there exists a sequence
of points {zn} in G such that zn -> z0, a sequence of positive numbers {pn} such that
pn ->• 0, and a sequence of functions {fn} in F such that, if'#„(£) = (pn)~

a f(zn+pnt;),
then the sequence {gn} converges spherically and locally uniformly to a non-constant
function meromorphic in the £ -plane.

Theorem CG2 is a generalization of results of Zalcman [5] and Pang [4].
Let D = {z : \z\ < 1} denote the unit disk in the complex plane, and let Aut(D)

denote the collection of all conformal automorphisms of D onto itself. A function /
meromorphic in D is a normal function if the family F = {/ o g : g e Aut(D)} is
a normal family on D. Since the results mentioned above are results about normal
families and families which are not normal, it seems natural to expect that there would
be corresponding results about normal functions and functions which are not normal
functions. We show below that this is the case.

Let fj(z) denote the j-th derivative of / , that is, /7(z) = fU)(z), j = 0, 1, 2,
We use

/ # (z ) = | / ' ( z ) | / ( l + | / (z) | 2 )

to denote the spherical derivative of / at z. In [3], the second author proved the
following results about normal functions and normal families.

THEOREM LI. If f is a normal function in D then for each integer p > 1 there
exists a constant Mp(f) such that

7 = 1

THEOREM L2. If F is a normal family of functions meromorphic in a domain
GcC then for each integer p > 1 and each compact subset K of G there exists a
constant MP{K) such that

https://doi.org/10.1017/S1446788700001725 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001725


[3] Products of spherical derivatives and normal functions 233

for each function f e F and z e K.

A partial converse, for functions with no simple zeros, of Theorem L2 was proved
by the authors in [2, Theorem 6], as follows.

THEOREM CL. Let k be a positive integer with k > 3, and let F be a family of
functions meromorphic in a domain G C C such that each function has only zeros
of multiplicity at least k. If for each compact subset K of G there exists a positive
number M such that

for f e F and z e K, then F is a normal family. The conclusion remains true
if we assume instead that k > 2 and we replace condition (*) by the condition
//_i(z)//_2(z) < M. The conclusion is also true if we assume only that k > 1 and
we replace condition (*) by the condition f*_i(z) < M.

In this paper we give a corresponding partial converse to Theorem LI.
The rest of the paper is organized as follows. Our Theorem 1, a version of

Theorem CGI which is valid for normal functions, is given in Section 2. In Section 3,
we present a version of Theorem CG2 valid for normal functions, which is our
Theorem 2. In Section 4, our Theorem 3 is a version of Theorem CL valid for normal
functions. Finally, in Section 5, we give some examples relating to the sharpness of
Theorem LI and our Theorem 3.

2. Sufficient conditions for a normal function

LEMMA 1. Let f(z) be a function meromorphic in D.Ifye Aut(D) and g(z) =
f(y(z)), then, for k > 2, we have

(1)

where Ck is a constant depending only on k.

PROOF. Letting y(z) = e'9(z - zo)/(l — zoz), we have both

and
yU)(z)/y'(z)\ < 1/(1 - \z\y~1 for; > 2.
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For k > 2, we have
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7=1 m
E Ck-j-»<

where nun2,... ,nk satisfy the conditions nx + n2 +
• • • + knk = k in each term of the sum. Thus,

+ nk = j and n\ + 2n2 +

< (1 - |z|2)* \g(k)(z) - fik)(y{z))(y'(z))k\
k-\

Since

and

7 = 1 ni.--.ni

x \y"(z)/y'(z)r • • • \ya>(z)/y'(z)\"' (l -

\y'(zW = ((l-\y(z)\2)/(\~\z\2))J

\y"(z)/y'(z)r • • • \ya)(z)/y'(z)\"1 < (1/(1 - |,|)r+2«3

= (1/(1 - | . - | ) )^ ,

zf

we have

x ((1 - | y (z ) | 2 ) / (1 - | z | 2 ) y (1 / (1 - \z\))
k-J

E E
7 = 1 "I « l

x ( l - | z | 2 p ( l - | y ( z ) | 2 ) J

This completes the proof of the lemma.
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[5] Products of spherical derivatives and normal functions 235

The inequality (1) implies

(2)

If we replace f,g,y, and z by g, / , y ', and y(z), respectively, (2) becomes

(1 - IK(Z)|2)* \fk){y{z))

(3) k *"'

7 = 1

By using the inequalities (2) and (3), we can modify Theorem CGI into a result
about a single function as follows.

THEOREM 1. Let k be a positive integer and let f be a function mewmorphic
in D such that f has only zeros of multiplicity at least k. If there exist positive
numbers 8, M, ax, $,, . . . ak_\, &_, such that ctj + ft•. = 1 for 1 < j < k — 1 and
(1 - |z |2)*|/ ( t ) (z) | < M whenever

f t-i t-i 1

z e ^ = jweD : V ( l - |u;|2)J |/0)(iu)| + V (l - \w\2)'a'+kli' \f(k)(w)f <8\ ,
I 7 = 1 7 = 1 J

then f is a normal function.

PROOF. It suffices to prove that the family F = {f(y(z)): y € Aut(D)} is a normal
family in D. First, let gY(z) = f(y(z)) e F. For z e D, define </>y(z) by

A - l k-\

7 = 1 7 = 1

where a + fi = 1 and a/fi = min{a7/^, 1 < j < A: — 1}. We claim that there exists
a 8' > 0 such that 0K(z) < <5' implies that y(z) e K. To show this, let {yn} be a
sequence in Aut(D) and let [zn] be a sequence of points in D such that 4>yn(zn) -> 0,
and let gy,,(z) = /(yn(z)) . Now <py,,(z) —> 0 means that

(4) ( l - \ z , , \ 2 ) J \ g ^ ( z n ) \ ^ 0 , l < j < k - l ,

a n d

(5) ( \ - \ Z n \ Y + k f l \ g ^ ( Z n ) \ a \ g ^ { Z n ) f ^ 0 , 1 < y < * - l .
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236 Chen Huaihui and Peter Lappan [6]

By taking /6-th roots, (5) becomes

(6) (i - \zH\2)Ua+tn» * - i.

Now, using (3), we see that (4) implies

(7) (1 - \yn(zn)\
2)J | / 0 ) (y(zn))\ ^ 0, 1 < j < k - 1,

and using (3) again, we get

- \zn\
2)k

Let

7 - 1

Y.
p=i

where jn is defined by this last expression. Then

< ka<Ca
k'B°n> ((1 - \zn\

2)k

= k»<Ca
k> ((1 - \zn\

2)k \gl\zn)\ B^' +

From (4), we have Bn —> 0, and, from (6), we have

Combining these inequalities, we have

(8) (1 - |yn(zn)|2f+*ft \fu\yn(zn))\aj \Pk\yn(zn)f 0 < j < k - 1.

It now follows from (7) and (8) that yn(zn) e K for n sufficiently large or, in other
words, that there exists a 8' > 0 such that <pY(z) < 8' implies that y(z) e K, which
establishes our claim.
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[7] Products of spherical derivatives and normal functions 237

Now let 8' be the number described above, let y e Aut(D), let gY = f o g, and let
z e D be such that <t>y(z) < 8'. Then y(z) e K which means

Also, since y(z) e K, we have (1 - \y(z)\2)k\fk)(y(z))\ < M. Thus, from (2), we
have

{\-\z\2)k\gik\z)\<M + Ck8.

Let 0 < /• < 1 and D,. = {w : \w - z\ < r] c D. Then, for w e Z) and 0y(u;) < 5',
we have

Thus, we can choose r and apply Theorem CGI—using D as the compact set, F =
{y € Aut(D)}, and M' as the bound—to conclude that F is locally a normal family
on D. But this means that F is a normal family on D, and consequently that / is a
normal function. This completes the proof.

The following is an immediate corollary of Theorem 1.

COROLLARY 2. Let k be a positive integer and let f be a function meromorphic in
D, such that f has only zeros of multiplicity at least k. If there exist positive numbers
a, 8, and M such that (1 - |z|2)*|/( i )(^)l < M for

z e K = \w 6 D : (l - \w\2)k \f{w)\a \f(k){w)\ < s ) ,

then f is a normal function.

3. A behavior of non-normal functions

We now prove a version of Theorem CG2 for normal functions.

THEOREM 2. Let k be a positive integer and let f be a function meromorphic in D
such that f has only zeros of multiplicity at least k. Iff is not a normal function, then,
for each positive number a < k, there exist a sequence of points {zn} in D such that
\zn\ —> 1 and a sequence of positive numbers {pn} and such that pn/(l — |z|2) —> 0

for which the sequence

{&(£) = (1 - |z j 2 )" (pny
af(zn + pni;))

converges spherically and locally uniformly to a non-constant meromorphic function
in the £ -plane.
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238 Chen Huaihui and Peter Lappan [8]

PROOF. If / is not a normal function, then, by Corollary 2, there exists a sequence
of points {z'n} such that both

D:(\- \w\2)k \f(w)\l \fa>(w)\ < 1 j ,

where k — (k — a)/a, and

For each n, there exists a positive number rn, with \z'n\ < ?•„ < 1, such that

{(rn)2-K\2)k\fk\z'n)\>M'J2.

If Dn = {z <E D : \z\ < rn) and if zn e Dn n K is such that

Mn = ( ( r j 2 - \zn\
2)k | / « > ( z j | = max ((rn)2 - \z\2)

z G o,, n K

then Mn —>• oo. Define

and

Then

and

so that

A. = ( ( l - | z . l T

„(*;) = {\-\zn\2)tt{pn)-afUn

\f(Zn + Pnt)

= (1 - |zB|2)* \f{zn)

because zn e K. Thus, |gn(0)| < 1 for each n. We note that

which means that for R > 0 and n sufficiently large,

A,/? < (1 - \zn\)MxJ{k-a)R < (1 - |.-,,|)/2.
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[9] Products of spherical derivatives and normal functions 239

Thus, if R is a fixed positive number, |£ | < R, and n is sufficiently large, we have

If lg«

-\Zn+pnS\2)k \f(zn+pn!;)f\flk\zn+pnS)\.

< (2/3)A, then z,, + p,£ e K by the definition of K, and

\fk\zn +

< ((>7, - \z,,\2) / (>j, - \zn

< (('•„ + |z n | ) / (r n + \z,,\ - /•„ - \z,,\)/(rn - \z,,\ - |A,

for « sufficiently large. Thus, {#„} is a normal family in the £ -plane by Corollary 1.
By taking a subsequence, if necessary, we may assume that {gn} converges spherically
and locally uniformly to a function g in the £ -plane. The inequalities above imply
that |g(0)| < 1 and |g(t)(0)l = 1. Thus, g is a non-constant meromorphic function in
the f -plane, and the theorem is proved.

4. Normal functions and products of spherical derivatives

Theorem CL has a version valid for normal functions.

THEOREM 3. Let f be a function meromorphic in D such that all the zeros of f are
of multiplicity at least 3. If there exist positive numbers 8 and M such that

(9) /#(z)/,#(z)/2
#(z) < M

whenever z e D is such that both | / ( z ) | < <5 and (1 - |z | ) | / ' (z) | < 8, then f is a
normal function. The conclusion remains true if all the zeros of f are multiple zeros
and condition (9) is replaced by either

(1 - |.-|:)/#(z)/,#(z) < M or f*(z) < M

whenever! e D is such that both \f(z)\<8and(l- | z | 2 ) | / ' ( z ) | < 5.

PROOF. We will give a proof only for the first statement in the theorem. The other
statements can be obtained by obvious modifications of the proof of the first statement.

Suppose that (9) holds and that / is not a normal function. If we let a be such
that 1 < a < 2, then there exist sequences {z,,} and {pn} which satisfy the conditions
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240 Chen Huaihui and Peter Lappan [10]

of Theorem 2, so that the sequence {#„(£) = (1 — \zn\
2)a pn

 a f(zn + pnz)} converges
spherically and uniformly on compact sets to a non-constant meromorphic function
g on the f -plane. Since each function g has only zeros of multiplicity at least 3, it
follows that the limit function g cannot be a polynomial of degree less than 3. Hence,
there exists a point £ and a positive number A such that A~l < \g{j)(z)\ < A for
0 < j < 3. Thus, forn sufficiently large, (2A)~l < \g(

n
j)(z)\ < 2A forO < j < 3. It

follows that

f*{zn +PnK)f\ (l
7=0 ;=0

Since a > 1, for j = 0, 1, 2, we have

- \zn \2))ap-J

<2A(prl/(l-\zn\
2))a-J(l-\zn\

2)-J

Thus, for n sufficiently large, we have both \f(zn + pn£)\ < 8 and (1 — \zn +

PnK\2)\f'{zn+pni;)\ < S. By the assumptions given, we have n ;
2

= 0 / / ( z »+P«?) < M-
Combining the above and letting M' = M{\ + <52), we get

2 (Pn/ (1-lzJ2))2" p?< M(l+S2)(pn/ ( l - | z J

+ 4M' (pn/ (l-\zn\
2))-" ptA2 + l6M'A4 (pn/ (l-\zn\

2))a

= M'(pn/(l-|zn|2))6-3a(l-|zn|2)6+4(pn/(l-|zn|2))2-aA2(l-|zJ2)4

0

since pn/{\ — \zn\
2) —*• 0. But (2A) 3 > 0, so we have arrived at a contradiction.

This proves the first statement of the theorem.
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[11] Products of spherical derivatives and normal functions 241

5. Some examples

By Theorem LI, if / is a normal function then

/#(z)/,#(z)/2
#(z) < Mp(f)/(l - |z|2)3.

In Theorem 3 above, we showed that if / is meromorphic with all its zeros of order
at least 3, and if /#(z)/*(z)/2

#(z) < M then / is a normal function. This calls
into question the sharpness of Theorem 3 and Theorem LI. We give some examples
dealing with the sharpness of these results. The first example shows that Theorem LI
is sharp for p = 2.

EXAMPLE 1. There exists a normal function / such that (1 - |z|2)2/*(z)/*(z) is
bounded, but (1 — \z\2)2~e f#(z)f*(z) is not bounded for any choice of e > 0.

PROOF. Let B(z) be a Blaschke product whose zeros [zn] are positive, real, and
form an interpolating sequence, and let

f(z) = z + I B(z)/(\-w)dw.
Jo

Then f'(z) = 1 + B(z)/(1 - z) and /"(z) = B'{z)/{\ - z) + B(z)/(\ - z)2. Since

(1 - |z|2)|/'(z)| < 2(1 - \z\) |1 + B{z)/{\ - z)\ < 4,

we have that / is a Bloch function, and hence it is a normal function. Further,

f«(z) = | / ' ( z ) | / (1 + |/(z)|2) = |1 + B(z)/(1 - z)| (1 + | /(z) |2)" ' ,

and

f*{z) = |fl'(z)/(l - z) + B{z)/(\ - z)2)| {1 + |1 + B(z)/(\ - z)|2}"' .

Since B(z) is a Blaschke product, and {zn} is an interpolating sequence, we have
B(zn) = 0 and there exists a number 8 > 0 such that \B'(zn)\ > 8/(1 - \zn)\ for each
n. Thus, /#(zn) = 1/(1 + |/(zn)|2) and

f*(zn) = |B'(zn)|/(2(1 - zj) > 81 (2(1 - |zn|)2),

so that /#(z)/,#(z)(l - |zj)2 > 8/2. It follows that /#(zn)/,#(zn)(l - |z|)2"f - • oo
for each e > 0. However, since / is a normal function, Theorem LI says that
/*(z)/*(z)(l — |z|)2 is uniformly bounded. This proves the result.
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By a similar example, we can show that Theorem LI is sharp for all p > 3.

EXAMPLE 2. Let p be a positive integer, p > 3. There exists a normal function
/ such that (1 - \z\2)" n ; = 1 /J*_,(z) is bounded, but (1 - |z|2)""f [T?=, / / V z > i s n o t

bounded for any e > 0.

PROOF. Again, let B(z) be a Blaschke product with zeros {zn} of order p - 1 at
each point of the interpolating sequence {zn}, where the points zn are real and positive
and

f(z) = P(z) + f B(w)/ {(1 - «;)(ln(e/l - w))2} dw,
Jo

where

It is easy to verify that
J | o - ) | < 2

for each y > 1. Also,/'(z) = P\z)+B(z)/{{\-z){\n{e/{\-z)))2} so(l- |z | ) | / ' (z) |
is uniformly bounded in D, and so / is a Bloch function and hence a normal function.
Further, B(i)(zn) = 0 for 0 < y < p — 2 since z is a zero of order p — 1, and since
B(z) is the (p — l)-th power of a Blaschke product Bt(z) with simple zeros which
form an interpolating sequence, we have B(z) = (Bt(z))p"',

o ( p ~ O i ' 7 \ ( « 1 \ | / / r > \ ' / _ \ \ ^ ~

and (1 — |z|)|(fi<t)'(z)| < 1 for \z\ < 1. So, as in Example 1, there exists a <5 > 0 such
that (1 - |zn|)p-1|£(''"'1)(z,I)| > S. Using these results about derivatives of B at the
points zn, we have

2~j < fU)(zn) = kn<2 for 1 < j < p - 1,

and
/("»(zn) = fl^-'^zj/ {(1 - zj(ln(e/(l - zj))2},

so(l - |zB|)p|/(p)(zJ| - • 0, but(l -\zn\Y~(\f\zn)\ -y oo for each € > 0. But
/ O ) ( z j , 0 < y < p, is bounded and non-zero by construction (recall that B(j)(zn) = 0
for 0 < y < p — 1 ) so ff{zn) is bounded and non-zero for 0 < j < p - 1. Thus,
(1 - \z\2)p-e nj=i //-i(z) is unbounded for each e > 0, but, by Theorem LI, since /
is a bounded function, and thus a normal function, (1 — |z |2)p \\p

j=, //_, (z) is bounded.
This completes the proof.
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[13] Products of spherical derivatives and normal functions 243

In Examples 1 and 2 there is no attempt to control the multiplicity of the zeros,
and thus these examples may not relate well to Theorem 3. To address the sharpness
of Theorem 3, we have following example in which the function /(z) is a bounded
function, but / does not satisfy the sufficiency conditions for normality given in
Theorem 3.

EXAMPLE 3. The function /(z) = exp((z + l)/(z - 1)) is a bounded function for
which (1 - |z|)/*(z)/,#(z)/2

#(z) is unbounded in D but (1 - |z|)1+f /#(z)/*(z)/*(z)
is bounded in D for each e > 0 and / omits the value zero (and hence, for each
positive integer &, / has all its zeros of order at least k). Further, (1 — |z|2)/#(z)/*(z)
is unbounded but (1 - |z|2)'+f/#(z)/,#(z) is bounded for each e > 0.

PROOF. ASZ -> 1, we have | / 0 ) (z ) | ^2j\f(z)\/\z - l\2' for) > 1. Thus,

/#(z)/,#(z)/2
#(z)%n(2; + 1|z-l

x (4|z - l |-4|/(z)|) / (1 + 4|z -

x (8|z - l |-6|/(z)|) / (1 + 16|z -

6 4 / ( | z - l | 2 ) x l / ( l + |/(z)|2)

x \z - l |"8 | / (z) | 2 / (1 + 16|z - l | - 8 | / (z) | 2) .

Denote this last product by 4> (z). We note for future reference that each of the last three
factors of <p{z) is less than 1, so, as a crude estimate, <p(z) < 64/|z — 112 for all z e D.
For S > 0 and 8 sufficiently small, there exists a point zs e D such that \zs — 1| = S
and (1 — |zs|

2)/|za — 1|2 = 2 In l/\zs - 1|, which means that \f(zs)\ = | z^- l | 2 . Then

(1 - \zs\
2)4>(zs) = 128(ln(l/|z, - 1|)) x 1/(1 + \zs - 1|4)

x l / 5 x | z a - l | - 4 / ( l + 16 |z , - l | - 4 )

%8/51n(l/|zj - 1|) -^ ooasS -^ 0.

Thus (1 - |z|2)/#(z)/,#(z)/2
#(z) is unbounded in D. However, the definition o

gives the estimate

so, if | /(z) | < \z- l|4then^(z) < 64 and

z) % (1 - |z|)1+^(z)

<64(1 - |z|)1+f -> Oasz -* 1.
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If we take z such that | / (z) | > 11 — z|4 , then we have

which implies
( l - | z | 2 ) / | z - l | 2 < 4 1 n ( l / | z - l | ) .

We again use the estimate that <f>(z) < 64/|z — 112 to obtain (1 - |z|2)1+f0(z) <
256(1 - |z | 2 ) e ln(l / |z- 1|) -> Oasz -> 1 for each e > 0. Thus, we have shown that
(1 - |z|)1+f /#(z)/,#(z)/*(z) is bounded in D. (Here, f(z) and all its derivatives are
analytic for z ^ 1, so the only concern is with the behavior of f(z) as z —> 1.)

For the second statement, we have that

0(z) = /#(z)/,#(z)

% 8/|z - 1|2 x 1/ (1 + |/(z)|2) x \z - l | - 4 | / ( z ) |7 (1 +4|z - l |-4 | /(z) |2),

and reasoning very similar to the above gives the desired results.

This example shows that the hypotheses of Theorem 3, in particular condition (9),
cannot be relaxed very much, if at all.

We now show that the second statement in Theorem 3 is sharp.

EXAMPLE 4. Let g(z) = (l/(z - l/)exp{(z + l)/(z - 1)}, 0 > 0. Then g is not
a normal function, g omits the value zero, and (1 — |z|)£#(z)g*(z) is unbounded but
(1 - \z\Y+(g*{z)g\{z) is bounded for each e > 0.

PROOF. Let /(z) = exp{(z + l)/(z - 1)} so that g(z) = f(z)/(z - 1/ . Then
\gU)(z)\ % 2j\z - l | ~ 2 ^ | / ( z ) | , and we may define a function <j>(z) by

g\z)g\(z) % <P(z) = 2|z - ir ( 2 +"| /

x (4|z - l | - 4^ | / (z) | ) / (1 + 4|z - l | - 2^4 | / (z) | 2 ) .

If we let {zn} be a sequence of points in D satisfying both \zn — 1| = \/n and
(1 - \zn\

2)/\zn - 1|2 = ^ ln( l / | z n - l |),then \f(zn)\ = \zn - If so \g(zn)\ = 1 and

(1 - \zn\
2)g*{z) « /31n(l/|zB - 1|) ^ oo,

so g is not a normal function. Also, since both | / (z,,) | = | ;„ — 11 ̂  and (1 — | z,, |2) /1 zn —
1|2 = y81n(l/|z« - 1|), we have

(1 - \zn\
2)g*{z)g\(z) % 2(1 - |zj2) /\zn - 1|2 x 1/(1 + \zn - l |-2^|/(zj|2)

x 4\zn - i r 2 ^ 4 | / ( z j | 2 / ( l +4|zn - l|-2/s-4|/(zn)|2)

= 2/3 ln(l/|zn - 1|) x 1/2 x (4|z,, - 1|-4) / (l +4|zfl - IT4)
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This shows that (1 — \z\2)g*(z)g*(z) is unbounded.
Now let € > 0. If | / ( z ) | < \z - \\p+i, then we have

<P(z) < 8 | z - l

If | / ( z ) | > \z - lf+\ then (1 - |z|2)/|z - 1|2 < (£ + 3) ln( l / |z - 1|). Let | / ( z ) | =
z - l\fi+i\h(z)\, where |/z(z)| > 1. Then, using the definition of / ( z ) and ignoring

the denominator in the first factor, we have the estimate

4>(z) < 2\z - l\\h(z)\ x 4 | z - i r ' | A ( z ) | / ( l + 4 | z - l\2\h(z)\2)

= 8|z - l | " 2 | r - l | 2 | / i ( z ) | 2 / (1 + 4 | z - l\2\h(z)\2) < 2 | z -

Hence,

as \z\ -* 1. Thus, for \z\ < 1, we have (1 - |z|2)1+€^#(z)^|(z) is bounded for each
choice of e > 0.

Finally, we give an example showing that condition (9) of Theorem 3 cannot be
relaxed by very much.

EXAMPLE 5. The non-normal function

satisfies the condition (1 — |z|2)e/z#(z)/?*(z)/j*(z) is bounded for e > p/2, and h omits
the value zero.

PROOF. Let F(z) = exp{(l + z ) / ( l - z)} . Then \hU)(z)\ % 2'\\ -
for j > 0. We note that \F(z)\ > 1 for z e D. Further, h(z) is easily seen to have the
two asymptotic values 0 and oo at z = 1, so h(z) is not a normal function. Then

h*(z)h\{z)h*2(z) % 2|1 - z r 2 | F ( z ) | / (1 + | 2 ^ 2 )

x 4|1 - zf-4\F(z)\/ (1

x 8|1 - z|^6|F(z)|/ (1

1 - z|-'|F(z)r7 (l + I1 - z\2P\F{z)\2)

- z\2»-*\F{z)\2/ (1

| ) , zeD.
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l > |l-z|-^,then/j#(z)/!*(z)/j*(z)isbounded. However,if\F(z)\ < \\-z\~fi,
t h e n ( l - | z | 2 ) / | l - z | 2 < / 3 1 n ( l / | l - z | ) , which means that {(1 - | z | 2 ) / | l - z | 2 } ^ / 2 <
(j81n(l/|l - z | ) ) ^ / 2 and thus

(1 - \z 2)e h*(z)h*(z)h*2(z) « (1 - \z 2Y~P/2 ()81n(l/|l - z\)f'2 /\F(z)\ -+ 0

as |z| —> 1 whenever e > fi/2. Thus, in all cases, we have (1 - |z|2)f/z#(z)/!*(z)/i*(z)
is bounded in D for e > f}/2.

From Example 5, we see that the first statement of Theorem 3 is sharp, in the sense
that the hypothesis

/#(z)/,#(z)/2
#(z) is bounded

cannot be replaced by

(1 - \z\Y/#(z)/,#(z)/*(z) is bounded for fixed e > 0.

(For a given e > 0, we can take /J so small that e > /J/2 and use the construction in
Example 5 to show that Theorem 3 is is not valid for that choice of e.)
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