BOUNDARIES FOR REAL BANACH ALGEBRAS

B. V. LIMAYE

Introduction. Let A be a commutative real Banach algebra with unit, and M_{A} its maximal ideal space. The existence of the Silov boundary S_{A} for A was established in [5] by resorting to the complexification of A. We give here an intrinsic proof of this result which exhibits the close connection between the absolute values and the real parts of 'functions' in A (Theorem 1.3).

For a subset B of A, we define the Silov boundary for B relative to A, and use it, together with the method of complexification, to extend to the real case some recent results in [6] for complex function algebras. These determine M_{B} and S_{B} in terms of M_{A} and S_{A} if B is a closed subalgebra of A and contains an ideal J of A such that hull ${ }_{A} J$ contains no non-empty perfect subset (Theorems 3.1 and 3.4). They also extend a result in [5] where B is a particular type of real subalgebra of a complex function algebra A (Corollary 3.5 and Example 3.6).

1. Choquet sets and Silov boundaries. Let A be a commutative real Banach algebra with 1, and M_{A} the set of all maximal ideals of A. For each f in $A,|\hat{f}|$ and $\operatorname{Re} \hat{f}$ are well defined functions on M_{A}. (See, e.g., [1].) Let $|\hat{A}|=\{|\hat{f}|: f$ in $A\}$ and $\operatorname{Re} \hat{A}=\{\operatorname{Re} \hat{f}: f$ in $A\}$.

Proposition 1.1. The weak $|\hat{A}|$ topology on M_{A} is the same as the weak $\operatorname{Re} \hat{A}$ topology on M_{A}, and it makes M_{A} a compact Hausdorff space.

Proof. Let \mathscr{T}_{1} and \mathscr{T}_{2} be the weak $|\hat{A}|$ and the weak $\operatorname{Re} \hat{A}$ topologies on M_{A}. Let L_{A} denote the set of all real linear maps of A into the complex numbers, and \mathscr{T} the weak A topology on it. If $T: \phi_{A} \rightarrow M_{A}$, by $T(k)=k^{-1}(0)$, where ϕ_{A} is the closed set $\left\{k\right.$ in $L_{A}: k$ multiplicative, $\left.k(1)=1\right\}$, then ϕ_{A} is onto M_{A}, and T is continuous if L_{A} and M_{A} are given the topologies \mathscr{T} and \mathscr{T}_{1} respectively. Since the closed unit ball in L_{A} is compact by the Banach-Alaoglu theorem, $\left(M_{A}, \mathscr{T}_{1}\right)$ is compact. We next show that $\left(M_{A}, \mathscr{T}_{2}\right)$ is Hausdorff. This follows since $\operatorname{Re} \hat{A}$ separates points of M_{A} : Let $y_{1} \neq y_{2}$ be in M_{A}, and f in A which belongs to y_{1} but not to y_{2}. If k_{1} and k_{2} are in L_{A} such that $T\left(k_{1}\right)=y_{1}$ and $T\left(k_{2}\right)=y_{2}$, then $k_{1}(f)=0$, and $k_{2}(f)=a+i b$, for some real numbers a and b, which are not both zero. Then $\operatorname{Re} \hat{f}\left(y_{1}\right)=0, \operatorname{Re} \hat{f}\left(y_{2}\right)=a, \operatorname{Re}\left(f^{2}\right)^{\wedge}\left(y_{1}\right)=0$, and $\operatorname{Re}\left(f^{2}\right)^{\wedge}\left(y_{2}\right)=a^{2}-b^{2}$. Hence either $\operatorname{Re} \hat{f}$ or $\operatorname{Re}\left(f^{2}\right)^{\wedge}$ separates y_{1} and y_{2}.

Now, the identity map from $\left(M, \mathscr{T}_{1}\right)$ to $\left(M, \mathscr{T}_{2}\right)$ is continuous, since for each f in $A, \operatorname{Re} \hat{f}=\log \left|(\exp f)^{\wedge}\right|$. All is proven.

Definition 1.2. A subset S of M_{A} is called a Choquet set for A if each element of

[^0]Re \hat{A} assumes its maximum on S. S is called a boundary for A if each element of $|\hat{A}|$ assumes its maximum on S.

Theorem 1.3.

(i) Every boundary for A is a Choquet set for A.
(ii) Every closed Choquet set for A is a boundary for A.
(iii) There exists a (unique) smallest closed Choquet set for A, and it is the smallest closed boundary for A.
Proof. (i) follows since, for each f in $A, \operatorname{Re} \hat{f}=\log \left|(\exp f)^{\wedge}\right|$.
Let S be a closed Choquet set for A. If it were not a boundary for A, there exists f in $A, \epsilon<1$, and y in M_{A} such that $|\hat{f}| \leqq \epsilon$ on S, but $|\hat{f}|(y)=1$. Since, for each positive integer $n,\left|\operatorname{Re}\left(f^{n}\right)^{\wedge}\right| \leqq\left|\left(f^{n}\right)^{\wedge}\right| \leqq \epsilon^{n}$ on S, and S is a Choquet set for $A,\left|\operatorname{Re}\left(f^{n}\right)^{\wedge}\right| \leqq \epsilon^{n}$ on M_{A}, and in particular at y. If k is a real homomorphism of A with null space y, then, since $|\hat{f}|(y)=1, k(f)=\exp (i a)$, for some real number a. Thus, $\left|R\left(f^{n}\right)^{\wedge}(y)\right|=|\cos n a| \leqq \epsilon^{n}$, for each positive integer n. But, as n tends to infinity, ϵ^{n} tends zero while $\cos n a$ does not, a contradiction. It follows that S is a boundary for A.

Finally, it follows from (i) and (ii) that if a smallest closed Choquet set for A exists, it must also be the smallest closed boundary for A. That a smallest closed Choquet set for A exists follows from these results of Choquet: Let Y be a compact Hausdorff topological space, and H a linear subspace of the space of all real valued continuous functions on Y. Let $\mathrm{Ch}(H)$ be the set of all points of Y which admit unique representing measures with respect to H. Then, if H separates points of Y, each h in H attains its maximum on $\mathrm{Ch}(H)$ and the closure in Y of $\mathrm{Ch}(H)$ is the smallest closed subset of Y on which each h in H attains its maximum [2, Corollary 29.6 and Proposition 29.8].

Definition 1.4. The smallest closed boundary for A is called the Silov boundary for A. We shall denote it by S_{A}.

If B is a subset of A, and if there exists a (unique) closed subset of S_{A} such that each element of $|\hat{B}|=\{|\hat{f}|: f$ in $B\}$ attains its maximum on it, then such a set will be called the Silov boundary for B relative to A, and denoted by ${ }_{A} S_{B}$.

Proposition 1.5. Let B be a closed subalgebra of A containing $1, M_{B}$ its maximal ideal space, and $r: M_{A} \rightarrow M_{B}$, the restriction map. Then,
(i) S_{B} is contained in $r\left(S_{A}\right)$.
(ii) If r is one to one on S_{A}, then ${ }_{A} S_{B}$ exists and equals $S_{A} \cap r^{-1}\left(S_{B}\right)$.

Proof. (i). That S_{B} is contained in $r\left(M_{A}\right)$; i.e., every maximal ideal of B which is in S_{B} can be extended to a maximal ideal of A follows as in the case where A and B are complex algebras [4, p. 78-80]. Hence $r\left(M_{A}\right)$ is a boundary for B. This together with the fact that S_{A} is a boundary for A shows that $r\left(S_{A}\right)$ is a boundary for B.
(ii). Since S_{B} is contained in $r\left(S_{A}\right)$, each $|\hat{f}|, f$ in B, attains its maximum on $S_{A} \cap r^{-1}\left(S_{B}\right)$. On the other hand, if F is a closed subset of S on which each $|\hat{f}|, f$
in B, attains its maximum, then $r(F)$ is a boundary for B, so that S_{B} is contained in $r(F)$. But r is one to one on S_{A}, hence $S_{A} \cap r^{-1}\left(S_{B}\right)$ is contained in F. This shows that ${ }_{A} S_{B}$ exists and equals $S_{A} \cap r^{-1}\left(S_{B}\right)$.

Remark 1.6. It is well known that if A is a complex subspace of $C(Y)$, the set of all complex-valued continuous functions on a compact Hausdorff space Y, such that A contains constants and separates points, then there exists a (unique) smallest closed subset of Y on which every f in A attains its maximum modulus. If A is only a real subspace of $C(Y)$, then the proof of Theorem 1.3 shows that if A is a ring such that f in A implies $\exp f$ also in A, and if $\operatorname{Re} A$ separates points of Y then the same conclusion holds.
2. Complexifications. Let A be a commutative real Banach algebra with unit 1. Under the natural operations

$$
\operatorname{cx} A \equiv\{1 \otimes f+i \otimes g: f, g \text { in } A\}
$$

becomes a commutative complex algebra with unit $1 \otimes 1$, and there exists a norm on cx A for which cx A becomes a Banach algebra, and the natural injection of A into cx A is an isometry. If cx* : $M_{\mathrm{cx} A} \rightarrow M_{A}$ is the restriction map, then cx^{*} is surjective, and if $M_{\text {ex } A}$ is given the Gelfand topology, it is continuous as well as open [1,3.3 and 3.9]. Let $\sigma: \mathrm{cx} A \rightarrow \mathrm{cx} A$, by

$$
\sigma(1 \otimes f+i \otimes g)=1 \otimes f-i \otimes g, \text { for every } 1 \otimes f+i \otimes g \text { in } \mathrm{cx} A
$$

and $\tau: M_{\mathrm{cx} A} \rightarrow M_{\mathrm{ex} A}$, by

$$
\tau(x)=\{h: \sigma(h) \text { in } x\}, \text { for every } x \text { in } M_{\mathrm{cx} A} .
$$

Then cx* \circ $\tau=\mathrm{cx}^{*}$, and if $S_{\mathrm{cx} A}$ is the Silov boundary for $\mathrm{cx} A, \tau\left(S_{\mathrm{cx} A}\right)=S_{\mathrm{cx} A}$.
Proposition 2.1. $\mathrm{cx}^{*}\left(S_{\mathrm{cx} A}\right)=S_{A}$, and $\left(\mathrm{cx}^{*}\right)^{-1}\left(S_{A}\right)=S_{\mathrm{cx} A}$.
Proof. Since cx* $\left(S_{\mathrm{cx} A}\right)$ is compact, it is closed and is clearly a boundary for A, so it contains S_{A}. Conversely, we show that $S_{\mathrm{cx} A}$ is contained in $\left(\mathrm{cx}^{*}\right)^{-1}\left(S_{A}\right)=F$, say. For this it is enough to prove that F is a boundary for $\mathrm{cx} A$. If it were not a boundary, there exists h in $\mathrm{cx} A, \epsilon<1$, and x in $M_{\mathrm{cx} A}$ such that $|\hat{h}| \leqq \epsilon<1$ on F, but $\hat{h}(x)=1$. Let $c=\sigma(h)^{\wedge}(x)$. For each positive integer n,

$$
\left|(\hat{h})^{n}+\left(\sigma(h)^{\wedge}\right)^{n}\right| \leqq\left|(\hat{h})^{n}\right|+\left|\left(\sigma(h)^{\wedge}\right)^{n}\right| \leqq 2 \epsilon^{n}
$$

on F. Since $h+\sigma(h)$ 'belongs' to A, this inequality is valid on all of $M_{\mathbf{c x} A}$, in particular at x. This gives $\left|1+c^{n}\right| \leqq 2 \epsilon^{n}$, for each positive integer n. But, as n tends to infinity, $2 \epsilon^{n}$ tends to zero, while $1+c^{n}$ does not, a contradiction. Thus, $S_{\mathrm{cx} A}$ is contained in $\left(\mathrm{cx}^{*}\right)^{-1}\left(S_{A}\right)$.

Note. Compare the above result with Proposition 1.0 of [5]. The proof given there uses the trace map taking h to $h+\sigma(h)$, and the norm map taking h to $h \cdot \sigma(h)$, while the above proof uses only the trace map. The proof in $[1,3.16]$ is incorrect, for it uses the inequality $|u(x)| \leqq|u(x)+i v(x)|$, for complex functions u and v.

As an application of the above proposition we prove the following result which will be used in § 3 .

Proposition 2.2. If S_{A} contains no non-empty perfect subset, then $S_{A}=M_{A}$.
Proof. Since cx* : $S_{\mathrm{cx} A} \rightarrow S_{A}$ is at most two to one, it is clear that if K is a perfect subset of $S_{\mathrm{cx} A}$ then $\mathrm{cx}^{*}(K)$ is a perfect subset of S_{A}. Since S_{A} contains no non-empty perfect subset, neither does $S_{\mathrm{cx} A}$. Now cx A is a complex commutative Banach algebra with a unit, and if $S_{\mathrm{cx} A}=M_{\mathrm{cx} A}$, then

$$
S_{A}=\mathrm{cx}^{*}\left(S_{\mathrm{cx} A}\right)=\mathrm{cx}^{*}\left(M_{\mathrm{ex} A}\right)=M_{A} .
$$

Thus, it is enough to prove the proposition when A is a complex commutative Banach algebra with 1. But this is given in [8, p. 107].

Let now B be a real subalgebra A containing 1 , and

$$
\mathrm{cx} B=\{1 \otimes f+i \otimes g: f \text { and } g \text { in } B\}
$$

Then $\mathrm{cx} B$ is a complex subalgebra of $\mathrm{cx} A$ containing $1 \otimes 1$.
Proposition 2.3. Let $r: M_{A} \rightarrow M_{B}$ and $r_{\mathrm{ex}}: M_{\mathrm{cx} A} \rightarrow M_{\mathrm{cx} B}$ be the restriction maps. Then
(i) $\mathrm{cx}^{*} \circ r_{\mathrm{cx}}=r \circ \mathrm{cx}^{*}$, and $\tau_{B} \circ r_{\mathrm{cx}}=r_{\mathrm{cx}} \circ \tau_{A}$, where τ_{A} and τ_{B} are the involutions on $M_{\mathrm{ex} A}$ and $M_{\mathrm{cx} B}$ respectively.
(ii) r_{cx} is surjective if and only if r is surjective.
(iii) If r_{cx} is injective, then r is injective. If r is injective, then $r_{\mathrm{cx}}\left(x_{1}\right)=r_{\mathrm{cx}}\left(x_{2}\right)$ implies $x_{2}=x_{1}$ or $x_{2}=\tau_{A}\left(x_{1}\right)$.
(iv) $\operatorname{cx} B$ is closed in cx A if and only if B is closed in A. In that case, $S_{\mathrm{cx} B}=r\left(S_{\mathrm{cx} A}\right)$ if and only if $S_{B}=r\left(S_{A}\right)$.

Proof. (i) For M in $M_{\text {ex } A}$,

$$
\begin{aligned}
& \mathrm{cx}^{*} \circ r_{\mathrm{cx}}(M)=(M \cap \mathrm{cx} B) \cap B=(M \cap A) \cap B=r \circ \mathrm{cx}^{*}(M), \\
& \tau_{B} \circ r_{\mathrm{cx}}(M)=\{1 \otimes f+i \otimes g \text { in } M \text { with } f \text { and } g \text { in } B\}=r_{\mathrm{cx}} \circ \tau_{A}(M) .
\end{aligned}
$$

(ii) and the first part of (iii) are clear. If r is injective, and $r_{\mathrm{cx}}\left(x_{1}\right)=r_{\mathrm{cx}}\left(x_{2}\right)$, then $\tau_{B} \circ r_{\mathrm{ex}}\left(x_{j}\right)=r \circ \tau_{A}\left(x_{j}\right)$, for $j=1,2$. Hence, $\tau_{A}\left(x_{1}\right)=\tau_{A}\left(x_{2}\right)$, so that $x_{2}=x_{1}$ or $x_{2}=\tau_{A}\left(x_{1}\right)$.

If cx B is closed in cx A, then since the injection of A into $\mathrm{cx} A$ is an isometry, B is closed in A. Conversely, let B be closed in A, and $1 \otimes f_{n}+i \otimes g_{n}$ tend to $1 \otimes f+i \otimes g$, where f_{n} and g_{n}, for each n, are in B, and f and g are in A, then since σ is continuous $1 \otimes f_{n}-i \otimes g_{n}$ tends to $1 \otimes f-i \otimes g$. This shows that f_{n} tends to f and g_{n} tends to g, so that f and g are in B. Thus, $\mathrm{cx} B$ is closed in cx A. The last statement follows from Proposition 2.1 and the definition of a Silov boundary.
3. Ideals and subalgebras. Throughout this section, unless otherwise stated, B will be a closed subalgebra of a commutative real Banach algebra A with unit 1 in B, and $r: M_{A} \rightarrow M_{B}$ the restriction map. We find conditions
under which $r\left(M_{A}\right)=M_{B}$, and $r\left(S_{A}\right)=S_{B}$. If A and B are complex function algebras, this was done by Lund [6,2.1 and 2.3]. We shall use many of his arguments in conjunction with the results in § 1 and $\S 2$ to treat the real case.

Since every y in S_{B} can be extended to an x in M_{A} (Proposition 1.5), $M_{B}=S_{B}$ implies $r\left(M_{A}\right)=M_{B}$. More generally if J is a closed ideal of A contained in B, $M_{B / J}=S_{B / J}$ implies $r\left(M_{A}\right)=M_{B}$. The proof of the following theorem is modelled after this observation. If J is an ideal of A, we let

$$
\operatorname{hull}_{A} J=\left\{y \text { in } M_{A}: y \text { contains } J\right\} .
$$

Theorem 3.1. Let J be an ideal of A contained in B such that either
(a) hull $A_{A} J$ contains no non-empty perfect subset, and r restricted to hull ${ }_{A} J$ is one to one, or
(b) hull ${ }_{A} J$ is at most countable.

Then $r\left(M_{A}\right)=M_{B}$.
Proof. Since hull $A_{A} J=$ hull $_{A} \bar{J}$, and B is closed, we can assume without loss of generality that J itself is closed. The cannonical map $c_{A}: A \rightarrow A / J$ induces a homeomorphism $c_{A}{ }^{*}: M_{A / J} \rightarrow$ hull $_{A} J$, and similarly for $M_{B / J}$ and hull ${ }_{B} J$, by considering $c_{B}{ }^{*}$. The injection map from B / J to A / J induces the restriction map $r^{\prime}: M_{A / J} \rightarrow M_{B / J}$. Moreover, $r=c_{B}{ }^{*} \circ r^{\prime} \circ\left(c_{A}{ }^{*}\right)^{-1}$ on hull ${ }_{A} J$, and $r^{\prime}=\left(c_{B}{ }^{*}\right)^{-1} \circ r \circ c_{A}{ }^{*}$. Our assumption implies that $M_{A / J}$ and hence $r^{\prime}\left(M_{A / J}\right)$ contains no non-empty perfect subset. But then $S_{B / J}$, which is contained in $r^{\prime}(A / J)$ by (i) of Proposition 1.i), cannot contain a non-empty perfect subset. Now, Proposition 2.2 gives $M_{B / J}=\mathrm{S}_{B / J}$.

Now, again by (i) of Proposition 1.5, r^{\prime} is surjective, so that $r\left(\right.$ hull $\left._{A} J\right)=$ hull ${ }_{B} J$. On the other hand, if z belongs to M_{B} but not to hull ${ }_{B} J$, then the ideal generated by z in A, say I, is proper: Let f belong to J, but not to z. If

$$
1=a_{1} f_{1}+\ldots+a_{n} f_{n}
$$

with a_{j} in A and f_{j} in z, for $1 \leqq j \leqq n$, then

$$
f=\left(f a_{1}\right) f_{1}+\ldots+\left(f a_{n}\right) f_{n} .
$$

Since J is an ideal of $A, f a_{j}$ belongs to J, and hence to B. Since z is an ideal of B, $\left(f a_{j}\right) f$, belongs to z, for $1 \leqq j \leqq n$. This implies that f is in z, a contradiction. Thus, I is a proper ideal of A. Then I is contained in some y in M_{A}, and $r(y)=z$. We thus have $r\left(M_{A}\right)=M_{B}$.

We now turn our attention to the Silov boundaries for A and B. First we state a result involving S_{A} and hull ${ }_{A} J$. Although its proof is the same as in the complex case $[\mathbf{8}, \mathrm{p} .44]$, we present it here for the sake of completeness.

Lemma 3.2. Let A be a commutative real Banach algebra with 1 , and J an ideal of A. If B is a subset of A which contains J and such that ${ }_{A} S_{B}$ exists, then $S_{A}-$ hull $_{A} J$ is contained in ${ }_{A} S_{B}$.

Proof. Let y be in $S_{A}-$ hull $_{A} J$, and U a neighbourhood of y in M_{A}. Since hull A_{A} is closed in M_{A}, we can assume without loss of generality that U does not intersect hull $A_{A} J$. Let f be in A such that $|\hat{f}|\left(y^{\prime}\right)=1$ for some y^{\prime} in $U,|\hat{f}| \leqq 1$ on M_{A} and $|\hat{f}| \leqq 1 / 2$ on $M_{A}-U$. Since y^{\prime} does not belong to hull $A_{A} J$, there exists g in J such that $|\hat{g}|\left(y^{\prime}\right)=1$. Then $g_{n}=g f^{n}$ belongs to J and hence to B, for each n, and for large enough $n,\left|\hat{\mathrm{~g}}_{n}\right|$ assumes its maximum only on U. Thus, y belongs to ${ }_{A} S_{B}$.

Before we state our final theorem which gives sufficient conditions for $r\left(S_{A}\right)=S_{B}$, we prove another lemma which seems interesting in itself.

Lemma 3.3. Let the map r be one to one and onto. If y in S_{A} is isolated in S_{A}, then $r(y)$ belongs to S_{B}.

Proof. Let y in S_{A} be isolated in S_{A}, and let cx $(x)=y$, for some x in $S_{\mathrm{cx} A}$. Then it is clear that x is isolated in $S_{\mathrm{cx} A}$. We show that there exists an open as well as closed subset E of $M_{\mathrm{cx} A}$ such that $E \cap S_{\mathrm{cx} A}=\{x\}$.

Since $F=S_{\mathrm{cx} A}-\{x\}$ is closed and is strictly contained in $S_{\mathrm{cx} A}, F$ is not a boundary for $\mathrm{cx} A$. Hence there exists an h in cx A such that $\hat{h}(x)=1$, but $|\hat{h}|<1$ on F. Since the topological boundary of $\hat{h}\left(M_{\text {ex } A}\right)$ is contained in $\hat{h}\left(S_{\text {cx } A}\right)[\mathbf{3}$, p. 10], it follows that $\{1\}$ is open in $\hat{h}\left(M_{\mathrm{ex} A}\right)$. Let $E=\left\{x^{\prime}\right.$ in $\left.M_{\mathrm{ex} A}: \hat{h}\left(x^{\prime}\right)=1\right\}$, which is as required.

Let $G=E \cup \tau(E)$. Then G is also open and closed in $M_{\text {ex } A}$, and $G \cap S_{\mathrm{cx} A}=\{x, \tau(x)\}$. If $r_{\mathrm{cx}}: M_{\mathrm{cx} A} \rightarrow M_{\mathrm{ex} B}$ is the restriction map, then clearly $r_{\mathrm{cx}}(G)$ is closed in $M_{\mathrm{ex} B}$. Since r is one to one and onto, by (ii) and (iii) of Proposition 2.3 we obtain

$$
M_{\mathrm{ex} B}-r_{\mathrm{ex}}(G)=r_{\mathrm{cx}}\left(M_{\mathrm{cx} A}-G\right) .
$$

Hence $r_{\mathrm{cx}}(G)$ is also open. By Silov's idempotent theorem [3, p. 88], there exists h in cx B such that $\hat{h}=1$ on $r_{\mathrm{cx}}(G)$, and $\hat{h}=0$ on $M_{\mathrm{cx} B}-r_{\mathrm{cx}}(G)$. Thus, $r_{\mathrm{cx}}(G)$ is a peak set for $\mathrm{cx} B$, and as such has non-empty intersection with $S_{\mathrm{cx} B}$. Since $\tau(G)=G$, it follows that either $r_{\mathrm{ex}}(x)$ or $r_{\mathrm{cx}}(\tau(x))$ belongs to $S_{\mathrm{ex} B}$. By (i) of Proposition 2.3, then, $\mathrm{cx}^{*}(x)=y$ belongs to S_{B}.

Theorem 3.4. Let the map r be one to one. Let J be an ideal of A contained in B such that hull ${ }_{A} J$ contains no non-empty perfect subset. Then $r\left(S_{A}\right)=S_{B}$.

Proof. First, since B is closed, by (ii) of Proposition 1.5, ${ }_{A} S_{B}$ exists and equals $S_{A} \cap r^{-1}\left(S_{B}\right)$. Also, by Lemma 3.2, $S_{A}-$ hull $_{A} J$ is contained in it. Thus, $r\left(S_{A}-\right.$ hull $\left._{A} J\right)$ is contained in S_{B}. If we let $E=S_{A}-r^{-1}\left(S_{B}\right)$, this implies that hull ${ }_{A} J$ contains E.

Next, by Theorem 3.1, $r\left(M_{A}\right)=M_{B}$, so that Lemma 3.3 applies, and if y is isolated in S_{A}, then $r(y)$ belongs to S_{B}. This shows that no y in E is isolated in E. Since hull $A_{A} J$ contains no non-empty perfect sulset, we conclude that E must be empty, so that $r\left(S_{A}\right)=S_{B}$.

Corollary 3.j.). Let A be a complex function algebra on a compact Hausdorff
space Y. Let E be a subset of M_{A}, and for each y in E, let D_{y} be a continuous point derivation of A at y. Let

$$
B=\left\{f \text { in } A: \hat{f}(y) \text { and } D_{y}(f) \text { real for each } y \text { in } E\right\} .
$$

A ssume that for $y_{1} \neq y_{2}$ in M_{A}, there existsf in $B \operatorname{such} \operatorname{that} \hat{f}\left(y_{1}\right)=1$, and $\hat{f}\left(y_{2}\right)=0$, and that the set
$\left\{y\right.$ in $M_{A}: \hat{f}=0$ on E implies $\left.\hat{f}(y)=0\right\}$
is at most countable. Then M_{B} is homeomorphic to M_{A}, and S_{B} to S_{A}.
Proof. First, $r: M_{A} \rightarrow M_{B}$ is one to one. Let

$$
J=\left\{f \text { in } A: \hat{f}(y)=D_{y}(f)=0 \text { for each } y \text { in } E\right\}
$$

Then by Theorem $3.1 r\left(M_{A}\right)=M_{B}$, and by Theorem 3.4, $r\left(S_{A}\right)=S_{B}$.
Example 3.6. The above corollary generalizes Proposition 2.2 of [5] where the set E was finite. We give here an example to show that it is a strict generalization. Let A be the standard algebra on the unit circle, and let $\left(y_{n}\right)$ be a sequence in the open unit disk such that $\sum_{n=1}^{\infty}\left(1-\left|y_{n}\right|\right)$ converges and $\left(y_{n}\right)$ has only one limit point y on the circle.

Let $D_{y_{n}}(f)=(\hat{f})^{\prime}\left(y_{n}\right)$, and let B and J be as in the above corollary with $E=\left\{y_{n}\right\}$. Then, by the factorization theorem for functions in A, hull ${ }_{A} J$ consists of $\left\{y_{n}\right\}$ together with the limit point y, and for $y^{\prime} \neq y^{\prime \prime}$ in the closed unit disk, there exists f in B such that $\hat{f}\left(y^{\prime}\right)=1$ and $\hat{f}\left(y^{\prime \prime}\right)=0$. Hence M_{B} is the closed unit disk and S_{B} is the unit circle.

Added in proof. We have stated in the beginning of § 2 that $\mathrm{cx}^{*}: M_{\mathrm{cx} A} \rightarrow M_{A}$ is an open map, and referred to Lemma 3.9 of $[\mathbf{1}]$ for a proof. We now notice that this proof is incorrect since it assumes that if $u\left(x_{0}\right)+i v\left(x_{0}\right)=0$, then $u\left(x_{0}\right)=v\left(x_{0}\right)=0$, where u and v are complex-valued functions. We supply here a valid proof for the openness of cx^{*}. Let V be an open subset of $M_{\mathrm{cx}}{ }_{A}$. To prove cx* (V) is open in M_{A}. Since $\mathrm{cx}^{*}(V)=\mathrm{cx}^{*}(\tau(V))$, we assume without loss of generality that $V=\tau(V)$. Let $y_{0}=\mathrm{cx}^{*}\left(x_{0}\right)$, with x_{0} in V. There exist h_{1}, \ldots, h_{k} in cx A such that $\hat{h}_{1}\left(x_{0}\right)=\ldots=\hat{h}_{k}\left(x_{0}\right)=0$, and an $\epsilon, 0<\epsilon \leqq 1 / 3$, such that if $U_{m} \equiv\left\{x\right.$ in $\left.M_{\mathrm{ex} A}:|\hat{h}(x)|<\epsilon, m=1, \ldots, k\right\}$ then $\bigcap_{m=1}^{k} U_{m}$ is contained in V.

Let $f_{m, n} \equiv h_{m} \sigma\left(h_{n}\right)+h_{n} \sigma\left(h_{m}\right), m, n=1, \ldots, k$. Then $f_{m, n}$ is in A, and $\left|\hat{f}_{m, n}\right|\left(y_{0}\right)=\left|\hat{f}_{m, n}\left(x_{0}\right)\right|=0$. If $W \equiv\left\{y\right.$ in $\left.M_{A}:\left|\hat{f}_{m, n}\right|(y)<2 \epsilon^{4}, m, n=1, \ldots, k\right\}$, then W is an open set in M_{A} containing y_{0}. We show that W is contained in $\mathrm{cx}^{*}(V)$. Let $y=\mathrm{cx}^{*}(x)$, with y in W. We have

$$
|\hat{h}(x)|\left|\hat{\sigma}\left(h_{m}\right)(x)\right|=1 / 2\left|\hat{f}_{m, m}\right|(y)<\epsilon^{4}, \quad 1 \leqq m \leqq k
$$

Fix m and $n, 1 \leqq m, n \leqq k$. We prove that either x belongs to $U_{m} \cap U_{n}$, or to $\tau\left(U_{m}\right) \cap \tau\left(U_{n}\right)$. Now, either $\left|\hat{h}_{m}(m)\right|<\epsilon^{2}$, or $\left|\hat{\sigma}\left(h_{m}\right)(x)\right|<\epsilon^{2}$. Assume first that $\left|\hat{h}_{m}(x)\right|<\epsilon^{2}$. If $\left|\hat{h}_{n}(x)\right|<\epsilon^{2}$, then since $\epsilon<1, x$ belongs to $U_{m} \cap U_{n}$, while if
$\left|\hat{h}_{n}(x)\right| \geqq \epsilon^{2}$, then $\left|\hat{\sigma}\left(h_{n}\right)(x)\right|<\epsilon^{2}$. In this case we claim that $\left|\hat{\sigma}\left(h_{m}\right)(x)\right|<\epsilon$, so that x belongs to $\tau\left(U_{m}\right) \cap \tau\left(U_{n}\right)$. For, if $\left|\hat{\sigma}\left(h_{m}\right)(x)\right| \geqq \epsilon$, then

$$
\begin{aligned}
\epsilon^{3}-\epsilon^{4} & <\left|\hat{h}_{n}(x) \hat{\sigma}\left(h_{m}\right)(x)\right|-\left|\hat{h}_{m}(x) \hat{\sigma}\left(h_{n}\right)(x)\right| \\
& \leqq\left|\hat{f}_{m, n}(x)\right|=\left|\hat{f}_{m, n}\right|(y)<2 \epsilon^{4} .
\end{aligned}
$$

But this is impossible since $\epsilon \leqq 1 / 3$. Next, assume that $\left|\hat{\sigma}\left(h_{m}\right)\right|<\epsilon^{2}$. Then the above argument goes through if we interchange h_{m} and $\sigma\left(h_{m}\right)$, and h_{n} and $\sigma\left(h_{n}\right)$. Thus we see that x belongs to $U_{m} \cap U_{n}$, or to $\tau\left(U_{m}\right) \cap \tau\left(U_{n}\right)$. Since this is true for every $m, n=1, \ldots, k$, either x belongs to $\bigcap_{m=1}^{k} U_{m}$, or to $\bigcap_{m=1}^{k} \tau\left(U_{m}\right)$. In any case x belongs to V, since $V=\tau(V)$. Hence $\mathrm{cx}^{*}(V)$ contains W.

References

1. N. L. Alling, Real Banach algebras and non-orientable Klein surfaces I, J. Reine Angew. Math. 241 (1970), 200-208.
2. G. Choquet, Lectures on analysis, vol. II (W. A. Benjamin Inc., New York, 1969).
3. T. Gamelin, Uniform algebras (Prentice-Hall, Englewood Cliffs, N. J., 1969).
4. I. Gelfand, D. Raikov, and G. Shilov, Commutative normed rings (Chelsea, New York, 1964).
5. B. V. Limaye and R. R. Simha, Deficiencies of certain real uniform algebras, Can. J. Math. 27 (1975), 121-132.
6. B. Lund, Ideals and subalgebras of a function algebra, Can. J. Math. 26 (1974), 405-411.
7. W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42.
8. E. L. Stout, The theory of uniform algebras (Bogden-Quigley, Tarrytown-on-Hudson, N. Y., 1971).

Indian Institute of Technology, Bombay, India

[^0]: Received November 11, 1974 and in revised form, February 7, 1975.

