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Abstract

We show that the problem of settling the existence of an n X n Hadamard matrix, where n is
divisible by 4, is equivalent to that of finding the cardinality of a smallest set T of 4-circuits in the
complete bipartite graph Kn „ such that T contains at least one circuit of each copy of K^3 in Knjr

1980 Mathematics subject classification (Amer. Math. Soc.): 05 C 50.

An Hadamard matrix is an n X n (1, -l)-matrix in which the rows are mutually
orthogonal. The Hadamard conjecture asserts that there exists an Hadamard
matrix of order n whenever n is divisible by 4. (See Wallis (1972) and the
references found therein.) In Little and Thuente (1979), we restate the conjecture
as a problem concerning the 1-factors of a complete bipartite graph. In the
present paper, the conjecture is shown to be equivalent to one about the circuits
of length 4 in a complete bipartite graph.

We begin with a lemma.

LEMMA 1. Let S be a set with | S | = n for some n divisible by 4. Suppose there
exist subsets Tt, T2, . . . , Tn_l of S, of cardinality n/2, such that \Tt n 7}| = «/4
whenever i ¥=j. Then there exists an Hadamard matrix of order n.

PROOF. Let S = {sv s2, . . . , sn}. Define H = (hu), where hXj = 1 for all
j £ ( l , 2 n} and, for all / G {2, 3 «},

1 if Sj G Tt_x,

-1 otherwise.
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Since |7j-| = n/2 for all /, the first row is orthogonal to all the others. Further-
more since |7;| = n/2, |7}| = n/2 and \Tt n 7}| == n / 4 for ally ¥=j, we must
have |7} - 7].| = |7; - 7}| = « /4 , so that |7 .̂ n 7}| = n / 4 where 7; = 5 - Tt

and Tj = S — Ty It follows that rows / + 1 and./ + 1 are orthogonal. Hence H
is an Hadamard matrix of order n.

As an example, let S = {s{, s2, s3, s4), T{ = {st, s2), T2 = { î, s3), and T3 =
{sv s4}. Then

H

The equivalence of the Hadamard conjecture with a problem on the 4-circuits
of a complete bipartite graph is shown in the following theorem.

THEOREM. Let S be the set of all A-circuits of Knn where n is even. Let
Sv . . . , Sk be the collection of all subsets S,- of S, of cardinality 3, such that the
union of the three circuits of St is K23. Let T be a smallest subset of S such that
T n S,¥* 0for each i. Then \T\ > \n\n - l)(« - 2), and equality holds if and
only if there exists an Hadamard matrix of order n.

PROOF. Let A be an n X n (1, -l)-matrix (a/7). Let Knn be the complete
bipartite graph with vertex set {t>,, v2, . . . , vn, wv w2, . . ., wn), where u, and w,
are adjacent for each / andy. Furthermore, for each i andy" let the edge joining vt

to Wj be directed from t;, to vv, if a^ = 1 and from Wj to t>, otherwise.
Note that a pair of rows and a pair of columns of A corresponds in an

obvious way to an undirected 4-circuit in Knn. We say that this 4-circuit is
clockwise even if the number of edges directed in the clockwise sense is even,
and clockwise odd otherwise. Let C be a 4-circuit of Knn with vertex set
{vh, Vj, Wj, wk). If ahJ = aip then exactly one of the two edges of C incident on tv,
is directed in the clockwise sense. If ahj ¥= atj, then those edges are directed in
the same sense on C. Analogous results hold for ahk and ajk. It follows that C is
clockwise odd if and only if exactly one of the equations ahJ = atJ and a^ — aik

holds. This condition holds if and only if a^a^ + a^a^ = 0.
If we let Xhi be the set of columns j of A for which ahJ = atj and let Yu be the

set of all the remaining columns of A, it follows from the above considerations
that the number of clockwise odd 4-circuits containing vh and u, is \XU\ \ Yu\.
This product is a maximum if \Xhi\ = | Yu\, and this condition holds if and only
if rows h and / of A are orthogonal. It follows that the number of clockwise odd
4-circuits of Kn „ is maximised if A is an Hadamard matrix.
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Suppose therefore that A is an Hadamard matrix. Then \XU\ — \ Yu\ =j/ i for
all h and i, so that there are (j ri)2 clockwise odd 4-circuits of Kn „ containing vh

and o,-. Therefore Knn has \(£)n2 clockwise odd 4-circuits altogether, and
therefore Q)2 - \Q)n2 = \n2(n - l)(/i - 2) clockwise even ones. Let To be the
set of all clockwise even 4-circuits of Kn n.

The graph K23 is drawn in Figure 1, where an orientation is given in which all
three circuits are clockwise even. Since every edge of K23 belongs to exactly two
circuits of K23, it follows that for any orientation of K23 there are an odd
number of clockwise even circuits. It follows that To n S, ^ 0 for all i.

FIGURE 1

We have now proved that if there exists an Hadamard matrix of order n, then
\T\ <\n\n - l)(/i - 2). We prove next that in fact \T\ >\n2(n - l)(n - 2).
The existence of an n X n Hadamard matrix will then imply that \T\ =
| n2(n — l)(/i — 2). We will then prove the converse.

Suppose therefore that T n St ¥= 0 for all i. We consider first those copies of
K23 in Knn which contain exactly three vertices of {o,, . . . , «„}. We denote the
complement of Knn by 2Kn, since it has exactly two components, C, and C2,
each isomorphic to Kn. Let C, be the component with vertex set {vl «„}.
Then the complement (in K5) of a copy of K23 containing three vertices of
{t>,, . . . , vn] is Px u P2, where /*, is a triangle of C, and P2 an edge of C2. The
complement (in K4) of a circuit in K2 3 is then the union of P2 with an edge of
Pv Let us now temporarily fix P2 and let P, run through all triangles in C,. In
order to contain at least one circuit in each of the corresponding copies of Ku,
T must contain at least as many circuits as the cardinality of the smallest set of
edges whose deletion from Kn yields a graph with no triangles, and furthermore
each such circuit must contain both end-vertices of the edge P2. By a well known
theorem of Turin (see Turan (1941) or Harary (1969) p. 17), the largest
subgraph of Kn having no triangles is Kn/2n/2, since n is even. Since Kn has (J)
edges and Kn/2n/2 has \n2 edges, T must contain at least (2) — \nz circuits
which include the end-vertices of P2. Since there are (2) choices for P2, it follows
that \T\ > Q[Q) - \n2] =\n\n - 1)(« - 2).
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We continue the argument under the assumption that

\T\={n\n-l)(n-2)

and prove the existence of an n X n Hadamard matrix. We now consider the
copies of K2i in Knn which have only two vertices of {t>,, . . . , «„}. The
complement (in K5) of such a copy of K^ is Pl u P2 where Px is an edge of C,
and P2 a triangle of C2. The complement (in KA) of any circuit in such a copy Z
of K23 is the union of Pl with an edge e of P2. We have already seen that in
order to include at least one circuit of each copy of K23 that includes the
end-vertices of e and three vertices of {« , , . . . ,»„} , T must contain all the
4-circuits whose complements in K4 are pairs of edges where one edge of the pair
is e and the other is chosen from the complement, 2Kn/2, in Cx of a fixed copy of
Kn/2,n/2- 1° order to ensure that T contains a circuit of Z, the copies of Kn/Xn/2

in C, corresponding to the edges of P2 must be chosen in such a way that the
edge Px appears in the complement of at least one of them. Since Px is any edge
of C,, we find that C, must be the union of three copies of 2Kn/2, each copy
being the complement in C, of a copy of Kn/2>n/2 chosen to correspond to an
edge of P2. Since P2 is any triangle of C2, we see that to each edge of C2 there
corresponds a subgraph 2Kn/2 of C, in such a way that for any triangle of C2 the
union of the corresponding subgraphs of C, is C, itself. For any edge e of C2, let
us denote by Vx(e) and V2(e) the vertex sets of the copies of Kn/2 in the
subgraph 2Kn/2 of C, corresponding to e. Thus \Vx(e)\ = |F2(e)| =\n for each
e.

Let us now consider a triangle of C2 with edge set (e,, e2, e3). Since Cx is the
union of the corresponding copies of 2Kn/2, each pair of vertices of Ct must be
contained in at least one of the sets Vt{e^ where e e (1, 2} and./ e {1, 2, 3}. It
follows that

{K,(e3), V2(e3)} = {[K,(e,) n K,(e2)] U [ K2(e.) n K2(e2)],

[^(e ,) n K2(e2)] u[F2(e,) n K,(e2)]}.

Note that | K,(e,) n V^e^ = | F2(e,) n V2(e2)\, since

l^i(«i)l = 1^2)1, I ^ i ) l = l^.(^) n F,(e2)| + |K,(e,) n F2(e2),

and | KjCej)! = | K,(e,) n V£eJ\ + \ K2(e,) n ^(e^l- Since

l^i(«i) n K,(e2)| + |K2(e,) n K2(e2)| = |K,(e3)| = |F2(e3)| - I / i ,

it follows that n is divisible by 4 and | F,(e,) n ^ , (^1 = jn.
Finally we consider a subgraph KXn_x of C2. Any pair of the n — 1 edges

/i, . . . , / „ _ ! in this subgraph form two sides of a triangle in C2. It is now
immediate that the sets Vx(fx), . . . , F,(/„_,) satisfy the conditions of Lemma 1.
The existence of an Hadamard matrix of order n follows.
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