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Abstract

As an extension of the discrete-time case, this note investigates the variance of the total
cumulative reward for continuous-time Markov reward chains with finite state spaces.
The results correspond to discrete-time results. In particular, the variance growth rate
is shown to be asymptotically linear in time. Expressions are provided to compute this
growth rate.
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1. Introduction

1.1. Motivation

The usual optimization criteria examined in the literature for the optimization of Markov
reward processes, such as a total discounted or average reward structure, can be quite insufficient
to fully capture the various aspects considered by a decision maker. It may be preferable, if
not necessary, to select or to include more sophisticated criteria that also reflect variability risk
features of the problem. Most notably, the variance of the cumulative reward can be indicative
and seems of interest. For a detailed discussion of such approaches, see the review paper by
White [20].

To the best of the authors’knowledge (and with the exception of [7], which will be discussed
below), higher moments and the variance of the cumulative reward in Markov reward chains
have been systematically studied only for discrete-time models. Research in this direction was
initiated by Mandl [12], Jaquette [5], [6], [8], Benito [1], and Sobel [17]. More recent extensions
of these results can be found in [11], [9], and [16]. In particular, in these references the variance
(or second moment) of the total expected discounted or average rewards of controlled, discrete-
time Markov reward chains was considered, to determine the ‘best’ policy within the class of
discounted (or average) optimal policies and find a smaller variance (or lower second moment)
of the cumulative reward.

Alternatively, criteria reflecting the variability or risk features of policies not restricted to the
class of optimal policies have been investigated in the literature on Markovian decision models.
More precisely, Sobel [18] maximized the ratio of the mean to the standard deviation using the
methods of nonlinear and parametric linear programming. Similarly, Kawai [10] considered
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the problem of minimizing the variance subject to a lower bound on the average reward. Filar et
al. [3] proposed a mathematical programming approach for mean–variance Markov decision
chains. Huang and Kallenberg [4] unified and extended the formulations and existence results
obtained in [3], [10], and [18]. Finally, in [16] it was shown that optimal policies with respect
to the standard mean–variance optimality criteria can be found in vertices of a special convex
polyhedron, and a policy iteration method was suggested to find these vertices. Here it is
important to note that, in these papers for finding the optimum policy with respect to various
mean–variance optimality criteria, the ‘variance’ is considered only with respect to one-stage
reward variances and not as the variance of the cumulative reward. To date, however, no results
for the continuous-time case seem to have been reported.

The only exception to this seems to be in [7]. That paper, which dealt with the discounted
reward case, provided a characterization of moment optimal policies. More precisely, for the
discounted reward case it showed that a moment optimal policy can always be found within
the class of piecewise-constant policies. However, no explicit expressions for these moments
or for the total cumulative reward or its asymptotic behaviour were provided in [7].

1.2. Objective and results

In this note, therefore, we aim to investigate whether the results established for the discrete-
time case can be extended to continuous-time Markov reward chains. As the essential step is an
expression for the variance of the cumulative reward and its asymptotic behaviour, in this note
the presentation will be restricted to the uncontrolled case. The implication for the controlled
case will be briefly discussed (see Remark 3.3). The formulae obtained are similar to those
for the discrete-time case. In addition to reward rates, we also consider transition rewards. In
particular, we show that the variance of the total reward has a growth rate that is asymptotically
linear in time. Relations are provided to compute this growth rate.

1.3. Formulation

Consider a continuous-time Markov reward process with finite state space S = {1, 2, . . . , N}
and a transition and reward structure characterized by

qij , the transition rate for a transition from i to j (i, j ∈ S, j �= i),

with qii = − ∑
j∈S, j �=i qij ,

rij , the instantaneous transition reward for a transition from i to j , and

ri, the reward rate in state i.

Let the vectors R(t), S(t), and V (t) respectively denote the first moment, the second moment,
and the variance of the total reward up to time t , given its initial state at time t = 0. More
precisely,

Ri(t) = E[ξ(t) | X(0) = i],
Si(t) = E[ξ2(t) | X(0) = i],
Vi(t) = σ 2[ξ(t) | X(0) = i],

where

ξ(t) =
∫ t

0
rX(s) ds +

N(t)∑
k=0

rX(τ−
k ),X(τ+

k ),

with X(s) denoting the state of the system at time s, X(τ−
k ) and X(τ+

k ) the states just before
and after the kth jump, respectively, and N(t) the number of jumps up to time t .
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In the literature on dynamic programming (e.g. [14] and [15]) the vector R(·) is well known
as the value function, which, because of the additive reward structure, can also be written as

R(t) =
∫ t

0
P (s)r̃ ds or

d

dt
R(t) = r̃ + QR(t) with R(0) = 0, (1.1)

where

P (t) = [pij (t)], the transition probability matrix over time t ,

Q = [qij ], the infinitesimal generator, with
∑

j∈S qij = 0, and

r̃ = [r̃i], the column N -vector of expected reward rates,

with r̃i = ri + ∑
j∈S, j �=i qij rij .

Remark 1.1. (Transition rewards.) 1. Note that the transition rewards rij are less natural as
instantaneous rewards in a discrete-time setting than in a continuous-time setting. Furthermore,
as shown above, they can be included in an expected reward rate r̃ for determining R(·).
2. In contrast, the actual state transition of the state process itself, and its corresponding reward
consequences, will be of influence on the second moment and the variance of the total reward.
In analysing the variance, therefore, the instantaneous transition rewards cannot be included in
the reward rate and are to be kept separate. This will also become apparent in the expressions
that will be derived below.

Remark 1.2. (Exponential convergence.) By ε(t) we denote a function of t such that ε(t) → 0
exponentially quickly as t → ∞, i.e. for some α and β, |ε(t)| ≤ αe−βt . By ε(t) we denote a
vector function such that, for all i, εi(t) → 0 exponentially quickly as t → ∞. Furthermore,
for any γ we write γ for the vector with γi = γ for all i. By I we denote the identity matrix,
and by π the row vector of steady state probabilities determined by πQ = 0.

2. Total reward variance for finite horizon

Let Ei denote the conditional expectation given that X(0) = i, and note that ξ(t + �) =
ξ(�)+ξ (�,t+�), where ξ (�,t+�) denotes the total (random) reward obtained in the time interval
[�, t + �). Hence,

Ei[ξ(t + �)] = Ei[ξ(�)] + Ei[ξ (�,t+�)],
Ei[ξ(t + �)]2 = Ei[ξ(�)]2 + Ei[ξ (�,t+�)]2 + 2 Ei[ξ (�,t+�)ξ(�)].

Then, since P (�) = I + �Q + o(�2); since the probability of more than one transition
occurring in time � is of order �2; since in the case of a transition in time �, say from i to
j (for which the probability is of order �), the reward incurred during that interval is of the
form rij + o(�); and since the continuous-time Markov reward process considered is time
homogeneous, we obtain

Ri(t + �) = �ri + (1 + �qii)Ri(t)

+ �
∑

j∈S, j �=i

qij {rij + Rj (t)} + o(�2),

Si(t + �) = (1 + �qii){2�riRi(t) + Si(t)}
+ �

∑
j∈S, j �=i

qij {r2
ij + 2rijRj (t) + Sj (t)} + o(�2).
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Hence,

d

dt
Ri(t) = ri +

∑
j∈S, j �=i

qij rij +
∑

j∈S, j �=i

qij {Rj (t) − Ri(t)}, (2.1)

d

dt
Si(t) = 2riRi(t) +

∑
j∈S, j �=i

qij {r2
ij + 2rijRj (t)} +

∑
j∈S, j �=i

qij {Sj (t) − Si(t)}. (2.2)

From Vi(t) = Si(t) − Ri(t)
2 we thus obtain

d

dt
Vi(t) = d

dt
Si(t) − 2Ri(t)

d

dt
Ri(t)

= 2riRi(t) +
∑

j∈S, j �=i

qij {r2
ij + 2rijRj (t)} +

∑
j∈S, j �=i

qij {Sj (t) − Si(t)}

− 2Ri(t)

(
ri +

∑
j∈S, j �=i

qij rij +
∑

j∈S, j �=i

qij {Rj (t) − Ri(t)}
)

. (2.3)

By making the substitutions Sj (t) = Vj (t) + Rj (t)
2 and − ∑

j∈S, j �=i qij = qii in (2.3), it can
be rewritten as

d

dt
Vi(t) = 2riRi(t) +

∑
j∈S, j �=i

qij {[rij + Rj (t)]2 − Ri(t)
2} +

∑
j∈S

qijVj (t)

− 2Ri(t)

(
ri +

∑
j∈S, j �=i

qij rij +
∑

j∈S, j �=i

qij {Rj (t) − Ri(t)}
)

=
∑
j∈S

qijVj (t) − 2Ri(t)

( ∑
j∈S, j �=i

qij rij +
∑
j∈S

qijRj (t)

)

+
∑

j∈S, j �=i

qij {rij + Rj (t) + Ri(t)}{rij + Rj (t) − Ri(t)}. (2.4)

3. Infinite horizon

Assume that the Markov chain has a single class of recurrent states. The average reward, g,
is then well defined, independently of the initial state i at time 0, by

g = lim
t→∞

1

t
Ri(t).

In addition, by dynamic programming (see, e.g. [14] and [15]) it is well known that there exists
a vector w such that

R(t) = gt + w + ε(t); (3.1)

hence, R(t) has a growth rate linear in t up to a vector w and a term converging exponentially
quickly to 0 as t → ∞. The vector w is the relative gain (or bias) vector, determined by

g = ri +
∑

j∈S, j �=i

qij {rij + wj − wi}. (3.2)

Note that the wj are uniquely determined by (3.2) up to an additive constant. Under the
additional condition πw = 0, the wj are the unique solution to (3.2).
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Now, by
Rj (t) + Ri(t) = 2gt + wj + wi + ε(t),

Rj (t) − Ri(t) = wj − wi + ε(t), (3.3)

for the last term in (2.4) we can write
∑

j∈S, j �=i

qij {rij + Rj (t) + Ri(t)}{rij + Rj (t) − Ri(t)}

=
∑

j∈S, j �=i

qij {[rij + wj ]2 − w2
i } + 2gt

∑
j∈S, j �=i

qij {rij + wj − wi} + ε(t)

=
∑

j∈S, j �=i

qij {[rij + wj ]2 − w2
i } + 2g2t − 2gtri + ε(t).

Furthermore, by again using (3.3) and (3.2), for the second term of (2.4) we obtain

2Ri(t)

( ∑
j∈S, j �=i

qij rij +
∑
j∈S

qijRj (t)

)

= 2Ri(t)

( ∑
j∈S, j �=i

qij rij +
∑

j∈S, j �=i

qij {Rj (t) − Ri(t)}
)

= 2(gt + wi + ε(t))

( ∑
j∈S, j �=i

qij {rij + wj − wi} + ε(t)

)

= 2g2t − 2gri t + 2wi(g − ri) + ε(t).

Substitution into (2.4) yields

d

dt
Vi(t) =

∑
j∈S

qijVj (t) +
∑

j∈S, j �=i

qij {[rij + wj ]2 − w2
i } + 2(ri − g)wi + ε(t).

Hence, in matrix form, and with the vector s defined by

si =
∑

j∈S, j �=i

qij {[rij + wj ]2 − w2
i } + 2(ri − g)wi,

we have
d

dt
V (t) = s + QV (t) + ε(1)(t), (3.4)

where all elements of the column N -vector ε(1)(t) converge to 0 exponentially quickly, implying
that

‖ε(1)(t)‖ ≤ ce−δt (3.5)

for some numbers c > 0 and δ > 0, where ‖ · ‖ is the standard ∞ norm.

3.1. Growth rate

Now, in order to investigate the behaviour of V (t) for large t , let

X(t) = V (t) − W (t), (3.6)
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where W (t) is defined by
d

dt
W (t) = s + QW (t) (3.7)

and W (0) = 0. In analogy with (3.4) and in correspondence to (1.1), (3.1), and (3.2), W (t)

can thus be regarded as the expected cumulative reward up to time t with reward rate vector s,
and can be written as

W (t) =
∫ t

0
P (u)s du = γ t + h + ε(2)(t), (3.8)

where the function ε(2)(t) is again a vector that converges to 0 exponentially quickly as t → ∞
and the growth rate γ and the vector h are determined by

γ = si +
∑

j∈S, j �=i

qij (hj − hi),
∑
i∈S

πihi = 0, (3.9)

with

γ = lim
t→∞

1

t
Wi(t) (3.10)

for any i ∈ S.

Lemma 3.1. With ε(1)(t) as in (3.4),

X(t) =
∫ t

0
P (u)ε(1)(t − u) du (3.11)

and, for some positive constants c and δ,

‖X(t)‖ ≤ 1

δ
c[1 − e−δt ]. (3.12)

Proof. By (3.4), (3.6), and (3.7),

d

dt
X(t) = ε(1)(t) + QX(t), (3.13)

and by the uniqueness of its solution (see, e.g. [2, p. 23]) it suffices to show that

d

dt

∫ t

0
P (u)ε(1)(t − u) du = ε(1)(t) + Q

∫ t

0
P (u)ε(1)(t − u) du.

To this end, we can write∫ t+�

0
P (u)ε(1)(t + � − u) du −

∫ t

0
P (u)ε(1)(t − u) du

=
∫ �

0
P (u)ε(1)(t + � − u) du +

∫ t+�

�

P (u)ε(1)(t + � − u) du

−
∫ t

0
P (u)ε(1)(t − u) du

=
∫ �

0
P (u)ε(1)(t − u)[1 + o(1)] du +

∫ t

0
P (u + �)ε(1)(t − u) du

−
∫ t

0
P (u)ε(1)(t − u) du

= ε(1)(t)[1 + o(1)]� +
∫ t

0
[P (�) − I ]P (u)ε(1)(t − u) du.
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By dividing the left- and right-hand sides of this equation by �, letting � → 0, and using
[P (�)−I ]/� → Q (in the strong sense (see [2, p. 23])), we can show that (3.11) satisfies (3.13).
Inequality (3.12) follows directly from the exponential convergence (3.5), since

‖X(t)‖ ≤
∫ t

0
ce−δ(t−u) du = 1

δ
c[1 − e−δt ].

Theorem 3.1. For a (constant) growth rate vector γ and vector h as determined by (3.9)
and (3.10), some constant C, and some exponentially quickly converging vector function ε(t),
we have

V (t) = γ t + h + c(t) + ε(t) with ‖c(t)‖ ≤ C for all t . (3.14)

Proof. Equation (3.14) follows directly by combining (3.4), (3.8), and (3.12) and combining
the exponentially converging terms ε(1)(t) and ε(2)(t) for X(t) and W (t).

In words, the theorem states that V (t) has a linear growth rate up to a bounded bias function
and an exponential convergence.

3.2. Computation

The growth rate γ can in principle be computed using standard methods as a solution to the
set of linear equations (3.9). However, we can also employ successive approximation. This
will generate monotone lower and upper bounds converging to γ . To this end, choose a B < ∞
such that

∑
j∈S, j �=i qij < B and let the functions W (k), k = 0, 1, 2, . . . , be defined recursively

by
W (0) = 0, W (k+1) = s + PW (k), k = 0, 1, 2, . . . , (3.15)

where the elements of P are defined by

pij =

⎧⎪⎪⎨
⎪⎪⎩

qij

B
, j �= i,

1 −
∑

j∈S, j �=i

qij

B
, j = i.

By the standard step of uniformization (see, e.g. [19, p. 154]) and results for dynamic program-
ming (see, e.g. [13] and [19, p. 207]), the linear growth rate γ of the variance defined by (3.4)
can then be approximated as the average reward of the Markov chain with reward rate s, by

Mn = max
i∈S

|W(n+1)
i − W

(n)
i |B, mn = min

i∈S
|W(n+1)

i − W
(n)
i |B.

The values mn and Mn are then monotonically convergent to γ, and mn ≤ γ ≤ Mn.

Remark 3.1. Since γ = πs and (recall) πQ = 0, we have γ = πs(1) = πs(2), where the
elements of s(1) are defined by

s
(1)
i =

∑
j∈S, j �=i

qij {[rij + wj ]2 − w2
i } + 2riwi

and those of s(2) are defined by

s
(2)
i =

∑
j∈S, j �=i

qij {r2
ij + 2rijwj } + 2riwi.

As a consequence, to compute γ we can also replace s by s(1) or s(2) in (3.15).
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Remark 3.2. (Transient and discounted case.) Assume that, for every i = 1, . . . , N , there
exist (finite) limits Ri = limt→∞ Ri(t) and Si = limt→∞ Si(t) (whence g = 0 and, similarly,
γ := limt→∞ Si(t)/t = 0). Then, from (2.1)–(2.4), we immediately conclude that the limits
Vi = limt→∞ Vi(t) also exist and satisfy (see (2.4))

0 =
∑
j∈S

qijVj − 2Ri

( ∑
j∈S, j �=i

qij rij +
∑
j∈S

qijRj

)
+

∑
j∈S, j �=i

qij {[rij + Rj ]2 − R2
i }.

This situation typically arises when the chain is absorbing in states with ri = 0. A similar
expression, with a discounted factor β included, can be derived for the total cumulative
discounted reward, Rβ.

Remark 3.3. (Controlled case.) In this note we have restricted our attention to uncontrolled,
continuous-time Markov reward chains. For controlled models (i.e. with transition rates and
transition rewards depending on a decision), the results can be extended immediately for a
given stationary policy. Results can then be expected that are related to those on selecting the
‘best’ optimal stationary policy with smallest (minimal) variance in the discrete-time case (see,
e.g. [9], [11], and [12]). However, as this ‘optimization’ will be notationally more complex
and requires a number of technicalities and results from Markov decision theory, the details
and results are left for further research. Nevertheless, the essential first step to this end is
Theorem 3.1. The situation with nonstationary policies and other optimization criteria also
remains a challenging topic for future research.
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[16] Sladký, K. and Sitař, M. (2004). Optimal solutions for undiscounted variance penalized Markov decision
chains. In Dynamic Stochastic Optimization (Lecture Notes Econom. Math. Systems 532), eds K. Marti,
Y. Ermoliev and G. Pflug, Springer, Berlin, pp. 43–66.

[17] Sobel, M. J. (1982). The variance of discounted Markov decision processes. J. Appl. Prob. 19, 794–802.
[18] Sobel, M. J. (1985). Maximal mean/standard deviation ratio in an undiscounted MDP. Operat. Res. Lett. 4,

157–159.
[19] Tijms, H. C. (1994). Stochastic Models. An Algebraic Approach. John Wiley, Chichester.
[20] White, D. J. (1988). Mean, variance and probability criteria in finite Markov decision processes: A review. J.

Optimization Theory Appl. 56, 1–29.

https://doi.org/10.1239/jap/1165505206 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1165505206

	1 Introduction
	1.1 Motivation
	1.2 Objective and results
	1.3 Formulation

	2 Total reward variance for finite horizon
	3 Infinite horizon
	3.1 Growth rate
	3.2 Computation

	Acknowledgement
	References

