It can be seen that I_n is related to $\Gamma(n + \frac{1}{2})$ as
\[
\int_0^\infty x^n e^{-x^2}dx = \frac{1}{2} \int_0^\infty y^{n-\frac{1}{2}} e^{-y} dy = \frac{1}{2} \Gamma(n + \frac{1}{2}).
\]

Reference
1. N. Lord, An elementary single-variable proof of $\int_0^\infty e^{-x^2/2}dx = \sqrt{2\pi}$,

LI. G. CHAMBERS
School of Informatics, University of North Wales, Bangor, Gwynedd LL57 1UT

89.10 Convergents to \sqrt{N} via the Farey mean?

Introduction
Let a, b, c and d be positive integers such that $\gcd(a, b) = \gcd(c, d) = 1$. The Farey mean (also known as the mediant) of the two rationals a/b and c/d is defined to be $(a + c)/(b + d)$. In his note [1], concerning some properties of the Farey mean, David Singmaster considers the following alternative to Newton's square root method for finding successively better rational approximations to \sqrt{N}. Starting with some rational estimate a_1/b_1 for N, we take the Farey mean (rather than the arithmetic mean used in Newton's method) of a_1 and $N/a_1 = Nb_1/a_1$ to give us an improved rational estimate a_2 for \sqrt{N} (it is stated in [1] that a_2 will be equal to $(a_1 + Nb_1)/(a_1 + b_1)$, but we note here that this is not necessarily always the case since there is the possibility that $\gcd(Nb_1, a_1) \neq 1$). The next estimate a_3 is obtained by taking the Farey mean of a_2 and N/a_2, and so on.

Singmaster noticed that with $a_1 = 1$ and $N = 2$ this process seems to give the convergents to $\sqrt{2}$, and with $N = 3$ the convergents to $\sqrt{3}$ emerge. He also points out that for $N = 5$ we appear to get the convergents to $\sqrt{5}$, but at every third stage of the process, and that for other values of N we obtain no convergents to \sqrt{N} at all, although, by setting $a_1 = \lfloor \sqrt{N} \rfloor$, it is sometimes possible to get some beginning terms to be convergents. In this note we provide proofs of these conjectures, and go on to show that 2 and 3 are actually the only non-square integer values of N for which the sequence of approximations obtained using this Farey mean process is the sequence of convergents to \sqrt{N}.

The cases $N = 2, 3$ and 5
Before proceeding with the proofs, let us define some notation that will be used throughout. Any positive irrational number x can be expressed as an infinite continued fraction of the form
\[
c_0 + \cfrac{1}{c_1 + \cfrac{1}{c_2 + \cfrac{1}{c_3 + \ldots}}}.
\]
where \(c_0 \) is a non-negative integer and \(c_1, c_2, c_3, \ldots \) are positive integers called the partial denominators of the continued fraction representation for \(x \). Adopting the usual notation for continued fractions, we may write \(x = \left[c_0; c_1, c_2, c_3, \ldots \right] \). The rational number obtained from the above continued fraction by ignoring all its partial denominators from \(c_n \) onwards is called the \(n \)th convergent to \(x \), and is denoted \(p_n/q_n \). Finally, if, from some point on in a continued fraction representation of a number, there is a recurring string of partial denominators we may use an overbar to indicate this. So, for example, \(\left[4; 3, 1,1,2,1,1,2,1,1,2, \ldots \right] \).

The following relations may be found in [2, pp. 284-286]:

\[
p_{n+1} = c_n p_n + p_{n-1} \quad \text{and} \quad q_{n+1} = c_n q_n + q_{n-1} \quad \text{for} \quad n \geq 2.
\]

It is proved in [3], using these relations along with the fact that \(\sqrt{m^2 + 1} = \left[m; \frac{2m}{2m} \right] \) that, if \(p_n/q_n \) denotes the \(n \)th convergent to \(\sqrt{m^2 + 1} \), where \(m \) is a positive integer, then, for \(n \geq 1 \),

\[
p_{n+1} = m p_n + (m^2 + 1) q_n \quad \text{and} \quad q_{n+1} = p_n + m q_n.
\]

Thus, with \(m = 1 \), we obtain the following relation for the convergents to \(\sqrt{2} \):

\[
\frac{p_{n+1}}{q_{n+1}} = \frac{p_n + 2q_n}{p_n + q_n} \quad \text{for} \quad n \geq 1.
\]

Then, since \(p_1/q_1 = 1 \) and \(\gcd(2, p_n) = 1 \) for \(n \geq 1 \), we see immediately that the Farey mean process will give rise to the convergents to \(\sqrt{2} \) when \(\alpha_1 = 1 \) and \(N = 2 \).

As 5 is also an integer of the form \(m^2 + 1 \), we next consider the Farey mean approximations to \(\sqrt{5} \). With \(m = 2 \), we have the following relation for the convergents to \(\sqrt{5} \):

\[
\frac{p_{n+1}}{q_{n+1}} = \frac{2p_n + 5q_n}{p_n + 2q_n} \quad \text{for} \quad n \geq 1.
\]

It is easily checked that \(\alpha_3 = 2/1 = p_1/q_1 \) so now assume that \(\alpha_{3k} = p_k/q_k \), for some positive integer \(k \). We then have (on noting that \(\gcd(5, p_n) = 1 \) for \(n \geq 1 \)):

\[
\alpha_{3k+1} = \frac{p_k + 5q_k}{p_k + q_k}, \quad \alpha_{3k+2} = \frac{3p_k + 5q_k}{p_k + 3q_k} \quad \text{and} \quad \alpha_{3k+3} = \frac{2p_k + 5q_k}{p_k + 2q_k} = \frac{p_{k+1}}{q_{k+1}},
\]

proving, by induction, that the convergents to \(\sqrt{5} \) appear as every third term in the sequence \((\alpha_n) \).

Numbers of the form \(\sqrt{m^2 + 2} \), of which \(\sqrt{3} \) is one, have continued fraction representations given by \(\left[m; \frac{2m}{m^2} \right] \). Using this fact, along with the previously mentioned relations from [2], we obtain, for \(n \geq 1 \), the following:

\[
p_{n+1} = m p_n + (m^2 + 2) q_n \quad \text{and} \quad q_{n+1} = p_n + m q_n \quad \text{when} \quad n \text{ is even,}
\]

and

\[
p_{n+1} = \frac{1}{2} \left(m p_n + (m^2 + 2) q_n \right) \quad \text{and} \quad q_{n+1} = \frac{1}{2} \left(p_n + m q_n \right) \quad \text{when} \quad n \text{ is odd,}
\]
giving us, with \(m = 1 \), the following relation for the convergents to \(\sqrt{3} \):

\[
\frac{p_{n+1}}{q_{n+1}} = \frac{p_n + 3q_n}{p_n + q_n} \quad \text{for } n \geq 1.
\]

Thus, since \(p_1/q_1 = 1 \) and \(\gcd(3, p_n) = 1 \) for \(n \geq 1 \), the Farey mean process will give rise to the convergents to \(\sqrt{3} \) when \(\alpha_1 = 1 \) and \(N = 3 \).

The general case

Let \(N \geq 5 \) be a non-square integer. Then we may write \(N = m^2 + k \) where \(m \) and \(k \) are integers such that \(m \geq 2 \) and \(1 < k < 2m \). We are looking for possible values of \(N \) for which the sequence of Farey mean approximations for \(N \) is identical to the sequence of convergents to \(\sqrt{N} \). Since the first convergent is \(\lfloor \sqrt{N} \rfloor = m \), we must have \(\alpha_1 = m \) so that, with \(\gcd(m, k) = d \), our second approximation is

\[
\alpha_2 = \frac{m + ((m^2 + k)/d)}{1 + m/d} = m + \frac{k}{d + m}.
\]

On the other hand the second convergent is given by

\[
\frac{p_2}{q_2} = m + \frac{1}{\left\lfloor \frac{1}{\sqrt{m^2 + k} - m} \right\rfloor},
\]

so we require \(k \) to satisfy both \(1 < k < 2m \) and \(\frac{m + d}{k} = \left\lfloor \frac{1}{\sqrt{m^2 + k} - m} \right\rfloor \).

Now, letting \(m = sd \) and \(k = td \) for some integers \(s \) and \(t \), and using the result

\[
\left\lfloor \frac{1}{\sqrt{m^2 + k} - m} \right\rfloor = \left\lfloor \frac{2m + \sqrt{m^2 + k} + m}{k} \right\rfloor = \left\lfloor \frac{2m}{k} \right\rfloor + \left\lfloor \frac{1}{\sqrt{m^2 + k} + m} \right\rfloor = \left\lfloor \frac{2m}{k} \right\rfloor,
\]

(since \(0 < h < k - 1 \) and \(0 < \frac{1}{\sqrt{m^2 + k} + m} < \frac{1}{2m} \)), we have that \(s + 1 \leq \frac{2s}{t} \).

This tells us that \(t \) divides \(s + 1 \) and \(\frac{s + 1}{t} \leq \frac{2s}{t} < \frac{s + 1}{t} + 1 \). The inequality simplifies to \(1 < s < t + 1 \) so \(s + 1 < t + 2 \). Thus \(s + 1 < t \) (so \(s + 1 = 0 \)), or \(s + 1 = t \), or \(s + 1 = t + 1 \) (so \(t = 1 = s \)).

If \(s = t = 1 \) then \(k = m \). Using the fact that \(\sqrt{m^2 + m} = \left[m; 2, 2m \right] \) we obtain \(\frac{p_3}{q_3} = \frac{4m^2 + 3m}{4m + 1} \). Comparing this to \(\alpha_3 = \frac{2m^2 + 4m + 1}{2m + 3} \) it is clear that \(\alpha_3 \neq p_3/q_3 \) for \(m \geq 2 \) (we have already dealt with \(\sqrt{2} \), the case corresponding to \(m = 1 \)).
If, on the other hand, \(t = s + 1 \) then \(k = m + d \). Numbers of the form \(\sqrt{m^2 + m + d} \) (remembering that \(1 < d < m \)) have continued fraction representations of the form \([m; 1, c_2, \ldots]\) so that

\[
\frac{p_1}{q_1} = m, \quad \frac{p_2}{q_2} = m + 1 \quad \text{and} \quad \frac{p_3}{q_3} = \frac{m + c_2(m + 1)}{1 + c_2} = m + \frac{c_2}{1 + c_2}.
\]

Since \(d \) is a factor of \(m \) (and thus \(\gcd(m^2 + m + d, m + 1) = 1 \)) we also have, in this case, that

\[
\alpha_1 = m, \quad \alpha_2 = m + 1 \quad \text{and} \quad \alpha_3 = \frac{m + 1 + (m^2 + m + d)}{1 + (m + 1)} = m + \frac{d + 1}{m + 2}.
\]

Therefore, if \(\alpha_3 \) is to equal \(p_3/q_3 \), we require \(\frac{d + 1}{sd + 2} \) to be equal to \(\frac{c_2}{1 + c_2} \).

We see that, with this condition, either \(s = 1 \) or \(s = 2 \).

If \(s = 1 \) then \(m = d = c_2 - 1 \). In this case, therefore, we just need to consider numbers of the form \(\sqrt{m^2 + 2m} = [m; 1, 2m] \). It is clear here that \(m \neq c_2 - 1 \) when \(m > 2 \) (we have already dealt with \(\sqrt{3} \), the case corresponding to \(m = 1 \)).

If, however, \(s = 2 \) then \(d = m/2 \) and \(c_2 = 1 \), so we now only need to consider numbers of the form \(\sqrt{4k^2 + 3k} \). It is easy to show that, for \(k > 2 \), such numbers have \(c_2 \geq 2 \). When \(k = 1 \) then \(N = 7 \) and, in this case, a simple check reveals that \(\alpha_4 \neq p_4/q_4 \), showing finally that, for \(N > 5 \), there exist no non-square integer values of \(N \) for which the sequence of Farey mean approximations is the sequence of convergents to \(\sqrt{N} \).

References

MARTIN GRIFFITHS

Colchester County High School for Girls, Norman Way, Colchester CO3 3US

89.11 Relations between Euler’s constant, Riemann’s zeta function and Bernoulli numbers

First, we give three definitions:

1. Euler’s constant \(\gamma \) is defined by \(\gamma = \lim_{N \to \infty} \left(\sum_{k=1}^{N-1} \frac{1}{k} - \ln N \right) \).

2. Riemann’s zeta function \(\zeta(s) \) is defined by \(\zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^s}, s > 1 \).

3. The Bernoulli numbers \(B_n \) may be defined by the generating function (see [1])

\[
\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}, \text{ for } |t| < 2\pi.
\]