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For time series with high temporal correlation, the empirical process converges
rather slowly to its limiting distribution. Many statistics in change-point analysis,
goodness-of-fit testing, and uncertainty quantification admit a representation as
functionals of the empirical process and therefore inherit its slow convergence.
As a result, inference based on the asymptotic distribution of those quantities
is significantly affected by relatively small sample sizes. We assess the quality
of higher-order approximations (HOAs) of the empirical process by deriving the
asymptotic distribution of the corresponding error terms. Based on the limiting
distribution of the higher-order terms, we propose a novel approach to calculate
confidence intervals for statistical quantities such as the median. In a simulation
study, we compare coverage rates and lengths of these confidence intervals with
those based on the asymptotic distribution of the empirical process and highlight
some benefits of HOAs of the empirical process.

1. INTRODUCTION

Let Xn, n = 1, . . . ,N, be a time-series stemming from a stationary stochastic process
Xn, n ∈N, with marginal distribution function F, such that F(x) = P(Xn � x) for all
n ∈N. We study the empirical distribution function FN(x) := 1

N

∑N
n=11{Xn�x}. The

rate of convergence, i.e., the increase of the sequence aN , N ∈ N, which ensures
weak convergence of the empirical process

a−1
N N(FN(x)−F(x)) (1.1)
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2 ANNIKA BETKEN AND MARIE-CHRISTINE DÜKER

Figure 1. The empirical distribution of the centered and standardized empirical distribution FN(x)
evaluated at zero (x = 0) under the assumption of Gaussian long-range dependent data with different
Hurst parameters and for sample sizes m = 100,200,1000. The red line depicts the standard Gaussian
density function.

to a nondegenerate limit, crucially depends on the behavior of the process’
autocorrelation function γ (k) := Cov(X1,Xk+1). For short-range dependent time
series, i.e., for stochastic processes with summable autocorrelations, aN = √

N. In
contrast, for long-range dependent time series, i.e., for γ (k) = k−(2−2H)L(k) with L
a slowly varying function and H ∈ (1/2,1) the so-called Hurst parameter, we have

aN = NHL
1
2 (N). In fact, under long-range dependence (LRD), the distribution of

the empirical process converges much slower to its limit than under short-range
dependence.

To illustrate the slow convergence of the empirical process under strong tem-
poral correlation, we would like to draw the reader’s attention to Figure 1. The
figure depicts the asymptotic behavior of the centered and standardized empirical
distribution FN(x) evaluated at x = 0 for different sample sizes. The underlying
process is assumed to be fractional Gaussian noise with Hurst parameter H.
In this case, the sequence aN , N ∈ N, in (1.1) can be explicitly calculated
as aN = ϕ(0)NH with ϕ denoting the standard Gaussian density. The quantity

1
ϕ(0)

N1−H(FN(0) − F(0)) is computed independently 10,000 times for different
sample sizes N and the resulting values are summarized in the histograms in
Figure 1. Due to Dehling and Taqqu (1989, Thm. 1.1), the quantity is expected
to converge to a standard Gaussian random variable. Therefore, the histograms in
Figure 1 are expected to approach the standard Gaussian density function (depicted
in red). The convergence rate depends on the value of the Hurst parameter in that
a small value (H = 0.55) results in relatively fast convergence while a large value
(H = 0.95), and implied stronger temporal correlation, results in much slower
convergence. This phenomenon is specific to long-range dependent time series
and the focus of this work.
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The empirical process serves as a powerful tool for characterizing the asymptotic
behavior of a variety of test statistics used in change-point analysis and goodness-
of-fit testing (Wilcoxon, Kolmogorov–Smirnov, and Cramèr–von Mises statistics);
see Beran (1992); Betken (2016, 2017); Dehling et al. (2013); Tewes (2018).
When testing the hypothesis of stationarity against the alternative hypothesis of
a structural change in a time series, the phenomenon illustrated in Figure 1 results
in a high number of false positives; see Dehling et al. (2013).

Against this background, the contribution of this is twofold: On the one hand, we
address a statistical issue arising in the calculation of confidence intervals under
strong temporal correlation. On the other hand, we push forward the theoretical
investigation of the empirical process by proving a novel limit theorem. More
precisely:

• We study the construction of confidence intervals for the marginal distribution
of stationary time-series data and confidence intervals for its quantiles in long-
range dependent time series. We propose a novel approach to calculate confi-
dence intervals based on a higher-order approximation (HOA) of the empirical
distribution function. Under LRD, an asymptotic expansion of the empirical
distribution that is similar in spirit to a Taylor expansion can be derived. This
expansion can be used to obtain HOAs of certain statistical functionals of the
empirical process.

• We establish the theoretical validity of our method for statistics that can
be considered as functionals of the empirical process. For statistical appli-
cations beyond the construction of confidence intervals, e.g., change-point
and goodness-of-fit tests, uniform convergence of the one-parameter empirical
process (1.1) does not suffice in order to derive limit distributions of correspond-
ing statistics. These typically require consideration of the two-parameter (or
sequential) empirical process

a−1
N �Nt�(F�Nt�(x)−F(x)), t ∈ [0,1], x ∈ R.

We derive the asymptotic distribution of HOAs of the sequential empirical
process by proposing a new chaining technique.

Constructing confidence intervals for unknown quantities in time series is a
problem of substantial interest in statistics. In the statistical literature, the main
focus has been on approximating the limiting distribution through finite sample
procedures like subsampling and bootstrapping; see Bühlmann (2002); Huang and
Shao (2016); Kim et al. (2015); Nordman et al. (2013); Shao (2010). From an
entirely theoretical perspective, Youndjé and Vieu (2006) investigate consistency
properties of kernel-type estimators of quantiles under LRD. The interest in
confidence intervals is also due to their relevance for uncertainty quantification in
other sciences where they are used in a variety of fields, including climate science,
economics, finance, industrial engineering, and machine learning; see Massah and
Kantz (2016); Fang et al. (2018); Hoga (2019); Purwanto and Sudargini (2021).
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Empirical process theory became one of the major themes in the historical
progress of nonparametric statistics; see Donsker (1952); Dudley (1978); Doukhan
and Surgailis (1998); Shorack and Wellner (2009); Wellner and van der Vaart
(2013). The applications are manifold, especially since many statistics have a
representation as functionals of the empirical process, such that statistical inference
can be based on the properties of the empirical process itself. In the empirical
sciences, confidence intervals for unknown parameters or critical values for
hypothesis tests are derived from the distributional properties of the empirical
process.

For stationary Gaussian processes, Koul and Surgailis (2002) derived the
asymptotic distribution of higher-order terms of the empirical process. We extend
their results substantially by considering the sequential empirical process and
by allowing the underlying time series to be driven by subordinated Gaussian
processes. Subordination extends the model’s flexibility by allowing for a large
class of marginal distributions. Furthermore, we are the first to propose a utilization
of HOAs of the empirical process for the calculation of confidence intervals which
are robust to high temporal correlation in time-series data.

Although long-range dependent processes are a popular modeling tool in a
variety of domains (Rust et al. 2010; Weron 2002), the construction of confidence
intervals under has not gotten much attention. We provide an empirical study
comparing confidence intervals derived from the asymptotic distribution of the
empirical process to confidence intervals based on HOAs of the empirical process.

For the population mean, Hall et al. (1998) propose a sampling window method
to set confidence intervals under LRD. Nordman et al. (2007) consider the
empirical likelihood for confidence intervals. For mean functions, Bagchi et al.
(2016) study a monotone function plus noise model with potential in the noise
term and derive confidence intervals for the monotone functions. In contrast, we
deal with a different, rank-based class of statistics.

The literature review, as well as our motivation illustrated in Figure 1, show
the strong influence of high temporal correlation on the performance of statistics
derived from the empirical process. In this article, we aim to address this issue
by introducing a procedure based on HOAs of the empirical process to construct
confidence intervals for statistics of long-range dependent time series robust to
high temporal correlation. Our theoretical contribution is of independent interest
and potentially has further applications in change-point analysis and goodness-of-
fit testing. Furthermore, a reduction to a limit theorem in the short-range dependent
regime allows an application of established resampling procedures such as the
moving block bootstrap which has been proved to be invalid under LRD; see Lahiri
(1993).

The rest of th is organized as follows: In Section 2, we introduce the considered
setting in all details. Section 3 motivates the consideration of HOAs of the
empirical process. Section 4 focuses on theoretical contributions which manifest
the formal validity of the proposed method. In Section 5, we discuss how to
calculate confidence intervals based on the asymptotic distribution of the empirical
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process and propose an alternative approach based on HOAs. The numerical study
in Section 6 provides a comparison between the two methods. We conclude with
Section 7. Proofs of the theoretical results can be found in Appendices A–D.

2. PRELIMINARIES

While Section 1 provides insight into the motivation for considering HOAs of
statistics, we introduce here model assumptions which allow for this type of
approximations (Section 2.1) and give some technical details necessary for our
analysis (Section 2.2).

2.1. Setting

For future reference, we subsume assumptions on the data-generating process
under the following model specification.

Model 2.1. Let Xn, n ∈ N, be a subordinated Gaussian process, i.e., Xn = G(ξn)

for some measurable function G : R→R and with ξn, n ∈N, denoting a (standard-
ized) long-range dependent Gaussian process, i.e., E(ξn) = 0, Var(ξn) = 1, and

γ (k) = Cov(ξ1,ξk+1) = E(ξ1ξk+1) = k−DL(k), (2.1)

where D ∈ (0,1) (the so-called LRD parameter) and L a slowly varying function.

Relation (2.1) corresponds to one of multiple different ways to define LRD.
A more general definition characterizes long-range dependent time series by
the nonsummability of the absolute values of its autocovariance function; see
Pipiras and Taqqu (2017, eqn. (2.1.6)). In fact, (2.1) implies that the series of the
autocovariances diverges. We refer to Pipiras and Taqqu (2017, Chap. 2.1) for a
detailed representation of different ways to define and their relations to each other.

For any particular distribution function F, an appropriate choice of the transfor-
mation G yields subordinated Gaussian processes with marginal distribution F.
Moreover, there exist algorithms for generating Gaussian processes that, after
suitable transformation, yield subordinated Gaussian processes with marginal
distribution F and a predefined covariance structure; see Pipiras and Taqqu (2017).

The following example presents a process which satisfies Model 2.1.

Example 2.2 (Pipiras and Taqqu (2017, Def. 2.8.3)). Let BH(t),t ∈ R, be a
fractional Brownian motion. Then, the process ξH(k),k ∈ Z, defined by

ξH(k) := BH(k +1)−BH(k)

is called fractional Gaussian noise with Hurst parameter H.

2.2. Gaussian Subordination

In the study of functionals of Gaussian processes, Hermite polynomials play a
fundamental role. In particular, they form a basis for the space of finite-variance
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functions of Gaussian random variables. Since they are an inevitable tool in our
analysis, we provide a short review.

Let L2(R,ϕ(x)dx) be the space of functions which are square-integrable with
respect to the Gaussian measure (here denoted by ϕ(x)dx). For g ∈ L2(R,ϕ(x)dx)
and ξn, n ∈ N, we call the sequence Xn = g(ξn), n ∈ N, a subordinated Gaussian
sequence.

A collection of orthogonal elements in L2(R,ϕ(x)dx) is given by the sequence
of Hermite polynomials; see Pipiras and Taqqu (2017, Prop. 5.1.3).

Definition 2.3. For n � 0, the Hermite polynomial of order n is defined by

Hn(x) = (−1)ne
1
2 x2 dn

dxn
e− 1

2 x2
, x ∈ R.

The Hermite polynomials form an orthogonal basis of L2(R,ϕ(x)dx). As a
result, every g ∈ L2(R,ϕ(x)dx) has an expansion in Hermite polynomials, i.e., for
g ∈ L2(R,ϕ(x)dx) and ξ standard normally distributed, we have

g(ξ) =
∞∑

r=0

Jr(g)

r!
Hr(ξ), Jr(g) = Eg(ξ)Hr(ξ), (2.2)

where Jr(g),r � 0, are the so-called Hermite coefficients.
Given the Hermite expansion (2.2), it is possible to characterize the dependence

structure of subordinated Gaussian time series g(ξn), n ∈ N. In fact, it holds that

Cov(g(ξ1),g(ξk+1)) =
∞∑

r=1

J2
r (g)

r!
γ r(k), (2.3)

where γ denotes the autocovariance function of ξn, n ∈ N; see Pipiras and Taqqu
(2017, Prop. 5.1.4). Under the assumption that, as k tends to ∞, γ (k) converges
to 0 with a certain rate, the asymptotically dominating term in the series (2.3) is the
summand corresponding to the smallest integer r for which the Hermite coefficient
Jr(g) is nonzero. This index, which decisively depends on g, is called Hermite rank.

Definition 2.4 (Pipiras and Taqqu (2017, Def. 5.2.1)). Let g ∈ L2(R,ϕ(x)dx)
with Eg(ξ) = 0 for standard normally distributed X and let Jr(g), r � 0, be the
Hermite coefficients in the Hermite expansion of g. The smallest index k � 1 for
which Jk(g) �= 0 is called the Hermite rank of g, i.e.,

r := min {k � 1 : Jk(g) �= 0} .

3. HOA

We utilize our model assumptions and give details on a characterization of the
empirical process as a sum of first- and higher-order terms.
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Given time-series data X1, . . . ,XN stemming from a subordinated Gaussian
process Xn, n ∈N, according to Model 2.1 and with marginal distribution function
F, we are interested in characterizing HOAs of the sequential empirical process

eN(t,x) :=
�Nt�∑
n=1

(
1{Xn�x} −F(x)

)
, t ∈ [0,1], x ∈ R. (3.1)

HOAs can be derived through the Hermite expansion

1{Xn�x} −F(x) =
∞∑
l=r

c̃l(x)

l!
Hl(ξn),

where c̃l(x) = E
(
1{G(ξ0)�x}Hl(ξ0)

)
and where r denotes the corresponding Hermite

rank

r := min
x∈R

r(x) with r(x) := min{q � 1|̃cq(x) �= 0}.
Dehling and Taqqu (1989) show that the first summand of this expansion deter-
mines the asymptotic distribution of the empirical process through the reduction
principle

1

dN,r

N∑
n=1

(
1{Xn�x} −F(x)

)= c̃r(x)

r!

1

dN,r

N∑
n=1

Hr(ξn)+oP(1), (3.2)

where d2
N,r = Var

(∑N
n=1 Hr(ξn)

)
.

In order to study higher-order terms, we utilize the following observation:∑
n∈N

|Cov(Hl(ξ1),Hl(ξn+1)| = l!
∑
n∈N

|γ (n)|l
{

= ∞, lD < 1,

< ∞, lD > 1; (3.3)

see Pipiras and Taqqu (2017, eqn. (5.1.1)) for the first equality in (3.3). Then,
distinguishing the two cases in (3.3), the last relation is a consequence of (2.1) and
the assumption that 1

D /∈ N.
The convergence behavior of the partial sums of autocovariances provides

another way of distinguishing short- and long-range dependence. While conver-
gence is associated with short-range dependence, divergence indicates LRD.

As a result, the sequence Hl(ξn), n ∈ N, can be considered as long-range
dependent when lD < 1, while short-range dependent when lD > 1. Moreover,
the following holds

c̃l(x)

l!

N∑
n=1

Hl(ξn) = OP(N− Dl
2 +1L

l
2 (N)) for l <

1

D
,while

c̃l(x)

l!

N∑
n=1

Hl(ξn) = OP(
√

N) for l >
1

D
, (3.4)
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Figure 2. Number of summands in the “lower-order term” given that the Hermite rank r = 1.

where we refer to Beran et al. (2016, Eqn. (4.20)) for the first relation in (3.4). Note
also that the memory parameter D corresponds to the Hurst parameter H through
the relation H = 1− D

2 .
Motivated by the behavior of the series over the autocovariances in (3.3) and the

different convergence rates in (3.4), we consider the separation
∞∑
l=r

c̃l(x)

l!
Hl(ξn) = Ln(x)+Sn(x)

with

Ln(x) =
� 1

D �∑
l=r

c̃l(x)

l!
Hl(ξn) and Sn(x) =

∞∑
l=	 1

D 


c̃l(x)

l!
Hl(ξn), (3.5)

where for some x ∈ R, �x� and 	x
 map x to the greatest integer less than or equal
and the smallest integer greater than or equal to x. Based on (3.3), the series over
the autocovariances of Ln(x) diverges, while Sn(x) has an absolutely summable
autocovariance function. We refer to Ln(x) in (3.5) as “lower-order term” and to
Sn(x) as “higher-order term.”

For the empirical process (3.1), HOAs result from

1

N
eN(t,x) = 1

N

�Nt�∑
n=1

Ln(x)+ 1

N

�Nt�∑
n=1

Sn(x).

Based on the previous considerations, the two summands are expected to con-
verge at different rates. For our purpose, we aim at proving the convergence of

1√
N

∑�Nt�
n=1 Sn(x) parameterized in t and x.

To illustrate the observations made in this section, Figure 2 depicts the
Hurst parameter H ∈ ( 1

2,1) and the corresponding number of summands � 1
D�,
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D = 2 − 2H, which contribute to the long-range dependent part Ln(x) in (3.5).
Note that the number of summands contributing to the lower-order term increases
exponentially with the value of the Hurst parameter, while the interval length, i.e.,
the length of the subintervals of ( 1

2,1) which correspond to a certain number of
summands, decreases.

4. MAIN RESULT

In this section, we present our main technical contributions. Our main result is
stated in Section 4.1, followed by a layout of the proof ideas in Section 4.2.

4.1. Statement

We establish a limit theorem for the higher-order term in the decomposition of the
sequential empirical process in two parameters. For this, recall that

�Nt�√
N

(
F�Nt�(x)−F(x)

)=
� 1

D �∑
l=r

N− lD
2 L

1
2 (N)Z(l)

N (t,x)+ 1√
N

�Nt�∑
n=1

Sn(x)

with Z(l)
N (t,x) = N

lD
2 −1L− l

2 (N)
∑�Nt�

n=1
c̃l(x)

l! Hl(ξn). According to Pipiras and Taqqu
(2017, Thm. 5.3.1), if suitably standardized, each of the first � 1

D�−r+1 summands
converges to a Hermite process of order l. More precisely, it holds that

Z(l)
N (t,x) = N

lD
2 −1L− 1

2 (N)

�Nt�∑
n=1

c̃l(x)

l!
Hl(ξn)

D→ c̃l(x)

l!
βl,HZ(l)

H (t)

in D([−∞,∞]× [0,1]), where βl,H is a constant and Z(l)
H (t), t ∈ [0,1], a Hermite

process of order l with self-similarity parameter H = 1− lD
2 . The limit of the higher-

order term 1√
N

∑�Nt�
n=1 Sn(x) is characterized by the following theorem.

Theorem 4.1. Suppose Xn,n ∈ N, satisfies Model 2.1 and Xn has a strictly
monotone, continuous distribution function F and 1

D /∈ N. Then, as N → ∞,

1√
N

�Nt�∑
n=1

Sn(x)
D→ S(x,t)

in D([−∞,∞]× [0,1]), where S(x,t) is a mean zero Gaussian process with cross-
covariances

Cov(S(x,t),S(y,u)) = min{t,u}
∑
n∈Z

Cov(S0(x),Sn(y)). (4.1)

The proof of Theorem 4.1 can be found in Appendix A.
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Remark 4.2. Note that we exclude the case 1
D ∈ N. That excludes in particular

the case D = 1, that is when the underlying time series is short-range dependent.
Therefore, our result as it is stated cannot recover existing results for short-range
dependent time series. Under short-range dependence, the empirical process is
known to converge to the so-called Kiefer–Müller process; see Müller (1970);
Kiefer (1972).

4.2. Proof

While the detailed proof of Theorem 4.1 is given in Appendices A–C, we aim here
to provide a roadmap of our proofs and to emphasize some of the main technical
challenges.

For a proof of convergence in distribution as stated in Theorem 4.1, convergence
of the finite-dimensional distributions and tightness are being established; see
Sections A.1 and A.2, respectively. While proving convergence of the finite-
dimensional distributions can be considered straightforward, the main technical
challenges arise in the proof of tightness. These challenges are the subject of this
section.

The partial sum of the higher-order terms in (3.5)

m̃N (x,t) := 1√
N

�Nt�∑
n=1

Sn(x) = 1√
N

�Nt�∑
n=1

∞∑
l=	 1

D 


c̃l(x)

l!
Hl(ξn) (4.2)

is a stochastic process in two parameters, which is one reason why proving
tightness becomes particularly challenging. Another challenge results from the
structure of the higher-order terms. In contrast to the empirical process, the higher-
order terms are no longer bounded. While the transformed variables Hl(ξn),n ∈N,
for l � 	 1

D
 are short-range dependent, the underlying process ξn,n ∈ N, is
still long-range dependent with nonsummable autocovariance function. The
dependence on the memory parameter D appears in the summation determining
the number of summands going into the higher-order terms.

The articles Dehling and Taqqu (1989); Koul and Surgailis (2002), and El Ktaibi
and Ivanoff (2016) are closest to our work. In the following layout of our proof,
we emphasize how our results differ from these works.

1. It is necessary to prove tightness in two parameters, more precisely, in the
space D([−∞,∞] × [0,1]). Furthermore, we allow the underlying process to
be subordinated Gaussian. This makes our proofs decisively different from the
proofs established in Koul and Surgailis (2002), who only consider (4.2) for
fixed t and did not allow for subordinated transformations of the underlying
Gaussian process.

2. The first step of our proof is to reduce tightness in D([−∞,∞] × [0,1]) to
proving tightness in D([0,1] × [0,1]). The corresponding object in D([0,1] ×
[0,1]) can be written as
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mN (x,t) := 1√
N

�Nt�∑
n=1

∞∑
l=	 1

D 


cl(x)

l!
Hl(ξn) with cl(x) = E

(
1{F(G(ξ0))�x}Hl(ξ0)

)
.

(4.3)

3. We use a tightness criterion introduced in Ivanoff (1980) and later utilized in El
Ktaibi and Ivanoff (2016) to prove tightness of the sequential empirical process
under short-range dependence. El Ktaibi and Ivanoff (2016) take advantage of
the boundedness of the empirical process. Those techniques fail for (4.2) since
the higher-order terms of the empirical process can no longer be represented as
an indicator function.

4. In the main part of our proof, we reduce the tightness criterion in El Ktaibi and
Ivanoff (2016) to bounding the probability

P
(
smN,b(y,x) > λ

)
with smN,b(x,y) := sup

t∈[0,b]
|mN(y,t)−mN(x,t)|

for some b > 0 and x,y ∈ [0,1] with mN(y,t) as in (4.3). Typically, such bounds
are derived through chaining techniques. Dehling and Taqqu (1989) establish a
corresponding argument for proving tightness of the empirical process of long-
range dependent observations. For this, they take advantage of the reduction
principle as stated in (3.2). The reduction principle reduces the problem to
proving convergence of the partial sums of the dominating Hermite polynomial.
Since none of the summands of the infinite series (4.2) is asymptotically
negligible, the chaining technique of Dehling and Taqqu (1989) does not apply
to the considered situation. Betken et al. (2023) establish a chaining technique
for proving tightness of the tail empirical process of long memory stochastic
volatility (LMSV) time series. The major difference to our argument results
from a martingale structure of the tail empirical process of LMSV time series.
This allows to apply Freedman’s inequality, i.e., a Bernstein-type inequality for
martingale difference sequences which, as well, does not apply to the situation
in this article.

5. A crucial part of the proof and second main technical contribution is to find a
bound of the form

P
(
smN,b(y,x) > λ

)
� C1,γ

1

λ4
b2−θ 1

Nθ
(y− x)+C2,γ

1

λ4
b2 (y− x)

3
2

for some θ > 0, any b > 0 and all x,y ∈ [0,1]. The result is formally stated in
Lemma B.1. Our proof consists of two major parts. The first one is to extend
Billingsley (1968, Thm. 12.2) which provides a probabilistic bound for maxima
over partial sums. In Lemma C.1, we provide a similar result, allowing the
bound to take a more general form. The second main part of the proof is
to verify the assumptions of Lemma C.1. Both, Lemma C.1 and Billingsley
(1968, Thm. 12.2) apply under very general assumptions in that both do not
impose any assumptions on the dependence structure of the underlying process.
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However, both are based on a probabilistic bound on the distances between
partial sums. Given strong temporal dependence, as in our setting, verifying
this condition becomes particularly challenging.

5. CONFIDENCE INTERVALS

In this section, we focus on how to utilize HOAs of the empirical process for
the construction of confidence intervals. To begin with, we determine confidence
intervals for values of the marginal distribution F of a time series X1, . . . ,XN

following Model 2.1. The confidence intervals are based on the empirical analog
FN(x) := 1

N

∑N
n=11{Xn�x} of F(x); see Section 5.1. Following this, we derive

confidence intervals for quantiles of the marginal distribution; see Section 5.2.
Section 5.3 provides a comparative discussion.

First and foremost, we are interested in how well these confidence intervals
approximate optimal confidence intervals. For this, note that the goodness of
confidence intervals can be assessed on the basis of the following two criteria.

C1: A high coverage probability, i.e., the probability that the true value of the
estimated quantity lies in the considered confidence interval should be high.

C2: A short length of the confidence interval.

Based on these criteria, we aim to compare the confidence intervals derived
from HOAs of the empirical process to confidence intervals that result from the
asymptotic distribution of FN(x). Therefore, we will first rephrase how to compute
the asymptotic confidence intervals and then move on to introducing our approach
to derive confidence intervals.

For ease of computations, we base all analysis on the assumption that we are
given a subordinated Gaussian time series Xn = G(ξn), n = 1, . . . ,N, resulting from
a strictly monotone function G. In this case, the Hermite rank r equals 1 and the
Hermite coefficients c̃l(x) can be determined analytically. In particular, it holds
that

c̃l(x) =
{

−Hl−1(G−1(x))ϕ
(
G−1(x)

)
if G is increasing,

Hl−1(G−1(x))ϕ
(
G−1(x)

)
if G is decreasing; (5.1)

see Lemma D.2.

5.1. Confidence Intervals for the Marginal Distribution

Asymptotic Confidence Intervals: For a construction of confidence intervals based
on the asymptotic distribution of the empirical process, note that

N

dN
(FN(x)−F(x))

D→ c̃1(x)Z, (5.2)
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where Z is a standard normally distributed random variable, c̃1(x)= E
(
1{G(ξ0)�x}ξ0

)
and d2

N := Var
(∑N

i=1 ξi

)
∼ N2HL(N); see Dehling and Taqqu (1989). Due to the

fact that convergence in (5.2) holds in D[−∞,∞], we have

1−α = P

(
|̃c1(x)|−1 N

dN
(FN(x)−F(x)) ∈

(
z α

2
,z1− α

2

))
+o(1),

where zα := 	−1(α) and 	 denotes the standard normal distribution function.
Therefore, an approximate 1 − α confidence interval for F(x) based on the
asymptotic distribution of the empirical process is given by(

FN(x)− dN

N
|̃c1(x)|z1− α

2
,FN(x)− dN

N
|̃c1(x)|z α

2

)
. (5.3)

Referring back to Example 2.2, the following example establishes these confidence
intervals (5.3) for fractional Gaussian noise.

Example 5.1. For fractional Gaussian noise time series with Hurst parameter
H, dN ∼ NH and |̃c1(x)| = ϕ(x), such that the interval in (5.3) equals(

FN(x)−NH−1ϕ(x)z1− α
2
,FN(x)−NH−1ϕ(x)z α

2

)
.

Confidence Intervals Based on HOAs: For a construction of confidence intervals
based on the HOA, note that according to Theorem 4.1

√
N (FN(x)−F(x))− 1√

N

N∑
n=1

Ln(x)
D→ Z(x),

where Z(x) is normally distributed with mean zero and variance σ 2(x) :=∑
n∈Z Cov(S0(x),Sn(x)) and convergence holds in D[−∞,∞]. As a result, we

have

1−α = P

(
(σ (x))−1

(√
N (FN(x)−F(x))− 1√

N

N∑
n=1

Ln(x)

)
∈
(

z α
2
,z1− α

2

))
+o(1)

with Ln as in (3.5). Therefore, an approximate 1 −α confidence interval for F(x)
based on HOAs of the empirical process is given by(

FN(x)− 1

N

N∑
n=1

Ln(x)− σ(x)√
N

z1− α
2
,FN(x)− 1

N

N∑
n=1

Ln(x)− σ(x)√
N

z α
2

)
. (5.4)

5.2. Confidence Intervals for Quantiles

In this section, we establish confidence intervals for quantiles of the marginal
distribution of long-range dependent time series. Initially, we describe the
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construction of confidence intervals for quantiles based on the convergence of
the empirical process. Subsequently, we discuss the construction of confidence
intervals for quantiles based on HOAs of the empirical process.

Asymptotic Confidence Intervals: The asymptotic distribution of empirical
quantiles can be derived from the asymptotic behavior of the empirical process
(5.2) and an application of the delta method. In fact, Hössjer and Mielniczuk
(1995) showed that for a functional φ : (D[−∞,∞],‖ · ‖∞) → R, Hadamard-
differentiable at F,

N

dN
(φ(FN)−φ(F))

D→ Zφ′(F)(φ(F)) c̃1(φ(F)), (5.5)

where Z is a standard normally distributed random variable, c̃1(x)= E
(
1{G(ξ0)�x}ξ0

)
,

φ′(F) the derivative in F and d2
N := Var

(∑N
i=1 ξi

)
∼ N2HL(N); see Hössjer and

Mielniczuk (1995, Thm. 1). Since our goal is to establish confidence intervals
for quantiles qp = inf{x | F(x) � p}, we consider φ : (D[−∞,∞],‖ · ‖∞) → R,
φ(F) = F−1(p). Given that r = 1, (5.5) corresponds to

N

dN

(
F−1

N (p)−F−1(p)
) D→ −Z

1

F′(F−1(p))
c̃1(F

−1(p)).

As a result, we have

1−α = P

(
−F′(F−1(p))|̃c1(F

−1(p))|−1 N

dN

(
F−1

N (p)−F−1(p)
)

∈
(

z α
2
,z1− α

2

))
+o(1).

Therefore, an approximate 1 − α confidence interval for F−1(p) based on the
asymptotic distribution of the empirical process is given by(

F−1
N (p)− dN

N

1

F′(F−1(p))
|̃c1(F

−1(p))|z α
2
,F−1

N (p)− dN

N

1

F′(F−1(p))
|̃c1(F

−1(p))|z1− α
2

)
.

(5.6)

Example 5.2. For fractional Gaussian noise time series with Hurst parameter
H, dN ∼ NH and |̃c1(x)| = ϕ(x), such that the interval in (5.6) equals(

F−1
N (p)+NH−1z α

2
,F−1

N (p)+NH−1z1− α
2

)
.

Confidence Intervals Based on HOAs: We propose an alternative way to derive
confidence intervals for the quantiles of the marginal distribution of long-range
dependent time series based on HOAs of the empirical process. Recall that
quantiles can be written as a functional of the distribution F as well as their
estimated counterparts. Based on Taylor approximation of the functional φ, we
can then write

N

dN
(φ(FN)−φ(F)) = φ′

F

(
N

dN
(FN −F)

)
+oP(1); (5.7)
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see Hössjer and Mielniczuk (1995) and also Van der Vaart (2000, Thm. 20.8). The
right-hand side can be further simplified by

φ′
F

(
N

dN
(FN −F)

)
= N

dN

p−FN(F−1(p))

F′(F−1(p))
= − N

dN

(FN −F)(F−1(p))

F′(F−1(p))
; (5.8)

see Van der Vaart (2000, p. 294). Under the assumption that the underlying time
series has Gaussian marginals and for p = 1

2 (such that F−1(p) corresponds to

the median) we get φ′
F( N

dN
(FN −F)) = − N

dN

(FN−F)(0)

ϕ(0)
. Then, an approximate 1−α

confidence interval of F−1(p) can be written as(
φ(FN)+ 1

ϕ(F−1(p))

( 1

N

N∑
n=1

Ln(F
−1(p))+ 1√

N
σ(F−1(p))z1− α

2

)
,

φ(FN)+ 1

ϕ(F−1(p))

( 1

N

N∑
n=1

Ln(F
−1(p))+ 1√

N
σ(F−1(p))z α

2

))
;

(5.9)

see Lemma D.1 and its proof for more details on the calculations.

5.3. Discussion

The confidence intervals established in Sections 5.1 and 5.2 all depend on the
subordinating function G as well as the Hurst parameter H, quantities that are
unknown in practice. Additionally, confidence intervals based on the asymptotic
distribution of the empirical process (such as (5.3) and (5.6)) depend on the
slowly varying function L through dN . By definition, d2

N corresponds to the long-
run variance of a long-range dependent Gaussian process. Due to the fact that
the data is assumed to be subordinated to this process, dN cannot be estimated
straightforwardly, i.e., by a long-run variance estimator applied to the observed
data. On the other hand, an estimation can be based on the asymptotic relation

dN ∼ NHL
1
2 (N). For this, it has to be taken into account that H characterizes the

autocovariances of the Gaussian process (not the observed subordinated process).
Only for a Hermite rank of the subordinating function G that equals 1, the
Hurst parameter of the Gaussian process and that of the subordinated Gaussian
process coincide, such that H can be estimated by established methods (such as
R/S-estimation or local Whittle estimation); see also Section 6.4. Nonetheless,
estimation of dN also requires an approximation of the slowly varying function L.
Unfortunately, we are not aware of any estimation procedure meeting this task.
In particular cases, e.g., when the data stems from fractional Gaussian noise,
L corresponds to a multiplicative constant depending on the parameter H only;
see Examples 5.1 and 5.2. In these cases, the estimation can solely be based on
estimation of H, but presupposes knowledge of the subordinating function G.
In contrast to confidence intervals based on the asymptotic distribution of the
empirical process, confidence intervals based on HOAs of the empirical process
(such as (5.4) and (5.9)) do not depend on L. For an empirical comparison of
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the two procedures for confidence interval construction in Section 6, we assume
knowledge of the slowly varying function L. This knowledge can be exploited
for confidence interval construction based on the asymptotic distribution of the
empirical process, but is not needed for the proposed method of confidence interval
construction based on HOAs of the empirical process. Moreover, we would like
to point out that (5.9) only depends on the Hurst parameter H through Ln; see
(5.4). In particular, the ceiling function applied to H determines the number of
summands included in the construction of confidence intervals based on HOAs.
Accordingly, these are less sensitive to small errors in the estimation of H than
confidence intervals based on the asymptotic distribution. Given that inference
on long-range dependent time series relies on how well the corresponding Hurst
parameter is estimated, we expect confidence intervals based on HOAs to be more
robust to misspecification of H.

Section 5.2 focuses on deriving confidence intervals for quantiles of the
marginal distribution based on an HOA of the empirical process. The proposed
procedure takes advantage of the Taylor expansion (5.7) of a general functional φ.
Due to the generality of the results, we believe that similar results can be achieved
for other estimators that have a representation as functionals of the empirical
process, such as Huber’s estimator and M-estimators.

6. NUMERICAL STUDIES

For our numerical studies, we consider the procedures proposed in Section 5.
We compare the coverage rate as well as the length of asymptotic confidence
intervals with those based on HOAs. To assess the performance of the proposed
procedures, we assume that the underlying time series follows Model 2.1 with
G = id, i.e., the time series is assumed to be long-range dependent with Gaussian
marginals. In particular, we assume that G = id is known although in practice G
needs to be estimated. Estimation of G can, for example, be based on the relation

X
D= F−1(	(ξ)) (resulting from X = G(ξ) for a standard normally distributed

random variable ξ ), where 	 denotes the standard normal distribution function and
F the marginal distribution of X. Accordingly, G could be estimated by F̂−1 ◦	,
where F̂−1 corresponds to the generalized inverse of the empirical distribution
function of the observed data. Note that, nonetheless, estimation of G will add
uncertainty to both procedures, such that for the purpose of comparison we refrain
from estimation of G.

In the following, we focus on confidence intervals for the marginal distribution
and confidence intervals for the median (Sections 6.2 and 6.3). Section 6.1
discusses the estimation of the long-run variance and the Hurst parameter.

6.1. Estimation of Long-Run Variance and Hurst Parameter

In order to compute the confidence intervals discussed in Section 5, we need to
estimate the long-run variance. Furthermore, we provide simulation results under
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the assumption that the Hurst parameter H is known and under the assumption that
H is unknown.

The long-run variance σ 2(x) := ∑
n∈Z Cov(S0(x),Sn(x)) cannot be computed

analytically. In order to make our results applicable, we therefore need to estimate
σ 2(x). We use the kernel smoothing long-run variance estimator

σ̂ 2(x) =
N−1∑

j=−(N−1)

K

(
j

bN

)
γ̂N(j),

where K(x) = (1 − |x|)1{|x|�1} is the Bartlett kernel function, bN denotes a
bandwidth parameter, and γ̂N(j) is the sample autocovariance at lag j. For our
simulation study, we use the command hurstexp in the R package cointReg.
To determine the bandwidth, we use the command getBandwidth. For an
estimation of the Hurst parameter H, we used the R/S procedure following
the description in Weron (2002, Sect. 2.1). The estimator is implemented by
getLongRunVar in the R package pracma.

6.2. Confidence Intervals for the Marginal Distribution

We construct confidence intervals for the marginal distribution F based on the
asymptotic distribution and based on HOAs of the empirical process of long-range
dependent time series. For a visual comparison of the two different methods, see
Figures 3–5. To numerically assess the quality of the computed intervals, we report
their coverage rate and width evaluated at different x. In our simulation study, we
consider different scenarios ranging from small to large sample sizes (N = 200
and N = 1000) as well as from small to large Hurst parameters (H = 0.55 and
H = 0.95). Pointing toward Figures 3 and 4, which are based on sample sizes
N = 200 and N = 1000, we see only a slight improvement of the interval length
for the asymptotic confidence intervals. The mild improvement emphasizes how
the asymptotic confidence intervals are impacted by the slow convergence rate of
the empirical process under LRD. That said, we fix the sample size to N = 200 and
compare Figures 3 and 4. Focusing on x = 0, one can observe that for larger Hurst
parameters, the width increases significantly for the asymptotic method. Naturally,
the increase in width results in a higher coverage rate. Confidence intervals based
on the proposed HOA method, however, are robust with respect to the value of
the Hurst parameter and outperform the traditional construction of confidence
intervals with respect to the coverage rate; see Figures 3 and 4.

Most notably, Figures 3 and 4 reveal that asymptotic confidence intervals may
have lower coverage rates than those based on HOAs, while confidence intervals
based on HOAs are shorter. This phenomenon results from the fact that the
centers of the confidence intervals differ, i.e., the smaller confidence interval is
not necessarily contained in the larger one. In particular, it therefore happens that
the asymptotic confidence interval is larger, but nonetheless does not cover F(x).
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Figure 3. The coverage rate and length of confidence intervals for the marginal distribution F(x)
evaluated at different x. The two displayed methods to calculate the confidence intervals are based on
the asymptotic distribution (asymp) and our HOA. The simulations are based on 2000 repetitions for
Gaussian time series of length N = 200 (first row) and N = 1000 (second row) with Hurst parameter
H = 0.55. The dashed gray line depicts the significance level of 95%.

6.3. Confidence Intervals for the Median

In this section, we consider confidence intervals for the median based on
long-range dependent time series characterized by different Hurst parameters.
Again, we consider different scenarios ranging from small to large sample sizes
(N = 200 and N = 1000) as well as from small to large Hurst parameters (from
H = 0.55 to H = 0.95), and we assess the quality of the confidence intervals
through interval length and coverage rate. Pointing toward Figure 6, which is
based on sample sizes N = 200 and N = 1000, we see only a slight improvement
of the interval length for the asymptotic confidence intervals. This emphasizes
how the asymptotic confidence intervals are impacted by the slow convergence
rate of the empirical process under LRD. Therefore, instead of considering
the impact of the sample size, we focus on how varying the Hurst parameter
influences the coverage rate and interval length. In this regard, Figure 6 clearly
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Figure 4. The coverage rate and length of confidence intervals for the marginal distribution F(x)
evaluated at different x. The two displayed methods to calculate the confidence intervals are based on
the asymptotic distribution (asymp) and our HOA. The simulations are based on 2000 repetitions for
Gaussian time series of length N = 200 (first row) and N = 1000 (second row) with Hurst parameter
H = 0.95. The dashed gray line depicts the significance level of 95%.

demonstrates that the length of a confidence interval constructed on the basis of
the asymptotic distribution of the empirical process increases almost exponentially
with increasing value of H. This may be attributed to the exponential increase of the
number of summands needed to calculate the lower-order terms of the empirical
process; see Figure 2.

In contrast to basing confidence intervals on the asymptotic distribution of the
empirical process, Figure 6 illustrates robustness of the confidence interval lengths
to different values of the Hurst parameter if the construction of confidence intervals
is based on HOAs of the empirical process. For Hurst parameters bigger than
H = 0.9 a significant drop of the coverage rate can be observed. We attribute this
observation to the fact that the stronger the dependence in a time series the higher
the number of observations needed to reflect this dependence. When adjusting
confidence intervals by the true number of summands in the lower-order term this
finite-sample phenomenon is not accounted for resulting in lower coverage rates.
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Figure 5. Confidence intervals for the marginal distribution F. The two displayed methods to
calculate the confidence intervals are based on the asymptotic distribution (asymp) and our HOA.
The simulations are based on 1000 repetitions for Gaussian time series of length N = 100 with Hurst
parameters H = 0.6,H = 0.75, and H = 0.9.

Figure 6. Coverage rate and interval length of confidence intervals for the median F−1(1/2) based on
long-range dependent time series characterized by different Hurst parameters. For this, the distribution
of the median is approximated by the asymptotic distribution (asymp) and our HOA of the empirical
process. Simulations are based on 2000 repetitions for Gaussian time series of length N = 200 (first
row) and N = 1000 (second row). The dashed gray line depicts the significance level of 95%.
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Figure 7. Coverage rate and interval length of confidence intervals for the median F−1(1/2)

based on long-range dependent time series characterized by different Hurst parameters. For this, the
distribution of the median is approximated by the asymptotic distribution (asymp) and our HOA of
the empirical process. The Hurst parameter is replaced by its R/S-estimator. Simulations are based on
2000 repetitions for Gaussian time series of length N = 200 (first row) and N = 1000 (second row).
The dashed gray line depicts the significance level of 95%.

6.4. Confidence Intervals Based on an Estimated Hurst Parameter

To make the construction of confidence intervals based on HOAs of the empirical
process feasible for practical purposes, we need to consider the case where the
Hurst parameter is unknown. As discussed in Section 6.1, we base estimation of
the Hurst parameter on the so-called R/S-method. In this section, we focus on
studying confidence intervals for the median. As done in Figure 6, the median was
considered for a range of different Hurst parameters. We therefore use the median
to illustrate how an estimated Hurst parameter changes the empirical coverage rates
and lengths; see Figure 7.

Next, we compare the numerical results based on estimation of the Hurst param-
eter (Figure 7) with the numerical results that are based on the assumption that the
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Hurst parameter is known (Figure 6). It is notable that the lengths of confidence
intervals resulting from approximation of the empirical process by its asymptotic
distribution tend to be shorter when the Hurst parameter is estimated while their
coverage rate is lower. Although the coverage rate of confidence intervals that are
based on HOAs of the empirical process and estimation of the Hurst parameter
declines for Hurst parameters larger than 0.9, this effect is not as pronounced as
for the simulations that assumed knowledge of the Hurst parameter. We attribute
this phenomenon to the fact that R/S estimation tends to underestimate the Hurst
parameter and that the higher the value of the Hurst parameter, the bigger the
estimation bias; see Taqqu et al. (1995). An underestimation of the Hurst parameter
results in a smaller number of lower-order terms entering the approximation of
confidence intervals. We conjecture that basing the approximation of confidence
intervals on a lower number of summands than suggested by our theory for long-
range dependent time series compensates for very strong dependence in time series
not being reflected in the finite-sample behavior of time series with relatively
low sample size. We call this phenomenon “benign underestimation of LRD”.
Our conjecture is supported by the fact that an increasing number of observations
results in a drop of coverage rate based on the estimated Hurst parameter; see
Figure 7.

Note that similar to the confidence intervals for the marginal distribution, we
can observe that the asymptotic confidence intervals result in a smaller coverage
rate than the ones based on HOAs while the latter are shorter. In particular, one
can see that the larger the Hurst parameter, the smaller the coverage rate of the
asymptotic confidence intervals while the intervals based on HOAs maintain a
constant coverage rate and interval length.

7. CONCLUSION AND DISCUSSION

In this work, we study HOAs of the empirical process as an approach to improving
statistical inference for long-range dependent time series. More precisely, we study
confidence intervals for values of the empirical process and for quantiles of the
marginal distribution of stationary time series that are based on an approximation
of the empirical process through higher-order terms in its Hermite expansion. For
statistics that can be expressed as partial sums of subordinated Gaussian processes,
the Hermite expansion corresponds to an L2-expansion of the subordinating
function in orthonormal polynomials. The inclusion of higher-order terms in this
expansion for the construction of confidence intervals results in narrower and more
accurate confidence bands, especially when compared to those derived from first-
order asymptotic theory. Most notably, this approach differs from Gram–Charlier
and Edgeworth expansions, which aim at improving approximations of the cumu-
lative distribution function through incorporation of higher-order information.
The latter techniques incorporate correction terms relating to skewness, kurtosis,
higher-order cumulants, or moments and, to the best of our knowledge, have so far
been analyzed against the background of short-range dependent time series and
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under the assumption of existing higher-order moments. Nonetheless, just as in
the Edgeworth expansion framework, the number of terms included in the Hermite
expansion of the considered statistic improves upon approximation quality from
a theoretical perspective. In practice, however, the theoretical improvement does
not show due to the finite-sample behavior of statistics not adequately reflecting
in time series. Interestingly, our numerical results suggest that this mismatch
between theory and practice may be mitigated by a phenomenon we term benign
underestimation of LRD; see Section 6.4. This effect appears to stabilize inference
procedures in practice and presents another intriguing direction for future research.

The main theoretical contribution of this article is a proof for the convergence
of higher-order terms in the Hermite expansion of the sequential empirical process
for long-range dependent time series. This result is of general interest for empirical
process theory and paves the way for novel approaches with respect to statistical
inference for long-range dependent time series. First numerical approaches using
the established theory illustrate an alternative way of constructing confidence
intervals based on long-range dependent observations.

In comparison to the construction of confidence intervals based on the asymp-
totic distribution of the empirical process, the proposed procedure improves the
quality of confidence intervals for the empirical process and quantiles of the
marginal distribution. Generally speaking, our results provide sufficient theoretical
groundwork for the use of HOAs for statistical inference on long-range dependent
time series. We conjecture that analogous theory would establish HOAs for
sequential partial sum processes of subordinated Gaussian sequences. Such results
would lay the foundation for improving upon statistical inference in change-point
analysis for long-range dependent time series. When testing stationarity against
the alternative hypothesis of a structural change in a time series by means of the
Wilcoxon test, the phenomenon illustrated in Figure 1 results in a high number
of false positives; see Dehling et al. (2013). While our proposed second-order
approximation is expected to resolve an inflated test size, a potential drawback
could be a lower size being accompanied by a loss in test power. This is an
expected trade-off since critical values derived from HOAs would rely heavily on
the lower-order term that also drives most of the behavior of the corresponding test
statistic. In addition to applications in change-point analysis, we envision that the
established theory for the two-parameter empirical process applies to goodness-
of-fit testing based on Kolmogorov–Smirnov and Cramér–von Mises statistics. We
leave both change-point analysis and goodness-of-fit testing based on HOA of the
empirical process as challenges for future research.

A. PROOF OF THEOREM 4.1

In order to prove Theorem 4.1, we first investigate the convergence of the finite-dimensional
distributions and then tightness in D([−∞,∞]× [0,1]); see Sections A.1 and A.2, respec-
tively.
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For the proof, we will make use of the following notation

m̃N (x,t) := 1√
N

�Nt�∑
n=1

Sn(x) (A.1)

with Sn(x) as in (3.5).

A.1. Convergence of the Finite-Dimensional Distributions

We need to show convergence of the finite-dimensional distributions, i.e.,

m̃N (x,t)
f .d.d.→ S(x,t),

where {S(x,t)} is the limiting process with cross-covariances given in (4.1). For this, it
suffices to show that for all q1,q2 ∈ N, and (xi,tj) ∈ [−∞,∞] × [0,1], i = 1, . . . ,q1;
j = 1, . . . ,q2,

(
m̃N

(
xi,tj

))
i=1,...,q1;j=1,...,q2

D−→ (
S(xi,tj)

)
i=1,...,q1;j=1,...,q2

.

Recall from (3.5) and (A.1) that

m̃N
(
xi,tj

)= 1√
N

�Ntj�∑
n=1

∞∑
l=	 1

D 


c̃l(xi)

l!
Hl(ξn) (A.2)

and set

(
m̃N

(
xi,tj

))
i=1,...,q1
j=1,...,q2

=
⎛⎝ 1√

N

�Ntj�∑
n=1

Gi(ξn)

⎞⎠
i=1,...,q1
j=1,...,q2

with Gi(·) =
∞∑

l=	 1
D 


c̃l(xi)

l!
Hl(·),

(A.3)

such that we have a q1 ×q2-dimensional matrix of normalized partial sums of subordinated
Gaussian sequences. In particular, different indices i correspond to different functions Gi.

Given (2.1) and since the summation in (A.3) starts with l = 	 1
D 
, all Gi(ξn) are short-

range dependent in the sense that their autocovariances are absolutely summable as shown
in (3.3). Furthermore, let ri denote the Hermite rank of Gi. Due to (A.3), we have 	 1

D 
 � ri

such that 1
D < 	 1

D
 � ri since 1
D /∈ N.

Then, by Bai and Taqqu (2013, Thm. 3), we have

⎛⎝ 1√
N

�Ntj�∑
n=1

Gi(ξn)

⎞⎠
i=1,...,q1
j=1,...,q2

D−→ (G1, . . . ,Gq1)
′,
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whereGi, i = 1, . . . ,q1, are q2-dimensional Gaussian vectorsGi = (Gi(t1), . . . ,Gi(tq2))
′ with

Cov(Gi1(tj1),Gi2(tj2)) = lim
N→∞

1

N

�Ntj1�∑
n1=1

�Ntj2�∑
n2=1

∞∑
l1,l2=	 1

D 


c̃l1(xi1 )̃cl2(xi2)

l1! l2!
E(Hl1(ξn1)Hl2(ξn2))

= min(tj1,tj2)
∞∑

l=	 1
D 


c̃l(xi1 )̃cl(xi2)

l!

∞∑
n=−∞

γ l(n), (A.4)

where (A.4) follows by Bai and Taqqu (2013, eqn. 11) and since, for l � 	 1
D 
 and due to

(3.3),∑
n∈Z

|γ (n)|l < ∞.

A.2. Tightness

Since the object of interest m̃N (x,t) in (A.1) is a process in two parameters, proving tightness
becomes particularly challenging. We will first give a tightness criterion in D([−∞,∞] ×
[0,1]) and then argue that it suffices to prove tightness in D([0,1]× [0,1]).

In order to prove tightness of m̃N (x,t) in D([−∞,∞]× [0,1]), we validate the following
tightness criterion: for all ε > 0

lim
δ→0

limsup
N→∞

P

⎛⎜⎜⎝ sup
|x2−x1|<δ
x1,x2∈R

sup
|t2−t1|<δ

0�t1,t2�1

|m̃N (x2,t2)− m̃N (x1,t1)| > ε

⎞⎟⎟⎠= 0;

see El Ktaibi and Ivanoff (2016, Formula (26)). In a more general setting, the criterion was
introduced in Ivanoff (1980). We further write

m̃N (x2,t2)− m̃N (x1,t1) = m̃N (x2,t2)− m̃N (x1,t2)+ m̃N (x1,t2)− m̃N (x1,t1) .

Then, it suffices to show

lim
δ→0

limsup
N→∞

P

⎛⎜⎝ sup
|x2−x1|<δ
x1,x2∈R

sup
t∈[0,1]

|m̃N (x2,t)− m̃N (x1,t)| > ε

⎞⎟⎠= 0, (A.5)

lim
δ→0

limsup
N→∞

P

⎛⎜⎜⎝sup
x∈R

sup
|t2−t1|<δ

0�t1,t2�1

|m̃N (x,t2)− m̃N (x,t1)| > ε

⎞⎟⎟⎠= 0. (A.6)

For (A.5), note that due to continuity of F−1 (following from strict monotonicity and
continuity of F) for every δ > 0, there exists a δ̃ > 0 such that |x2 − x1| < δ̃ implies
|F−1(x1)−F−1(x2)| < δ. It then follows that
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sup
|x2−x1|<δ̃

x1,x2∈[−∞,∞]

sup
t∈[0,1]

|m̃N (x2,t)− m̃N (x1,t)|

= sup
|x2−x1|<δ̃

x1,x2∈[−∞,∞]

sup
t∈[0,1]

∣∣∣m̃N

(
F(F−1(x2)),t

)
− m̃N

(
F(F−1(x1)),t

)∣∣∣
� sup

|x2−x1|<δ
x1,x2∈[0,1]

sup
t∈[0,1]

|m̃N (F(x2),t)− m̃N (F(x1),t)|

= sup
|x2−x1|<δ
x1,x2∈[0,1]

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)|

and accordingly

P

⎛⎜⎜⎝ sup
|x2−x1|<δ̃

x1,x2∈[−∞,∞]

sup
t∈[0,1]

|m̃N (x2,t)− m̃N (x1,t)| > ε

⎞⎟⎟⎠
� P

⎛⎜⎝ sup
|x2−x1|<δ
x1,x2∈[0,1]

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)| > ε

⎞⎟⎠ .

For (A.6), note that due to F : [−∞,∞] −→ [0,1] being a bijective function and due to
mN(x,t) = m̃N(F−1(x),t) with mN(x,t) as in (4.3),

lim
δ→0

limsup
N→∞

P

⎛⎜⎜⎝ sup
x∈[−∞,∞]

sup
|t2−t1|<δ

0�t1,t2�1

|m̃N (x,t2)− m̃N (x,t1)| > ε

⎞⎟⎟⎠

= lim
δ→0

limsup
N→∞

P

⎛⎜⎜⎝ sup
x∈[0,1]

sup
|t2−t1|<δ

0�t1,t2�1

∣∣∣m̃N

(
F−1(x),t2

)
− m̃N

(
F−1(x),t1

)∣∣∣> ε

⎞⎟⎟⎠

= lim
δ→0

limsup
N→∞

P

⎛⎜⎜⎝ sup
x∈[0,1]

sup
|t2−t1|<δ

0�t1,t2�1

|mN (x,t2)−mN (x,t1)| > ε

⎞⎟⎟⎠ .

It follows that the criteria (A.5) and (A.6) can be reformulated as

lim
δ→0

limsup
N→∞

P

⎛⎜⎜⎝ sup
|x2−x1|<δ

0�x1,x2�1

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)| > ε

⎞⎟⎟⎠= 0, (A.7)

lim
δ→0

limsup
N→∞

P

⎛⎜⎜⎝ sup
x∈[0,1]

sup
|t2−t1|<δ

0�t1,t2�1

|mN (x,t2)−mN (x,t1)| > ε

⎞⎟⎟⎠= 0. (A.8)
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We consider (A.7) and (A.8) separately. Both proofs are based on chaining techniques
following the ideas in Dehling and Taqqu (1989, p. 1778) and Betken et al. (2023,
Sect. 5.1.4).

A.2.1. Proof of (A.7). In order to prove (A.7), we apply a chaining technique. For
this, we define the intervals

I1,p := [2pδ,2(p+1)δ] and I2,p := [(2p+1)δ,(2(p+1)+1)δ]

for p = 0, . . . ,Lδ := 	 1
2δ

− 3
2 
. Then, the expression inside P in (A.7) can be bounded as

sup
|x2−x1|<δ

0�x1,x2�1

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)|

� max
0�p�Lδ

sup
x1,x2∈I1,p

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)|

+ max
0�p�Lδ

sup
x1,x2∈I2,p

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)| . (A.9)

In the following, we consider only the first summand in (A.9), since for the second summand
analogous considerations hold. For this reason, it remains to show that

lim
δ→0

limsup
N→∞

P

(
max

0�p�Lδ

sup
x1,x2∈I1,p

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)| > ε

)
= 0.

For this, it suffices to show that

lim
δ→0

limsup
N→∞

1

δ
max

0�p�Lδ

P

(
sup

x1,x2∈I1,p

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)| > ε

)
= 0.

We write I1,p = [ap,ap+1], i.e., ap := 2pδ and ap+1 := 2(p+1)δ. Note that

sup
x1,x2∈I1,p

sup
t∈[0,1]

|mN (x2,t)−mN (x1,t)| � 2 sup
x∈[0,2δ]

sup
t∈[0,1]

∣∣mN
(
ap,t

)−mN
(
ap + x,t

)∣∣ .
(A.10)

Define refining partitions xi(k) for k = 0, . . . ,KN with KN → ∞, for N → ∞, and

xi(k) := ap + i

2k
2δ, i = 0, . . . ,2k, (A.11)

and choose ik(x) such that

ap + x ∈ (xik(x)(k),xik(x)+1(k)
]

.

We write

smN,b(x,y) := sup
t∈[0,b]

|mN(y,t)−mN(x,t)|, smN(x,y) := smN,1(x,y). (A.12)
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Then, with help of the introduced partition (A.11), (A.10) can be bounded as

sup
t∈[0,1]

∣∣mN(ap,t)−mN(ap + x,t)
∣∣

�
KN∑
k=1

smN(xik(x)(k),xik−1(x)(k −1))+ smN(xiKN (x)(KN),ap + x). (A.13)

Consequently, (A.13) can be used to infer (A.14) below

P

(
sup

x∈[0,2δ]
sup

t∈[0,1]

∣∣mN(ap,t)−mN(ap + x,t)
∣∣> ε

)

�
KN∑
k=1

P

(
sup

x∈[0,2δ]
smN(xik(x)(k),xik−1(x)(k −1)) >

ε

(k +3)2

)

+P

⎛⎝ sup
x∈[0,2δ]

smN(xiKN (x)(KN),ap + x) > ε −
∞∑

k=0

ε

(k +3)2

⎞⎠ (A.14)

�
KN∑
k=1

2k−1∑
i=0

P

(
smN(xi+1(k),xi(k)) >

ε

(k +3)2

)

+P

(
sup

x∈[0,2δ]
smN(xiKN (x)(KN),ap + x) >

ε

2

)
, (A.15)

since
∞∑

k=0

ε
(k+3)2 � ε

2 .

Throughout all following arguments, C is a generic constant that can change upon each
appearance. We consider the two probabilities in (A.15) separately. The first one can be
dealt with as follows:

KN∑
k=1

2k−1∑
i=0

P

(
smN(xi+1(k),xi(k)) >

ε

(k +3)2

)

� C
KN∑
k=1

2k−1∑
i=0

(k +3)8

ε4

(
1

Nθ

(
xi+1(k)− xi(k)

)+ (
xi+1(k)− xi(k)

) 3
2

)
(A.16)

= C
KN∑
k=1

2k−1∑
i=0

(k +3)8

ε4

⎛⎝ 1

Nθ

2δ

2k
+
(

2δ

2k

) 3
2

⎞⎠ (A.17)

� Cδ

KN∑
k=1

(k +3)8

ε4

1

Nθ
+Cδ

3
2

KN∑
k=1

(k +3)8

ε4

(
1

2k

) 1
2

� Cδ
3
2 (A.18)
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for sufficiently large N, where (A.16) follows from Lemma B.1 with b = 1 and (A.17)
is a consequence of the choice of our partition in (A.11). The last inequality (A.18) is

then satisfied for large enough N since
∑∞

k=1
(k+3)8

ε4

(
1
2k

) 1
2

< ∞ by the ratio test for

the convergence of series and
∑KN

k=1
(k+3)8

ε4
1

Nθ ∼ K9
N

1
Nθ → 0 choosing KN such that

K9
N = o(Nθ ).

Now, we consider the second summand in (A.15). Choosing KN such that K9
N = o(Nθ ),

but KN
log2(N)

→ ∞, we get

lim
δ→0

limsup
N→∞

P

(
sup

x∈[0,2δ]
smN(xiKN (x)(KN),ap + x) >

ε

2

)
� lim

δ→0
limsup
N→∞

C

ε4 max

{
1

N
1
2

,
N

2KN
1
2

}
= 0

for all N � Nε by applying Lemma B.2 below with a = 2δ, b = 1, and c = ap.

Proof of (A.8). In order to prove (A.8), we first split the interval over t1,t2 in (A.8) into
subintervals. This allows to bound the quantity of interest in terms of a supremum over a
single parameter t in a specific interval. We then apply a similar chaining technique as in
the proof of (A.7). Note that here the chaining is applied to x ∈ [0,1].

To deal with the supremum over t1,t2 in (A.8), define

I1,p := [2pδ,2(p+1)δ] and I2,p := [(2p+1)δ,(2(p+1)+1)δ]

for p = 0, . . . ,Lδ := 	 1
2δ

− 3
2 
. We first note that the expression in P in (A.8) can be bounded

through

sup
0�x�1

sup
|t2−t1|<δ

0�t1,t2�1

|mN (x,t2)−mN (x,t1)| � sup
0�x�1

max
0�p�Lδ

sup
t1,t2∈I1,p

|mN (x,t2)−mN (x,t1)|

+ sup
0�x�1

max
0�p�Lδ

sup
t1,t2∈I2,p

|mN (x,t2)−mN (x,t1)| .

(A.19)

In the following, we consider only the first summand in (A.19), since for the second
summand analogous considerations hold. For this reason, it remains to show that

lim
δ→0

limsup
N→∞

P

(
sup

0�x�1
max

0�p�Lδ

sup
t1,t2∈I1,p

|mN (x,t2)−mN (x,t1)| > ε

)
= 0.

We write I1,p = [ap,ap+1], i.e., ap := 2pδ and ap+1 := 2(p+1)δ. Note that

sup
t1,t2∈I1,p

|mN (x,t2)−mN (x,t1)| � sup
t2∈I1,p

∣∣mN (x,t2)−mN
(
x,ap

)∣∣
+ sup

t1∈I1,p

∣∣mN
(
x,ap

)−mN (x,t1)
∣∣

� 2 sup
t∈[0,2δ]

∣∣mN
(
x,ap

)−mN
(
x,ap + t

)∣∣ . (A.20)
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For the supremum over x ∈ [0,1], we apply a similar chaining technique as in the proof of
(A.7). Define refining partitions xi(k) for k = 0, . . . ,KN with KN → ∞, for N → ∞, and

xi(k) = i

2k
, i = 0, . . . ,2k, (A.21)

and choose ik(x) such that

x ∈ (xik(x)(k),xik(x)+1(k)
]

.

Moreover, define

mN(x,t,p) := mN
(
x,ap

)−mN
(
x,ap + t

)
mN(x,y,t,p) := mN(y,t,p)−mN(x,t,p).

(A.22)

Then, continuing with (A.20), it follows that

max
0�p�Lδ

sup
t∈[0,2δ]

∣∣mN
(
x,ap

)−mN
(
x,ap + t

)∣∣
= max

0�p�Lδ

sup
t∈[0,2δ]

|mN(x,t,p)|

= max
0�p�Lδ

sup
t∈[0,2δ]

|mN(0,t,p)−mN(x,t,p)|,

since cl(0) = E
(
1{F(X0)�0}Hl(ξ0)

)= 0. We have

max
0�p�Lδ

sup
t∈[0,2δ]

|mN(0,t,p)−mN(x,t,p)|

�
KN∑
k=1

max
0�p�Lδ

sup
t∈[0,2δ]

∣∣mN(xik(x)(k),xik−1(x)(k −1),t,p)
∣∣

+ max
0�p�Lδ

sup
t∈[0,2δ]

∣∣∣mN(xiKN (x)(KN),x,t,p)

∣∣∣
=:

KN∑
k=1

smN(xik(x)(k),xik−1(x)(k −1))+ smN(xiKN (x)(KN),x), (A.23)

where smN(x,y) := max0�p�Lδ
supt∈[0,2δ] |mN(x,y,t,p)|. Consequently, (A.23) can be used

to infer (A.24) below

P

(
sup

x∈[0,1]
max

0�p�Lδ

sup
t∈[0,2δ]

|mN(0,t,p)−mN(x,t,p)| > ε

)

�
KN∑
k=1

P

(
sup

x∈[0,1]
smN(xik(x)(k),xik−1(x)(k −1)) >

ε

(k +3)2

)

+P

⎛⎝ sup
x∈[0,1]

smN(xiKN (x)(KN),x) > ε −
∞∑

k=0

ε

(k +3)2

⎞⎠ (A.24)
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�
KN∑
k=1

2k∑
i=0

P

(
smN(xi+1(k),xi(k)) >

ε

(k +3)2

)

+P

(
sup

x∈[0,1]
smN(xiKN (x)(KN),x) >

ε

2

)
, (A.25)

since
∑∞

k=0
ε

(k+3)2 � ε
2 . We consider the two summands in (A.25) separately. For the first

summand in (A.25) we need some preliminary results. Note that for any η > 0,

P
(
smN(xi+1(k),xi(k)) > η

)= P

(
max

0�p�Lδ

sup
t∈[0,2δ]

∣∣mN(xi+1(k),xi(k),t,p)
∣∣> η

)

�
Lδ∑

p=0

P

(
sup

t∈[0,2δ]

∣∣mN(xi+1(k),xi(k),t,p)
∣∣> η

)
. (A.26)

Due to stationarity, it follows that

P

(
sup

t∈[0,2δ]

∣∣mN(xi+1(k),xi(k),t,p)
∣∣> η

)
= P

(
sup

t∈[0,2δ]

∣∣mN(xi+1(k),xi(k),t,0)
∣∣> η

)
.

(A.27)

Combining (A.26) and (A.27), we get

P
(
smN(xi+1(k),xi(k)) > η

)
� 1

δ
P

(
sup

t∈[0,2δ]

∣∣mN(xi+1(k),xi(k),t,0)
∣∣> η

)
. (A.28)

Due to the notation in (A.22), we have

mN(xi+1(k),xi(k),t,0)

= mN(xi(k),t,0)−mN(xi+1(k),t,0)

= mN (xi(k),0)−mN (xi(k),t)− (mN(xi+1(k),0)−mN(xi+1(k),t))

such that

sup
t∈[0,2δ]

∣∣mN(xi+1(k),xi(k),t,0)
∣∣� 2 sup

t∈[0,2δ]

∣∣mN(xi+1(k),t)−mN (xi(k),t)
∣∣ .

We can then bound the first summand in (A.25), with further explanations given below, as
follows:

KN∑
k=1

2k∑
i=0

P

(
smN(xi+1(k),xi(k)) >

ε

(k +3)2

)

�
KN∑
k=1

2k∑
i=0

1

δ
P

(
2 sup

t∈[0,2δ]

∣∣mN(xi+1(k),t)−mN (xi(k),t)
∣∣> ε

(k +3)2

)
(A.29)

� C
1

δ

KN∑
k=1

2k∑
i=0

(k +3)8

ε4

(
δ2−θ 1

Nθ

(
xi+1(k)− xi(k)

)+ δ2 (xi+1(k)− xi(k)
) 3

2

)
(A.30)
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� 1

δ
C

KN∑
k=1

2k∑
i=0

(k +3)8

ε4

⎛⎝δ2−θ 1

Nθ

1

2k
+ δ2

(
1

2k

) 3
2

⎞⎠ (A.31)

� C
1

δ
δ2−θ

KN∑
k=1

(k +3)8

ε4

1

Nθ
+C

1

δ
δ2

KN∑
k=1

(k +3)8

ε4

(
1

2k

) 1
2

� C max{δ1−θ,δ} (A.32)

for sufficiently large N, where (A.29) is due to (A.28) and (A.30) follows from Lemma B.1
with b = δ, (A.31) is a consequence of the choice of our partition in (A.21). The last

inequality (A.32) is then satisfied for large enough N since
∑∞

k=1
(k+3)8

ε4

(
1
2k

) 1
2

< ∞ by

the ratio test for the convergence of series and
∑KN

k=1
(k+3)8

ε4
1

Nθ ∼ K9
N

1
Nθ → 0, as N → ∞,

choosing KN such that K9
N = o

(
Nθ
)

.

Now, we consider the second summand in (A.25).

P

(
sup

x∈[0,1]
smN(xiKN (x)(KN),x) >

ε

2

)

= P

(
sup

x∈[0,1]
max

0�p�Lδ

sup
t∈[0,2δ]

∣∣∣mN(xiKN (x)(KN),x,t,p)

∣∣∣> ε

2

)

� 1

δ
P

(
sup

x∈[0,1]
sup

t∈[0,2δ]

∣∣∣mN(xiKN (x)(KN),x,t,0)

∣∣∣> ε

2

)

� 1

δ
P

(
2 sup

x∈[0,1]
sup

t∈[0,2δ]

∣∣∣mN(xiKN (x)(KN),t)−mN(x,t)
∣∣∣> ε

2

)
.

Choosing KN such that K9
N = o

(
Nθ
)

, but KN
log2(N)

→ ∞, we get

1

δ
P

(
2 sup

x∈[0,1]
smN(xiKN (x)(KN),x) >

ε

2

)
� C

ε4
δ

1
2 max

{
1

N
1
2

,
N

2KN
1
2

}
→ 0 as N → ∞,

for all N � Nε by applying Lemma B.2 below with a = 1, b = δ, and c = 0. �

B. TECHNICAL RESULTS AND THEIR PROOFS

In this section, we provide some technical results and their proofs.

Lemma B.1. Let smN,b be as in (A.12). Then, there are constants C1,C2 > 0 and a

θ ∈ (0, 1
2 ] such that for any λ > 0,

P
(
smN,b(x,y) > λ

)
� C1

1

λ4
b2−θ 1

Nθ
(y− x)+C2

1

λ4
b2 (y− x)

3
2 (B.1)

for any b > 0 and all x,y ∈ [0,1] with y > x.
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Proof. In order to bound the probability in (B.1), we use arguments from Billingsley
(1968). For this, we express smN,b in (A.12) as

smN,b(x,y) = sup
t∈[0,b]

1√
N

∣∣∣∣∣∣∣
�Nt�∑
n=1

∞∑
l=	 1

D 


cl(y)− cl(x)

l!
Hl(ξn)

∣∣∣∣∣∣∣
= max

1�k��Nb�
1√
N

∣∣∣∣∣∣∣
k∑

n=1

∞∑
l=	 1

D 


cl(y)− cl(x)

l!
Hl(ξn)

∣∣∣∣∣∣∣=: max
1�k��Nb�

|sk| .

Note that

sj −si = 1√
N

j∑
n=i+1

∞∑
l=	 1

D 


cl(y)− cl(x)

l!
Hl(ξn)

and define

hx,y(ξn) :=
∞∑

l=	 1
D 


cl(y)− cl(x)

l!
Hl(ξn) = 1{x<F(G(ξn))�y} − (y− x)−

� 1
D �∑

l=r

cl(y)− cl(x)

l!
Hl(ξn).

Then,

E
∣∣sj −si

∣∣4 = E

∣∣∣∣∣∣ 1√
N

j∑
n=i+1

hx,y(ξn)

∣∣∣∣∣∣
4

= 1

N2
E(�1 +4�21 +3�22 +6�3 +�4)

(B.2)

with

�1 :=
j∑

n=i+1

h4
x,y(ξn),

�21 :=
∑ ′

h3
x,y(ξn1)hx,y(ξn2), �22 :=

∑ ′
h2

x,y(ξn1)h
2
x,y(ξn2),

�3 :=
∑ ′

h2
x,y(ξn1)hx,y(ξn2)hx,y(ξn3),

�4 :=
∑ ′

hx,y(ξn1)hx,y(ξn2)hx,y(ξn3)hx,y(ξn4),

where
∑ ′

extends over all different indices i + 1 � n1, . . . ,np � j, nr �= ns, r �= s,
p = 1, . . . ,4.

Note that for any even integer p � 2, there is a constant C > 0 such that

E
(

hp
x,y(ξ0)

)
� C (y− x) (B.3)
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since

E
(

hp
x,y(ξ0)

)
� C

⎛⎜⎝E1{x<F(G(ξ0))�y} + (y− x)p +E

⎛⎜⎝
∣∣∣∣∣∣∣
� 1

D �∑
l=r

(
cl(y)− cl(x)

l!

)
Hl(ξ0)

∣∣∣∣∣∣∣
p⎞⎟⎠
⎞⎟⎠

(B.4)

� C

⎛⎜⎝E1{x<F(G(ξ0))�y} + (y− x)p +
� 1

D �∑
l=r

(
cl(y)− cl(x)

l!

)p
E
(|Hl(ξ0)|p)

⎞⎟⎠
(B.5)

� C

⎛⎜⎝E1{x<F(G(ξ0))�y} + (y− x)p +
� 1

D �∑
l=r

|cl(y)− cl(x)|p
(l!)

p
2

(p−1)
lp
2

⎞⎟⎠ (B.6)

� C (y− x), (B.7)

where C is a generic constant that can change upon each appearance. Inequalities (B.4) and
(B.5) follow from⎛⎝ n∑

k=1

|xk|
⎞⎠p

� np−1
n∑

k=1

|xk|p

which holds for any p � 1 and is a direct consequence of Hölder’s inequality. Inequality
(B.6) follows by Nelson’s inequality; see Nourdin and Rosiński (2014, Lem. 2.1). Finally,
(B.7) is a consequence of applying the Cauchy–Schwarz inequality

(cl(y)− cl(x))
2 = E2 (1{x<F(G(ξ0))�y}Hl(ξ0)

)
� (y− x)E

(
H2

l (ξ0)
)

= (y− x)l! (B.8)

and by noticing that (y− x)
p
2 � y− x for p � 2 and x,y ∈ (0,1).

We now consider the summands on the right-hand side of formula (B.2) separately.
Starting with �1, note that (B.3) gives

E |�1| � C(j− i)(y− x).

In order to estimate the remaining quantities, we make use of Taqqu (1977, Lem. 4.5). This
together with (B.3) above, immediately yields

E |�21| � C(j− i)
3
2

(
E
(

h2
x,y(ξ0)

)) 1
2
(

E
(

h6
x,y(ξ0)

)) 1
2 � C(j− i)

3
2 (y− x),

E |�3| � C(j− i)2 E
(

h2
x,y(ξ0)

)(
E
(

h4
x,y(ξ0)

)) 1
2 � C(j− i)2(y− x)

3
2 ,

E |�4| � C(j− i)2 E2
(

h2
x,y(ξ0)

)
� C(j− i)2(y− x)2.

It remains to find an upper bound for E�22. For this, define

Lx,y(ξn) :=
� 1

D �∑
l=r

cl(y)− cl(x)

l!
Hl(ξn) and h̃x,y(z) = 1{x<F(G(z))�y} − (y− x).

https://doi.org/10.1017/S0266466625100054 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100054


HIGHER-ORDER APPROXIMATION FOR THE EMPIRICAL PROCESS 35

It then holds that

E
(

h2
x,y(ξn1)h

2
x,y(ξn2)

)
= E

(
(̃hx,y(ξn1)−Lx,y(ξn1))

2(̃hx,y(ξn2)−Lx,y(ξn2))
2
)

� 4E
(
(̃h2

x,y(ξn1)+L2
x,y(ξn1))(̃h

2
x,y(ξn2)+L2

x,y(ξn2))
)

= 4
(

E(̃h2
x,y(ξn1 )̃h

2
x,y(ξn2))+E(̃h2

x,y(ξn1)L
2
x,y(ξn2))

+E(L2
x,y(ξn1 )̃h

2
x,y(ξn2))+E(L2

x,y(ξn1)L
2
x,y(ξn2))

)
. (B.9)

Before we consider the four summands in (B.9) separately, we make the following
observation. With arguments given below,

E(L4
x,y(ξn)) = E

⎛⎜⎝� 1
D �∑

l=r

cl(y)− cl(x)

l!
Hl(ξn)

⎞⎟⎠
4

� C

� 1
D �∑

l=r

(
cl(y)− cl(x)

l!

)4
EH4

l (ξn) (B.10)

� C

� 1
D �∑

l=r

(cl(y)− cl(x))
4

l!2
32l, (B.11)

where (B.10) follows by Hölder’s inequality and (B.11) by Nelson’s inequality; see Nourdin
and Rosiński (2014) Lemma 2.1. Then, combining (B.11) with (B.8),

E(L4
x,y(ξn)) � C(y− x)2. (B.12)

In the following, we consider the summands in (B.9) separately. For the last one, the
Cauchy–Schwarz inequality and (B.12) yield

E(L2
x,y(ξn1)L

2
x,y(ξn2)) � (E(L4

x,y(ξn1)))
1
2 (E(L4

x,y(ξn2)))
1
2 � C(y− x)2. (B.13)

Since E(̃h2
x,y(ξn1)L

2
x,y(ξn2)) and E(L2

x,y(ξn1 )̃h
2
x,y(ξn2)) in (B.9) can be treated analogously,

we only consider E(̃h2
x,y(ξn1)L

2
x,y(ξn2)). Given the definition of h̃2

x,y in (??) and with further
explanations provided below, we get

E(̃h2
x,y(ξn1)L

2
x,y(ξn2)) = E((1{x<F(G(ξn1 ))�y} − (y− x))2L2

x,y(ξn2))

= E(1{x<F(G(ξn1 ))�y}L2
x,y(ξn2))+ (y− x)2 E(L2

x,y(ξn2))

+2(y− x)E(1{x<F(G(ξn1 ))�y}L2
x,y(ξn2)) (B.14)

� C(y− x)
3
2 +C(y− x)3 +C(y− x)

5
2

� C(y− x)
3
2 . (B.15)

For the first and third summand in (B.14), the Cauchy–Schwarz inequality and (B.12) yield

E(1{x<F(G(ξn1 ))�y}L2
x,y(ξn2)) �

(
E
(
1{x<F(G(ξn1 ))�y}

)) 1
2
(

E(L4
x,y(ξn2))

) 1
2 � C(y− x)

3
2 .
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Moreover, we have, by orthogonality of the Hermite polynomials, that the second summand
in (B.14) can be bounded as

E(L2
x,y(ξn2 )) = E

⎛⎜⎝� 1
D �∑

l=r

cl(y)− cl(x)

l!
Hl(ξn2 )

⎞⎟⎠
2

=
� 1

D �∑
l=r

(cl(y)− cl(x))2

(l!)2 EH2
l (ξn2 ) � C(y− x).

The first summand in (B.9) requires some more calculations, leading to

E
(̃

h2
x,y(ξn1 )̃h

2
x,y(ξn2)

)
= E

[(
1{x<F(Xn1 )�y

}− (y− x)
)2 (

1{x<F(Xn2 )�y
}− (y− x)

)2
]

= E

[(
1{x<F(Xn1 )�y

}+ (y− x)2 −2(y− x)1{x<F(Xn1 )�y
})

×
(
1{x<F(Xn2 )�y

}+ (y− x)2 −2(y− x)1{x<F(Xn2 )�y
})]

= E
(
1{x<F(Xn1 )�y

}1{x<F(Xn2 )�y
})(1−2(y− x))2 +2(y− x)3 −3(y− x)4

= E
(̃
hx,y(ξn1 )̃hx,y(ξn2)

)
(1−2(y− x))2 + (y− x)2(1− (y− x))2

�
∣∣E (̃hx,y(ξn1 )̃hx,y(ξn2)

)∣∣+ (y− x)2.

By orthogonality of the Hermite expansion

E
(̃
hx,y(ξn1 )̃hx,y(ξn2)

)= E(hx,y(ξn1)hx,y(ξn2))+
� 1

D �∑
l=r

(
cl(y)− cl(x)

l!

)2
E
(
Hl(ξn1)Hl(ξn2)

)

= E(hx,y(ξn1)hx,y(ξn2))+
� 1

D �∑
l=r

(cl(y)− cl(x))
2

l!
γ l(n1 −n2)

� E(hx,y(ξn1)hx,y(ξn2))+ (y− x)

� 1
D �∑

l=r

γ l(n1 −n2)

� E(hx,y(ξn1)hx,y(ξn2))+ (y− x)Cγ r(n1 −n2).

Then,∣∣E (̃hx,y(ξn1 )̃hx,y(ξn2)
)∣∣� ∣∣E(hx,y(ξn1)hx,y(ξn2))

∣∣+C(y− x)γ r(n1 −n2),

such that

E
(̃

h2
x,y(ξn1 )̃h

2
x,y(ξn2)

)
�
∣∣E(hx,y(ξn1)hx,y(ξn2))

∣∣+C(y− x)γ r(n1 −n2). (B.16)

Combining (B.9), (B.13), (B.15), and (B.16) finally gives

E
(

h2
x,y(ξn1)h

2
x,y(ξn2)

)
� C

∣∣Ehx,y(ξn1)hx,y(ξn2)
∣∣

+C(y− x)2 +C(y− x)
3
2 +C(y− x)γ r(n1 −n2).
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Taqqu (1977, Lem. 4.5) yields∑ ′ ∣∣E(hx,y(ξn1)hx,y(ξn2)
)∣∣� C(j− i)(y− x).

Since γ (k) = k−DL(k),

∑
i+1�n1 �=n2�j

γ r(n1 −n2) =
j−i∑

n1=1

j−i∑
n2=1

γ r(n1 −n2)− (j− i)γ r(0)

= 2
j−i−1∑
k=1

(j− i− k)γ r(k)

∼ 2

1− rD
(j− i)2−rDLr(j− i);

see Pipiras and Taqqu (2017, Prop. 2.2.1). Therefore, for any ε > 0, there exists an N0 ∈ N

such that∑
i+1�n1 �=n2�j

γ r(n1 −n2) � (1+ ε)
2

1− rD
(j− i)2−rDLr(j− i)

for j− i � N0. As a consequence thereof, there exists a constant C > 0 such that∑
i+1�n1 �=n2�j

γ r(n1 −n2) � C(j− i)2−rDLr(j− i)

for all i,j ∈ N.
Due to slow variation of L for any η > 0, there exists a C > 0, such that

E |�22| � C
∑ ′ ∣∣E(hx,y(ξn1)hx,y(ξn2)

)∣∣+C(j− i)2(y− x)2

+C(j− i)2(y− x)
3
2 +C(y− x)(j− i)2−rD+η

� C(j− i)2(y− x)
3
2 +C(j− i)(y− x)+C(j− i)2−rD+η(y− x).

Finally, we can use the bounds on E�1 to E�4 to continue bounding (B.2) as follows:

E
∣∣sj −si

∣∣4 = 1

N2
E(�1 +4�21 +3�22 +6�3 +�4)

� C
1

N2

(
(j− i)(y− x)+ (j− i)

3
2 (y− x)

+ (j− i)(y− x)+ (j− i)2−rD+η(y− x)+ (j− i)2(y− x)
3
2 + (j− i)2(y− x)2

)
� C

1

N2
((j− i)

3
2 (y− x)+ (j− i)2−rD+η(y− x)+ (j− i)2(y− x)

3
2 )

� C
1

N2
((j− i)2−θ (y− x)+ (j− i)2(y− x)

3
2 )
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with θ = min{ 1
2,rD−η}. We obtain,

E
∣∣sj −si

∣∣4 � C
1

Nθ

(
j− i

N

)2−θ

(y− x)+C

(
j− i

N

)2
(y− x)

3
2

� C

⎛⎝(y− x)
1

2−θ

j∑
q=i+1

1

N
2

2−θ

⎞⎠2−θ

+C

⎛⎝(y− x)
3
4

j∑
q=i+1

1

N

⎞⎠2

.

(B.17)

Applying Markov’s inequality to the probability P(|sj −si | > λ) = P(|sj −si |4 > λ4)

and using the bound (B.17), the conditions of Lemma C.1 are satisfied with γ = 4,

α1 = 2−θ,α2 = 2, v1 = (y−x)
1

2−θ 1

N
2

2−θ

, and v2 = (y−x)
3
4 1

N . Then, applying Lemma C.1

yields

P

(
max

1�k��Nb�
|sk| > λ

)
� Cα1,γ

1

λ4

⎛⎝(y− x)
1

2−θ

�Nb�∑
n=1

1

N
2

2−θ

⎞⎠2−θ

+Cα2,γ
1

λ4

⎛⎝(y− x)
3
4

�Nb�∑
n=1

1

N

⎞⎠2

� Cα1,γ
1

Nθ

1

λ4
b2−θ (y− x)+Cα2,γ

1

λ4
b2 (y− x)

3
2 . �

The subsequent lemmas are used in Appendix A and are all formulated in terms of a
generic sequence of refining partitions which covers the two sequences of partitions (A.11)
and (A.21) in Appendix A. For k = 0, . . . ,KN define refining partitions

xi(k) := ãp + i

2k
2δ, i = 0, . . . ,2k, (B.18)

of the interval [̃ap,̃ap +a] and for x ∈ [0,a] choose ik(x) such that

ãp + x ∈ (xik(x)(k),xik(x)+1(k)
]

.

Note that for the partitions defined in (A.11) and (A.21), we consider ãp = ap, a = 2δ and
ãp = 0, a = 1, respectively. All following lemmas in this section refer to these partitions.

Lemma B.2. Let mN be defined as in (4.3) and let
√

N/2KN → 0. Then, for all λ,b ∈ (0,1]
there is an Nλ and a constant C > 0 such that

P

(
sup

x∈[0,a]
sup

t∈[0,b]

∣∣∣mN(xiKN (x)(KN),t)−mN(x+ c,t)
∣∣∣> λ

)
� C

λ4
b

3
2 max

{
1

N
1
2

,
N

2KN
1
2

}

for all N � Nλ and for all c � 0 such that x+ c � xiKN (x)+1(KN).
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Proof. Note first that for all x,y,

|mN(y,t)−mN(x,t)| =

∣∣∣∣∣∣∣
∞∑

l=	 1
D 


cl(y)− cl(x)

l!

1√
N

�Nt�∑
n=1

Hl(ξn)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1√
N

�Nt�∑
n=1

1{x<F(G(ξn))�y} −
� 1

D �∑
l=r

cl(y)− cl(x)

l!

1√
N

�Nt�∑
n=1

Hl(ξn)

∣∣∣∣∣∣∣
� 1√

N

�Nt�∑
n=1

1{x<F(G(ξn))�y} +

∣∣∣∣∣∣∣
� 1

D �∑
l=r

cl(y)− cl(x)

l!

1√
N

�Nt�∑
n=1

Hl(ξn)

∣∣∣∣∣∣∣ .
(B.19)

Then,

P

(
sup

x∈[0,a]
sup

t∈[0,b]

∣∣∣mN(x+ c,t)−mN(xiKN (x)(KN),t)
∣∣∣> λ

)

� P

⎛⎝ sup
x∈[0,a]

sup
t∈[0,b]

∣∣∣∣∣∣ 1√
N

�Nt�∑
n=1

1{xiKN
(x)(KN )<F(G(ξn))�x+c}

∣∣∣∣∣∣> λ

2

⎞⎠
+P

⎛⎜⎝ sup
x∈[0,a]

sup
t∈[0,b]

∣∣∣∣∣∣∣
� 1

D �∑
l=r

cl(x+ c)− cl(xiKN (x)(KN))

l!

1√
N

�Nt�∑
n=1

Hl(ξn)

∣∣∣∣∣∣∣>
λ

2

⎞⎟⎠
(B.20)

� P

⎛⎝ sup
x∈[0,a]

sup
t∈[0,b]

∣∣∣∣∣∣ 1√
N

�Nt�∑
n=1

1{xiKN
(x)(KN )<F(G(ξn))�x+c}

∣∣∣∣∣∣> λ

2

⎞⎠+ 4

D2

Nb2

2KN λ2
,

(B.21)

where (B.20) follows by (B.19) and (B.21) is a consequence of applying Lemma B.3 below.
It remains to bound the probability in (B.21). Therefore, we write

P

⎛⎝ sup
x∈[0,a]

sup
t∈[0,b]

∣∣∣∣∣∣ 1√
N

�Nt�∑
n=1

1{
xiKN

(x)(KN )<F(G(ξn))�x+c
}
∣∣∣∣∣∣> λ

2

⎞⎠
� P

⎛⎝ sup
x∈[0,a]

∣∣∣∣∣∣ 1√
N

�Nb�∑
n=1

1{
xiKN

(x)(KN )<F(G(ξn))�x+c
}
∣∣∣∣∣∣> λ

2

⎞⎠
� P

⎛⎝ sup
x∈[0,a]

∣∣∣∣∣∣ 1√
N

�Nb�∑
n=1

1{
xiKN

(x)(KN )<F(G(ξn))�xiKN
(x)+1(KN )

}
∣∣∣∣∣∣> λ

2

⎞⎠
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� P

(
sup

x∈[0,a]

∣∣∣∣ 1√
N

�Nb�∑
n=1

(
1{

xiKN
(x)(KN )<F(G(ξn))�xiKN

(x)+1(KN )
}

−
(

xiKN (x)+1(KN)− xiKN (x)(KN)
))∣∣∣∣

+ sup
x∈[0,a]

∣∣∣∣∣∣ 1√
N

�Nb�∑
n=1

(
xiKN (x)+1(KN)− xiKN (x)(KN)

)∣∣∣∣∣∣> λ

2

)
. (B.22)

The second summand in (B.22) is deterministic and can be bounded by

sup
x∈[0,a]

∣∣∣∣∣∣ 1√
N

�Nb�∑
n=1

(
xiKN (x)+1(KN)− xiKN (x)(KN)

)∣∣∣∣∣∣�
√

N

2KN
b �

√
N

2KN
.

Then, choose Nλ � 1 such that
√

N
2KN

< λ
4 for all N � Nλ. As a result, we get

P

⎛⎝ sup
x∈[0,a]

sup
t∈[0,b]

∣∣∣∣∣∣ 1√
N

�Nt�∑
n=1

1{
xiKN

(x)(KN )<F(G(ξn))�x+c
}
∣∣∣∣∣∣> λ

2

⎞⎠
� P

(
sup

x∈[0,a]

∣∣∣∣ 1√
N

�Nb�∑
n=1

(
1{

xiKN
(x)(KN )<F(G(ξn))�xiKN

(x)+1(KN )
}

−
(

xiKN (x)+1(KN)− xiKN (x)(KN)
))∣∣∣∣> λ

2
−

√
N

2KN

)

� P

(
sup

x∈[0,a]

∣∣∣∣ 1√
N

�Nb�∑
n=1

(
1{

xiKN
(x)(KN )<F(G(ξn))�xiKN

(x)+1(KN )
}

−
(

xiKN (x)+1(KN)− xiKN (x)(KN)
))∣∣∣∣> λ

4

)
(B.23)

for all N � Nλ. Lemma B.4 gives an upper bound on the probability in (B.23):

P

⎛⎝ sup
x∈[0,a]

sup
t∈[0,b]

∣∣∣∣∣∣ 1√
N

�Nt�∑
n=1

1{
xiKN

(x)(KN )<F(G(ξn))�x+c
}
∣∣∣∣∣∣> λ

2

⎞⎠� C

λ4
b

3
2 max

{
1

N
1
2

,
N

2KN
1
2

}
.

�

Lemma B.3. Let cl(·) be defined as in (4.3). For all λ > 0, it holds that

P

⎛⎜⎝ sup
x∈[0,a]

sup
t∈[0,b]

∣∣∣∣∣∣∣
� 1

D �∑
l=r

cl(x+ c)− cl(xiKN (x)(KN))

l!

1√
N

�Nt�∑
n=1

Hl(ξn)

∣∣∣∣∣∣∣> λ

⎞⎟⎠� 1

D2

Nb2

2KN λ2

for a,b > 0 and c � 0, such that x+ c � xiKN (x)+1(KN).
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Proof. In order to bound the probability of interest, we use (B.8) in (B.24) below

P

⎛⎜⎝ sup
x∈[0,a]

sup
t∈[0,b]

∣∣∣∣∣∣∣
� 1

D �∑
l=r

cl(x+ c)− cl(xiKN (x)(KN))

l!

1√
N

�Nt�∑
n=1

Hl(ξn)

∣∣∣∣∣∣∣> λ

⎞⎟⎠
� P

⎛⎜⎝ sup
x∈[0,a]

sup
t∈[0,b]

� 1
D �∑

l=r

(x+ c− xiKN (x)(KN))
1
2

l!

√
l!

∣∣∣∣∣∣ 1√
N

�Nt�∑
n=1

Hl(ξn)

∣∣∣∣∣∣> λ

⎞⎟⎠ (B.24)

� P

⎛⎜⎝ sup
x∈[0,a]

sup
t∈[0,b]

� 1
D �∑

l=r

(xiKN (x)+1(KN)− xiKN (x)(KN))
1
2

√
l!

1√
N

�Nt�∑
n=1

|Hl(ξn)| > λ

⎞⎟⎠
� P

⎛⎜⎝� 1
D �∑

l=r

1√
2KN l!

1√
N

�Nb�∑
n=1

|Hl(ξn)| > λ

⎞⎟⎠

� 1

2KN
E

⎛⎜⎝� 1
D �∑

l=r

1√
l!

1√
N

�Nb�∑
n=1

|Hl(ξn)|
⎞⎟⎠

2 ( 1

λ

)2
(B.25)

� 1

2KN

� 1
D �∑

l1,l2=r

1√
l1! l2!

1

N

�Nb�∑
n1,n2=1

E
(|Hl1(ξn1)||Hl2(ξn2)|

)( 1

λ

)2

� 1

2KN

� 1
D �∑

l1,l2=r

1

N

�Nb�∑
n1,n2=1

( 1

λ

)2
(B.26)

� 1

D2

Nb2

2KN λ2
,

where (B.25) follows by Markov’s inequality. We then used the Cauchy–Schwarz inequality
to get (B.26). �

Lemma B.4. Let F denote the marginal distribution function of Xn,n ∈ N. Then, there is
a constant C > 0 such that

P

(
sup

x∈[0,a]

∣∣∣∣ 1√
N

�Nb�∑
n=1

(
1{

xiKN
(x)(KN )<F(Xn)�xiKN

(x)+1(KN )
}

−
(

xiKN (x)+1(KN)− xiKN (x)(KN)
))∣∣∣∣> λ

)
� C

λ4
b

3
2 max

{
1

N
1
2

,
N

2KN
1
2

}

for a > 0 and b,λ ∈ (0,1].
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Proof. With further explanations given below, we can infer the following bounds:

P

(
sup

x∈[0,a]

∣∣∣∣ 1√
N

�Nb�∑
n=1

(
1{

xiKN
(x)(KN )<F(Xn)�xiKN

(x)+1(KN )
}

−
(

xiKN (x)+1(KN)− xiKN (x)(KN)
))∣∣∣∣> λ

)

� P

⎛⎝ sup
x∈[0,a]

∣∣∣∣∣∣
∞∑
l=r

cl(xiKN (x)+1(KN))− cl(xiKN (x)(KN))

l!

1√
N

�Nb�∑
n=1

Hl(ξn)

∣∣∣∣∣∣> λ

⎞⎠
�

2KN∑
i=0

P

(∣∣mN
(
xi+1(KN),b

)−mN (xi(KN),b)
∣∣> λ

2

)

+P

⎛⎜⎝ sup
x∈[0,a]

∣∣∣∣∣∣∣
� 1

D �∑
l=r

cl(xiKN (x)+1(KN))− cl(xiKN (x)(KN))

l!

1√
N

�Nb�∑
n=1

Hl(ξn)

∣∣∣∣∣∣∣>
λ

2

⎞⎟⎠
(B.27)

� 16C1

λ4 b
3
2

2KN∑
i=0

1

N
1
2

(xi+1(KN)− xi(KN))+ 16C2

λ4 b2
2KN∑
i=0

(xi+1(KN)− xi(KN))
3
2 + 4

D2

Nb2

2KN λ2

(B.28)

� 16C1

λ4 b
3
2

2KN∑
i=0

(
1

2KN

)
1

N
1
2

+ 16C2

λ4 b2
2KN∑
i=0

(
1

2KN

) 3
2 + 4

D2

Nb2

2KN λ2

� C

λ4 b
3
2 max

{
1

N
1
2

,
N

2KN
1
2

}
,

where we used the representation (4.3) in the first summand of (B.27). The first probability
in (B.28) can be bounded by Lemma B.1 and the second one by Lemma B.3. We deduce
the last inequality by using that b,λ ∈ (0,1]. �

C. A COMPLEMENTARY RESULT AND ITS PROOF

In order to prove Lemma B.1, we use a slightly modified version of Billingsley (1968,
Thm. 12.2). We recall some notation from Billingsley (1968, Ch. 12). Let ξ1, . . . ,ξN be
independent or identically distributed random variables and sk =∑k

j=1 ξj with s0 = 0 and set

MN = max
0�k�N

|sk |.

Lemma C.1. Suppose there are γ > 0, α1,α2 > 1, v1,v2 > 0 and a positive sequence
(u�)1���N, such that for all λ > 0,

P
(∣∣sj −si

∣∣> λ
)
� 1

λγ

⎛⎝⎛⎝v1

j∑
�=i+1

u�

⎞⎠α1

+
⎛⎝v2

j∑
�=i+1

u�

⎞⎠α2
⎞⎠, 0 � i � j � N. (C.1)
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Then, there are constants Cα1,γ ,Cα2,γ > 0 only depending on αi, i = 1,2 and γ , such that

P(MN > λ) �
Cα1,γ

λγ

⎛⎝v1

N∑
�=1

u�

⎞⎠α1

+ Cα2,γ

λγ

⎛⎝v2

N∑
�=1

u�

⎞⎠α2

.

Remark C.2. Note that Lemma C.1 reduces to Billingsley (1968, Thm. 12.2) by setting
v2 = 0. In particular, our statement remains true if either v1 or v2 are zero. Our proof below
reveals that the generalization only works when the two summands in (C.1) depend on the
same sequence (u�)1���N .

Proof. The proof follows the proofs of Billingsley (1968, Thms. 12.1 and 12.2) and
requires only slight modifications of the arguments. First, note that

P(MN > λ) � P(M′
N > λ/2)+P(sN > λ/2) (C.2)

with M′
N = max0�i�N min{|si |,|sN −si |}. We consider the two probabilities in (C.2)

separately. Using assumption (C.1) with j = N and i = 0, the second probability can be
bounded as

P(sN > λ/2) � 2γ

λγ

⎛⎝⎛⎝v1

N∑
�=1

u�

⎞⎠α1

+
⎛⎝v2

N∑
�=1

u�

⎞⎠α2
⎞⎠ .

We prove a bound for the first probability in (C.2) via induction over N. Our induction
hypothesis is, for μ = λ/2,

P(M′
N > μ) �

Cα1,γ

μγ

⎛⎝v1

N∑
�=1

u�

⎞⎠α1

+ Cα2,γ

μγ

⎛⎝v2

N∑
�=1

u�

⎞⎠α2

. (C.3)

Beginning the induction with the base case N = 2, we get

P(M′
2 > μ) = P(min{|s1 |,|s2 −s1 |} > μ) � 1

μγ

⎛⎝⎛⎝v1

2∑
�=1

u�

⎞⎠α1

+
⎛⎝v2

2∑
�=1

u�

⎞⎠α2
⎞⎠
(C.4)

by applying Lemma C.3 with i = 0,j = 1,k = 2 in (C.4).
For the inductive step, we assume that the induction hypothesis (C.3) is satisfied for all

integers smaller and equal to N −1 and move toward N during the inductive step. Note that
by Billingsley (1968, eqn. (12.29)), there is an h such that

h−1∑
�=1

u� � 1

2

N∑
�=1

u� �
h∑

�=1

u�, (C.5)

where the sum on the left is zero if h = 1. By algebraic computations, one can infer

N∑
�=h+1

u� � 1

2

N∑
�=1

u� �
N∑

�=h

u�. (C.6)
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To see this, note that

1

2

N∑
�=1

u� �
h∑

�=1

u� ⇒ 1

2

N∑
�=1

u� +
N∑

�=h+1

u� �
h∑

�=1

u� +
N∑

�=h+1

u�

⇒
N∑

�=h+1

u� �
N∑

�=1

u� − 1

2

N∑
�=1

u�

⇒
N∑

�=h+1

u� � 1

2

N∑
�=1

u�. (C.7)

Using the first inequality of (C.5), we get

h−1∑
�=1

u� � 1

2

N∑
�=1

u� ⇒
h−1∑
�=1

u� +
N∑

�=h

u� � 1

2

N∑
�=1

u� +
N∑

�=h

u�

⇒
N∑

�=1

u� − 1

2

N∑
�=1

u� �
N∑

�=h

u�

⇒ 1

2

N∑
�=1

u� �
N∑

�=h

u�. (C.8)

Combining (C.7) and (C.8), we get the desired result.
By Billingsley (1968, eqn. (12.36)),

M′
N � max{U1 +D1,U2 +D2}

and therefore

P(M′
N > μ) � P(U1 +D1 > μ)+P(U2 +D2 > μ) (C.9)

with

U1 = max
0�i�h−1

min{|si |,|sh−1 −si |}, U2 = max
h�i�N

min{|sj −sh |,|sN −sj |}, (C.10)

D1 = min{|sh−1 |,|sN −sh−1 |}, D2 = min{|sh |,|sN −sh |}. (C.11)

The tail probabilities of the random variables (C.10) and (C.11) can be bounded by using
the inductive hypothesis (C.3) and Lemma C.3, respectively. Exemplarily, we consider U1
and D1. For U1, we get the following bounds:

P(U1 > μ) �
Cα1,γ

μγ

⎛⎝v1

h−1∑
�=1

u�

⎞⎠α1

+ Cα2,γ

μγ

⎛⎝v2

h−1∑
�=1

u�

⎞⎠α2

(C.12)

�
Cα1,γ

μγ

1

2α1

⎛⎝v1

N∑
�=1

u�

⎞⎠α1

+ Cα2,γ

μγ

1

2α2

⎛⎝v2

N∑
�=1

u�

⎞⎠α2

(C.13)
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by applying the inductive hypothesis (C.3) in (C.12) and the inequality (C.5) in (C.13). The
tail probability of U2 can be dealt with analogously by applying (C.6). For D1, we get

P(D1 > μ) � 1

μγ

⎛⎝⎛⎝v1

N∑
�=1

u�

⎞⎠α1

+
⎛⎝v2

N∑
�=1

u�

⎞⎠α2
⎞⎠ (C.14)

by Lemma C.3 with i = 0,j = h−1, and k = N. The tail probability of D2 can be handled
analogously by applying Lemma C.3 with i = 0,j = h and k = N.

We now continue with bounding (C.9) with focus on the first summand since the second
summand can be bounded by analogous arguments. With explanations given below, for
some positive μ0,μ1 with μ0 +μ1 = μ,

P(U1 +D1 > μ)

� P(U1 > μ0)+P(D1 > μ1)

� Cα1,γ

μ
γ

0

1

2α1

(
v1

N∑
�=1

u�

)α1

+ Cα2,γ

μ
γ

0

1

2α2

(
v2

N∑
�=1

u�

)α2

+ 1

μ
γ

1

⎛⎝(v1

N∑
�=1

u�

)α1

+
(

v2

N∑
�=1

u�

)α2
⎞⎠

(C.15)

= 1

μγ

⎛⎜⎝
⎛⎝Cα1,γ

2α1

(
v1

N∑
�=1

u�

)α1

+ Cα2,γ

2α2

(
v2

N∑
�=1

u�

)α2
⎞⎠δ

+
⎛⎝(v1

N∑
�=1

u�

)α1

+
(

v2

N∑
�=1

u�

)α2
⎞⎠δ
⎞⎟⎠

1
δ

(C.16)

� 1

μγ

⎛⎜⎝
⎛⎝Cα1,γ

(
v1

N∑
�=1

u�

)α1

+Cα2,γ

(
v2

N∑
�=1

u�

)α2
⎞⎠δ [(

1

2α1
+ 1

2α2

)δ

+
(

1

Cα1,γ

+ 1

Cα2,γ

)δ
]⎞⎟⎠

1
δ

(C.17)

� 1

μγ

⎛⎝Cα1,γ

⎛⎝v1

N∑
�=1

u�

⎞⎠α1

+Cα2,γ

⎛⎝v2

N∑
�=1

u�

⎞⎠α2
⎞⎠, (C.18)

where (C.15) follows by (C.13) and (C.14). For (C.16), we recall Billingsley (1968,
eqn. (12.39)). It states that for positive numbers A,B,λ,

min
λ0,λ1>0
λ0+λ1=λ

(
A

λ
γ
0

+ B

λ
γ
1

)
= 1

λγ
(Aδ +Bδ)

1
δ

with δ = 1
γ+1 . The inequality (C.17) follows since

(
v1

N∑
�=1

u�

)α1

+
(
v2

N∑
�=1

u�

)α2

�

⎛⎝Cα1,γ

(
v1

N∑
�=1

u�

)α1

+Cα2,γ

(
v2

N∑
�=1

u�

)α2
⎞⎠( 1

Cα1,γ

+ 1

Cα2,γ

)
.

Finally, we get (C.18) by choosing the constants Cα1,γ ,Cα2,γ large enough to get[(
1

2α1
+ 1

2α2

)δ

+
(

1

Cα1,γ
+ 1

Cα2,γ

)δ
] 1

δ

� 1 (C.19)
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which is possible since (C.19) is equivalent to(
1

2α1
+ 1

2α2

)δ

+
(

1

Cα1,γ
+ 1

Cα2,γ

)δ

� 1

and due to our assumption that α1,α2 > 1. �

Lemma C.3. Suppose there are γ > 0, α1,α2 > 1, (C.1) is satisfied with v1,v2 > 0 and
a positive sequence (u�)1���N. Then, for all λ > 0,

P
(∣∣sj −si

∣∣> λ,
∣∣sk −sj

∣∣> λ
)
� 1

λγ

⎛⎝(v1

k∑
�=i+1

u�

)α1

+
(

v2

k∑
�=i+1

u�

)α2
⎞⎠, 0 � i � j � k � N.

Proof. We follow the arguments in the proof of Billingsley (1968, Thm. 12.1). That is,

P
(∣∣sj −si

∣∣> λ,
∣∣sk −sj

∣∣> λ
)

� P
1
2
(∣∣sj −si

∣∣> λ
)

P
1
2
(∣∣sk −sj

∣∣> λ
)

� 1

λγ

⎛⎝⎛⎝v1

j∑
�=i+1

u�

⎞⎠α1

+
⎛⎝v2

j∑
�=i+1

u�

⎞⎠α2
⎞⎠

1
2
⎛⎝⎛⎝v1

k∑
�=j+1

u�

⎞⎠α1

+
⎛⎝v2

k∑
�=j+1

u�

⎞⎠α2
⎞⎠

1
2

(C.20)

= 1
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j∑
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�=j+1
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⎞⎠α2 ) 1
2

� 1
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(⎛⎝v1

k∑
�=i+1

u�

⎞⎠2α1

+2

⎛⎝v1

k∑
�=i+1

u�
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⎛⎝v2
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�=i+1

u�

⎞⎠α2

+
⎛⎝v2

k∑
�=i+1
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(C.21)

� 1

λγ

⎛⎝⎛⎝v1

k∑
�=i+1

u�

⎞⎠α1

+
⎛⎝v2

k∑
�=i+1

u�

⎞⎠α2
⎞⎠,

(C.22)

where (C.20) is due to (C.1) and (C.21) follows since xy � (x + y)2 for x,y > 0 and∑k
�=j+1 u� �

∑k
�=i+1 u�. �

D. ADDITIONAL RESULTS AND THEIR PROOFS

For shortness’ sake, we set sLN(x) = 1
N
∑N

n=1 Ln(x) in this section.

https://doi.org/10.1017/S0266466625100054 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100054


HIGHER-ORDER APPROXIMATION FOR THE EMPIRICAL PROCESS 47

Lemma D.1. An approximate 1−α confidence interval of F−1(p) can be written as(
φ(FN)+ 1

ϕ(F−1(p))

(
sLN(F−1(p))+ 1√

N
σ(F−1(p))z1− α

2

)
,φ(FN)+ 1

ϕ(F−1(p))

(
sLN(F−1(p))+ 1√

N
σ(F−1(p))z α

2

))
.

Proof. Note that

P

(
c1 � N

dN
(φ(FN)−φ(F)) � c2

)
= P

(
dN

N
c1 � φ(FN)−φ(F) � dN

N
c2

)
= P

(
φ(FN)− dN

N
c2 � φ(F) � φ(FN)− dN

N
c1

)
.

(D.1)

In order to find an approximate 1−α confidence interval, one has to determine the critical
values c1,c2 in (D.1). Instead of utilizing the asymptotic distribution of the empirical
process, we consider the asymptotic behavior of the HOA of the empirical process.

Then, with explanations given below,

P

(
c1 � N

dN
(φ(FN)−φ(F)) � c2

)
= P

(
c1 � φ′

F

(
N

dN
(FN −F)

)
� c2

)
+o(1) (D.2)

= P

(
dN

N
c1 � −1

ϕ(F−1(p))
(FN(F−1(p))−F(F−1(p))) � dN

N
c2

)
+o(1) (D.3)

= P

(
−ϕ(F−1(p))

dN

N
c2 � FN(F−1(p))−F(F−1(p)) � −ϕ(F−1(p))

dN

N
c1

)
+o(1)

= P
(

−ϕ(F−1(p))
dN√

N
c2 −√

NsLN(F−1(p))

�
√

NsSN(F−1(p)) � −ϕ(F−1(p))
dN√

N
c1 −√

NsLN(F−1(p))
)

+o(1)

= P
(
σ(F−1(p))z1− α

2
� S(F−1(p),1) � σ(F−1(p))z α

2

)
+o(1), (D.4)

where (D.2) is due to the Taylor approximation (5.7), (D.3) follows by the relation (5.8) and
(D.4) is due to the asymptotic result in Theorem 4.1 where S(x,1) is a mean zero Gaussian
process with cross-covariances σ 2(x) =∑

n∈ZCov(S0(x),Sn(x)) given in (4.1).
Based on the last approximation (D.4), we can infer the following relation between c1,c2

and the quantiles of the normal distribution

σ(F−1(p))z1− α
2

= −ϕ(F−1(p))
dN√

N
c1 −√

NsLN(F−1(p)),

σ (F−1(p))z α
2

= −ϕ(F−1(p))
dN√

N
c2 −√

NsLN(F−1(p)).
(D.5)

https://doi.org/10.1017/S0266466625100054 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466625100054


48 ANNIKA BETKEN AND MARIE-CHRISTINE DÜKER

Combining (D.1) and (D.5), we can then infer the statement of the lemma since for example

φ(FN)− dN

N
c1

= φ(FN)− 1

ϕ(F−1(p))

dN

N

√
N

dN

(
−√

NsLN(F−1(p))−σ(F−1(p))z1− α
2

)
= φ(FN)+ 1

ϕ(F−1(p))

(
sLN(F−1(p))+ 1√

N
σ(F−1(p))z1− α

2

)
. �

For the following lemma, recall from Section 3 that c̃l(x) = E
(
1{G(ξ0)�x}Hl(ξ0)

)
.

Lemma D.2. Suppose G : R → R is a monotonically increasing (decreasing), bijective
function. Then,

c̃l(x) =
⎧⎨⎩−Hl−1(G−1(x))ϕ

(
G−1(x)

)
if G is increasing,

Hl−1(G−1(x))ϕ
(

G−1(x)
)

if G is decreasing.

Proof. For a strictly monotonically increasing, bijective function G, it holds that

c̃l(x) = E
(
1{G(ξ0)�x}Hl(ξ0)

)
=
∫
R

1{G(y)�x}Hl(y)ϕ(y)dy

=
∫
R

1{y�G−1(x)}Hl(y)ϕ(y)dy

=
∫ G−1(x)

−∞
Hl(y)ϕ(y)dy = −Hl−1(G−1(x))ϕ(G−1(x)),

where the last equality follows from the definition of the Hermite polynomial Hl as

Hl(x) = (−1)l 1

ϕ(x)

∂ l

∂xl
ϕ(x);

see Pipiras and Taqqu (2017, Formula (4.1.1)). Analogously, it follows that for a strictly
monotonically decreasing, bijective function G, it holds that

c̃l(x) = E
(
1{G(ξ0)�x}Hl(ξ0)

)
=
∫
R

1{G(y)�x}Hl(y)ϕ(y)dy

=
∫
R

1{y�G−1(x)}Hl(y)ϕ(y)dy

=
∫ ∞

G−1(x)
Hl(y)ϕ(y)dy = Hl−1(G−1(x))ϕ(G−1(x)). �
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