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Summary

In mapping of quantitative trait loci (QTLs), performing hypothesis tests of linkage to a phenotype
of interest across an entire genome involves multiple comparisons. Furthermore, linkage among loci
induces correlation among tests. Under many multiple comparison frameworks, these problems are
exacerbated when mapping multiple QTLs. Traditionally, significance thresholds have been
subjectively set to control the probability of detecting at least one false positive outcome, although
such thresholds are known to result in excessively low power to detect true positive outcomes.
Recently, false discovery rate (FDR)-controlling procedures have been developed that yield more
power both by relaxing the stringency of the significance threshold and by retaining more power for
a given significance threshold. However, these procedures have been shown to perform poorly for
mapping QTLs, principally because they ignore recombination fractions between markers. Here,
I describe a procedure that accounts for recombination fractions and extends FDR control to
include simultaneous control of the false non-discovery rate, i.e. the overall error rate is controlled.
This procedure is developed in the Bayesian framework using a direct posterior probability
approach. Data-driven significance thresholds are determined by minimizing the expected loss. The
procedure is equivalent to jointly maximizing positive and negative predictive values. In the context
of mapping QTLs for experimental crosses, the procedure is applicable to mapping main effects,
gene–gene interactions and gene–environment interactions.

1. Introduction

In genome-wide mapping of quantitative trait loci
(QTLs), the goal is to characterize the genetic archi-
tecture of a trait by simultaneously identifying the
entire subset of chromosomal intervals that affect the
trait (Lynch & Walsh, 1998). Observed data consist
of phenotypic values and marker genotypes for a
mapped population. For sparse marker maps, pseudo-
markers are routinely inserted at evenly spaced inter-
vals, e.g. 1 cM (Sen & Churchill, 2001). Genotypes
are unobservable except at completely informative
markers, but genotype probabilities can be inferred.

In a QTL mapping analysis, performing hypothesis
tests of linkage to a phenotype of interest across an
entire genome induces a multiple testing problem.
Furthermore, linkage among loci induces correlation
among tests. With respect to the multiplicity problem,
Bonferroni corrections are conservative and sacrifice
power in order to maintain a low genome-wide false
positive error rate. With respect to the correlation
problem, Bonferroni corrections can become more
conservative as correlation among tests increases.

In order to gain power, a less stringent threshold
for claiming significance can be used, provided that
some small number of false positive claims is accept-
able. The false discovery rate (FDR) controls the
proportion of hypothesis tests claimed to be positive
that are falsely positive. Several groups have im-
plemented various definitions of FDR control in the
context of linkage analysis (Weller et al., 1998;
Heyen et al., 1999; Weller, 2000; Zaykin et al., 2000;
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Beh et al., 2001; Mosig et al., 2001; Yekutieli, 2001;
Lee et al., 2002; Sabatti et al., 2003; Varga et al.,
2003; Bennewitz et al., 2004; Bernardo, 2004; Cnaani
et al., 2004; Fernando et al., 2004; Simonsen &
McIntyre, 2004; Zhang et al., 2004; Benjamini &
Yekutieli, 2005).

Chen and Storey (Chen & Storey, 2006) discussed
two issues with linkage statistics. First, under the
global null hypothesis, linkage statistics randomly
fluctuate across the genome. Both theoretical and re-
sampling methods have been developed to address
this noise (e.g. Lander & Botstein, 1989; Lander &
Kruglyak, 1995). Second, there is dependence in the
signal due to linkage between markers. Under certain
types of dependence structures, the FDR can be con-
trolled, though control may be conservative com-
pared with the desired nominal FDR level (Sabatti
et al., 2003; Benjamini & Yekutieli, 2005; Benjamini
et al., 2006).

In the case of sparse marker maps, it may be ap-
propriate to consider the number of markers as the
effective number of tests because the distance between
markers may be large enough for the markers to be
effectively uncorrelated. However, the FDR can be
manipulated by marker placement (Fernando et al.,
2004; Chen & Storey, 2006). A routine practice in
QTL mapping, as already mentioned, is to insert
pseudomarkers and impute missing genotype data
(Sen & Churchill, 2001). Inserting pseudomarkers
provides the advantage of ensuring that the marker
map is nearly balanced with respect to proportionally
marking the regions of the genome that are and are
not QTL, even if the observed markers are unbal-
anced. The availability of dense maps consisting of
only observed markers resulting from high-through-
put sequencing projects will likely eliminate the need
for pseudomarkers while preserving the balance of
marker maps.

In the case of dense marker maps, whether the map
consists of markers only or markers supplemented
with pseudomarkers, correlation between markers
(and pseudomarkers) must be taken into account.
Chen and Storey (Chen & Storey, 2006) proceeded
under the simplification that, under the null hypoth-
esis of no linkage to the phenotype, the chromosome
is the unit of testing, implicitly assuming that linkage
extends across an entire chromosome. Similarly,
Benjamini and Yekutieli (Benjamini & Yekutieli,
2005) based their work on the simplification that
‘ for each trait all the hypotheses on a chromosome
are either true or false depending on the presence of
a QTL on the chromosome’.This choice ignores in-
formation provided by recombination fractions,
which precludes localization of QTL on the sub-
chromosomal scale, and is potentially biased if
there are multiple QTLs on one chromosome (Kao
et al., 1999). If meioses occur, particularly for long

chromosomes or when recombination rates are high,
linkage does not necessarily extend across an entire
chromosome. For example, human chromosome 1 is
y225 cM, corresponding to a recombination fraction
of 0.50 using the Kosambi mapping function,
which indicates that the ends of this chromosome
are unlinked. A more general definition of the proper
unit of testing, appropriate for any recombination
rate, is a linkage region, i.e. a region of a chromosome
in which the set of all markers (and pseudomarkers)
are in tight linkage such that test statistics are
positively correlated and reflect only one underlying
outcome.

In this study, an expected loss function is devel-
oped for multiple QTL mapping, taking into account
dependence among markers as measured by recom-
bination fractions. Using this method, the numbers
of truly significant, falsely significant, truly non-
significant and falsely non-significant hypothesis tests
can all be estimated. In the Bayesian framework, these
quantities can be directly estimated from posterior
probabilities. Then, the FDR, which is the proportion
of significant tests that are falsely significant, and the
false non-discovery rate (FNR), which is the pro-
portion of non-significant tests that are falsely non-
significant, can both be estimated. Finally, these two
error rates can be combined into a single value, the
Bayes error, and minimizing this expected loss quan-
tity can be used as an optimality criterion for deter-
mining significance thresholds. Bayes error-based
mapping procedures are presented for main effects,
gene–gene interactions and gene–environment inter-
actions.

2. Materials and methods

(i) The multiple interacting QTL model

For continuous traits, consider the linear regression
framework of Yi et al. (Yi et al., 2007b) for multiple
QTL models. The phenotypes of n individuals,
y=(y1, …, yn)

T, are expressed as

y=m+XGbG+XGGbGG+XEbE+XGEbGE+e, (1)

in which m=(m, …, m)T is the overall mean; XG, XGG,
XE and XGE are the design matrices for main effects,
gene–gene interactions, environmental effects and
gene–environment interactions, respectively ; bG,
bGG, bE and bGE are vectors of main effects, gene–
gene interactions, environmental effects and gene–
environment interactions, respectively; and e is a vec-
tor of independent normal errors with mean zero and
variance s2In. Under prior independence, any one ef-
fect or interaction is independent of all other effects
and interactions. Constraints can be imposed to make
interactions dependent on main effects (Yi et al.,
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2007b). With appropriate modifications to eqn (1),
binary, categorical and ordinal traits can also be
analysed (Yandell et al., 2007; Yi et al., 2007a).

Suppose the genome is partitioned into H loci,
f={f1, …,fH}, corresponding to the set of all markers
and pseudomarkers. From the perspective of model
selection, a subset of f explains phenotypic variation.
Let l={l1, …, lL}(s{f1, …, fH}) be the positions of
L QTL among the H loci. A vector of latent indicator
variables c is used to indicate which effects (main ef-
fects, gene–gene interactions and gene–environment
interactions) are included in (c=1) or excluded from
(c=0) the model (Yi, 2004; Yi et al., 2005, 2007b).
Effect sizes, conditional on c, are distributed accord-
ing to a mixture of a point mass at zero and a normal
distribution (Yi & Shriner, 2008). In the Bayesian
framework, the goal is to infer the posterior distri-
bution of (c,lc). A full description of the prior dis-
tributions and the Markov chain Monte Carlo
(MCMC) algorithms can be found elsewhere (Yi,
2004; Yi et al., 2005, 2007b).

(ii) Discrete definitions of operating characteristics

Consider the possible outcomes when performing m
hypothesis tests (Table 1). The number of true nega-
tives is given by U, the number of false negatives
is given by T, the number of true positives is given
by S and the number of false positives is given by V.
All four of these random numbers are unobservable.
The marginal sums m0=U+V, which is the number
of true null hypotheses and m1=T+S, which is the
number of true alternative hypotheses, are likewise
unobservable random numbers. The marginal sums
W=U+T, which is the number of non-rejected hy-
potheses and R=V+S, which is the number of re-
jected hypotheses, are observable random numbers.
The positive FDR (pFDR) is defined as

pFDR=E
V

R
jR>0

� �
, (2)

which is the expected proportion of discoveries (i.e.
rejected null hypotheses) that are false, given at least
one discovery (Storey, 2003). The marginal FDR

(mFDR) is defined as

mFDR=
E(V)

E(R)
, (3)

(Benjamini & Hochberg, 1995; Tsai et al., 2003). The
pFDR and mFDR are asymptotically equivalent as
the number of tests increases (Storey, 2003). Similarly,
the positive FNR (pFNR) is defined as

pFNR=E
T

W
jW>0

� �
, (4)

which is the expected proportion on non-discoveries
(i.e. accepted null hypotheses) that are false, given
at least one non-discovery (Genovese & Wasserman,
2002; Storey, 2003). The marginal FNR (mFNR) is
defined as

mFNR=
E(T)

E(W)
: (5)

(iii) The number of tests for main effects

Under the global null hypothesis of no segregating
QTL anywhere in the genome, equations have been
derived to estimate the effective number of tests, m,
under sparse and dense map cases (Lander & Botstein,
1989; Lander &Kruglyak, 1995). For sparse maps, the
effective number of tests can be estimated simply by
the number of markers, M. For dense maps, solve the
equation (based on an Orenstein–Uhlenbeck diffusion
process)

a=(C+2Gta)x
2(ta) (6)

for ta, in which a is the family-wide significance level
(typically a=0.05), C is the number of chromosomes
and G is the length of the genome in Morgans. For a
recombinant inbred line design with selfing or with
full-sib mating, G should be replaced with 2G or 4G,
respectively. x2(ta) is the one-tailed probability (i.e.
the area under the curve to the right of ta) from the
distribution function for the central x2 distribution.
The x2 distribution has one degree of freedom for
backcross or recombinant inbred line designs (for one
effect size parameter) and two degrees of freedom
for an F2 design (for two effect size parameters). The
effective number of tests is given by m=C+2Gta
(Lander & Botstein, 1989; Lander & Kruglyak, 1995).
If one has a sufficiently dense marker map to ef-
ficiently test linkage, additional markers will be tightly
linked with existing markers. Additional markers
yield diminishing returns, increasing the amount of
correlation more than increasing the information con-
tent (Darvasi et al., 1993). The average width of a test
interval in cM is 100G/(C+2Gta). Note that this in-
terval defines the average linkage region, which is the
proper unit of testing for dense marker maps.

Table 1. Discrete outcomes of testing m-independent
hypotheses

Hypothesis
Accept
null

Reject
null Total

True null U V m0

True alternative T S m1

Total W R m
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(iv) The direct posterior probability approach to
FDR control

Suppose there is a test statistic ti for each of i=
1, …, m tests. Define a binary indicator variable Hi=
0 if the null hypothesis is true for the ith test and
Hi=1 if the alternative hypothesis is true for the ith
test. In the context of linkage analysis, the null hy-
pothesis is that the tested locus is not linked to the
phenotype and the alternative hypothesis is that the
tested locus is linked to the phenotype. Assume that
(ti, Hi) are identically and independently distributed
random variables. Suppose the rejection region C is
held constant for testing all hypotheses. A test statistic
ti is either an element of the rejection, tisC, or it is
not, ti =2C. Let Pr(.) denote a probability measure.
Then, the pFDR for the ith test is

pFDRi(C)=
Pr (Hi=0, ti 2 C)

Pr (ti 2 C)
=Pr (Hi=0jti 2 C) (7)

(Table 2) (Storey, 2003).
Each locus in f may affect a trait through its main

effects and/or interactions with other loci (epistasis)
or environmental effects (Yi et al., 2005). The pos-
terior inclusion probability of the hth locus fh,
Pr(ch=1|y), is estimated by the frequency that the
locus fh appears in the posterior sample given the data
y. Furthermore, Pr(c=1|y) is a direct estimate of
Pr(H=1). For a given rejection region C, tisC if ti is
greater than or equal to a defined threshold of
Pr(c=1|y). The test statistic ti is the cumulative pos-
terior inclusion probability for an interval. The
cumulative posterior inclusion probability over a
chromosomal interval bracketed by loci hL and hR is
given by ghR

h=hL
Pr (ch=1jy), for an interval in which

all loci have posterior probabilities in the rejection
region. (Care must be taken because the cumulative
posterior inclusion probability may exceed one for a
sufficiently large interval, indicating the presence of
more than one QTL in that interval.) The length of
the interval is given by fhRxfhL, which corresponds

to
fhRxfhL

100G=(C+2Gta)
tests. The probability that an interval

declared positive is truly positive, Pr(Hi=1|tisC), is
ghR

h=hL
Pr (ch=1jy). The probability that an interval

declared positive is falsely positive, Pr(Hi=0|tisC), is
given by 1xPr(Hi=1|tisC), or 1xghR

h=hL
Pr(ch=1jy).

The pFDR can then be estimated by the sum (over all
intervals declared significant) of 1xghR

h=hL
Pr (ch=1jy)

divided by the sum (over all intervals declared sig-
nificant) of

fhRxfhL
100G=(C+2Gta)

(Newton et al., 2004; Storey
et al., 2005).

(v) The direct posterior probability approach to
FNR control

For a given significance threshold C, ti =2C if ti is less
than a defined threshold of Pr(c=1|y). The prob-
ability that an interval declared negative is falsely
negative,

pFNRi(C)=
Pr (Hi=1, ti =2C)

Pr (ti =2C)
=Pr (Hi=1jti =2C) (8)

(Table 2), is given directly by ghR
h=hL

Pr (ch=1jy), for
an interval in which all loci have posterior prob-
abilities not in the rejection region. Thus, the pFNR is
estimated by the sum of ghR

h=hL
Pr(ch=1jy) for all tests

not declared significant divided by
fhRxfhL

100G=(C+2Gta)
for all

tests not declared significant.

(vi) Probabilistic definitions of operating
characteristics

The eight operating characteristics for testing a hy-
pothesis can be written in probabilistic form as
follows (Table 2) :

Type I error rate=
Pr (H=0, t 2 C)

Pr (H=0)
=Pr (t 2 CjH=0),

Type II error rate=
Pr (H=1, t =2C)

Pr (H=1)
=Pr (t =2CjH=1),

Sensitivity=
Pr (H=1, t 2 C)

Pr (H=1)
=Pr (t 2 CjH=1),

Specificity=
Pr (H=0, t =2C)

Pr (H=0)
=Pr (t =2CjH=0),

Positive predictive value=
Pr (H=1, t 2 C)

Pr (t 2 C)

=Pr (H=1jt 2 C),

Negative predictive value=
Pr (H=0, t =2C)

Pr (t =2C)

=Pr (H=0jt =2C),

Table 2. Probabilistic outcomes for hypothesis testing

Hypothesis Accept null Reject null Total

True null Pr(H=0,t =2C)a Pr(H=0,tsC) Pr(H=0)
True
alternative

Pr(H=1,t =2C) Pr(H=1,tsC) Pr(H=1)

Total Pr(t =2C) Pr(tsC) 1

a H=0 indicates that the null hypothesis is true. H=1 in-
dicates that the alternative hypothesis is true. tsC indicates
that the test statistic is an element of the rejection region, C.
t =2C indicates that the test statistic is not an element of the
rejection region, C. Pr(.) denotes the probability of an event.
Pr(.,.) denotes the joint probability of two events.
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FDR=
Pr (H=0, t 2 C)

Pr (t 2 C)
=Pr (H=0jt 2 C),

FNR=
Pr (H=1, t =2C)

Pr (t =2C)
=Pr (H=1jt =2C):

Sensitivity is equivalent to average power. Note that
the positive predictive value and the FDR are comp-
lementary, as are the negative predictive value and the
FNR. Coverage is the proportion of replicates for
which an interval contains the true QTL location.
Accuracy is a function of the difference between the
estimated peak location and the true QTL location.
Precision is an inverse measure of the width of an in-
terval. Estimates of each of these operating charac-
teristics exist for each of the m tests. Averaging over
all tests can be done either marginally (the ratio of
averages) or jointly (the average of ratios) ; in this
study, averaging was done marginally.

(vii) Bayes error

One possible optimality criterion is to minimize the
expected loss, BE, by minimizing the weighted aver-
age of the pFDR and the pFNR, (w)pFDR+
(1xw)pFNR, for a user-defined cost w (Genovese &
Wasserman, 2002; Storey, 2003; Chen & Sarkar,
2006). Under this scheme, the significance threshold,
which in turn defines the rejection region, is objec-
tively determined by the data rather than being sub-
jectively set by the user. Due to complementarities,
minimizing a weighted average of the FDR and FNR
is equivalent to maximizing a weighted average of the
positive and negative predictive values.

(viii) Extensions to gene–gene and gene–environment
interactions

Whereas mapping main effects involves optimization
over a two-dimensional curve of posterior probability
as a function of genomic location, mapping gene–
gene interactions involves optimization over a three-
dimensional surface of posterior probability as a
function of two genomic locations. Under backcross
or recombinant inbred line designs, there is one type
of gene–gene interaction effect. Under an F2 design,
there are four types of gene–gene interaction effects,
referred to as additive–additive, additive–dominance,
dominance–additive and dominance–dominance ef-
fects. The effective number of tests increases to ( m

2
).

Storey et al. (Storey et al., 2005) developed a sequen-
tial approach for detecting gene–gene interactions
that detects interactions only if the main effects for
both loci are significant. The implementation de-
scribed herein allows for interaction effects indepen-
dent of main effect sizes, which increases the type I
error rate but also increases power for pairs of loci

with primarily interaction effects. Mapping gene–
environment interactions is analogous to mapping
main effects, with one two-dimensional posterior
probability curve for each interacting environmental
effect.

(ix) Implementation in R/qtlbim

The freely available QTL mapping package R/qtlbim
is an extensible, interactive environment for Bayesian
analysis of multiple interacting QTL in experimental
crosses (Yandell et al., 2007). It provides several ef-
ficient MCMC algorithms for evaluating posterior
probabilities of genetic architectures, i.e. the number
and locations of QTLs, main effects and gene–gene
and gene–environment interactions. R/qtlbim pro-
vides tools to monitor mixing behaviour and conver-
gence of the simulated Markov chain, and provides
extensive informative graphical and numerical sum-
maries of the MCMC output to infer and interpret
the genetic architecture of complex traits. Code im-
plementing Bayes error calculations will be included
in R/qtlbim, which facilitates the general usage of
Bayesian methodologies for genome-wide interacting
QTL analysis.

(x) Simulation study

Data simulation and Bayesian QTL mapping were
performed using the R package qtlbim (Yandell et al.,
2007). The phenotypic trait was assumed to be nor-
mally distributed. An F2 design was simulated. The
simulated genome consisted of four autosomal chro-
mosomes with a total length of 400 cM. Using the
approximation for dense maps (Lander & Botstein,
1989; Lander & Kruglyak, 1995) presented in eqn (6)
for a=0.05, these choices yielded 130 effective tests,
for which the comparable LOD (likelihood of odds)
threshold, equal to x2(ta)2ln10, was 3.41. Under the
global null hypothesis, the average test spanned
y3.1 cM. Pseudomarkers were inserted at 1 cM inter-
vals using the Kosambi mapping function and geno-
type probabilities were estimated using the multipoint
method. The experimental conditions are presented
in Table 3. For every set of conditions, 1000 indepen-
dent replicate data sets were generated and analysed.

The prior number of QTLs in the MCMC analysis
was the true value, except for Experiment 10 in which
the prior number was misspecified as five (greater
than the number of chromosomes). For a correctly
constructedMCMC algorithm, theMarkov chain will
converge to a unique stationary distribution that is
the target posterior distribution, regardless of the in-
itialization values, provided that a sufficiently long
chain is run (Geyer, 1992). The main effect of mis-
specified priors is to increase the burn-in period be-
fore the Markov chain converges to the stationary

Bayes error control for multiple QTLs 151

https://doi.org/10.1017/S001667230900010X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230900010X


Table 3. Simulation conditions

Experiment
Chromosome
length Marker mapa

Estimated
number
of tests

Sample
size

Main effect
QTLb GrG QTLc GrE QTLd

1 100-100-100-100 10-10-10-10 130 250 (1, 45, 0.25, 0.25)
2 150-75-125-50 10-10-10-10 130 250 (1, 45, 0.25, 0.25)
3 150-75-125-50 14-8-12-6 130 250 (1, 45, 0.25, 0.25)
4 100-100-100-100 50-10-10-10 130 250 (1, 45, 0.25, 0.25)
5 100-100-100-100 20-20-20-20 130 250 (1, 45, 0.25, 0.25)
6 100-100-100-100 50-10-10-10 130 250 (1, 45, 0.25, 0.25)
7 100-100-100-100 10-10-10-10 130 250 (1, 0.5, 0.25, 0.25)
8 100-100-100-100 10-10-10-10 130 250 (1, 45, 0.5, 0.25)
9 100-100-100-100 10-10-10-10 130 500 (1, 45, 0.25, 0.25)

10e 100-100-100-100 10-10-10-10 130 250 (1, 45, 0.25, 0.25)
11 100-100-100-100 10-10-10-10 130 250 (1, 45, 0.25, 0.25)

(2, 60, 0.25, 0.25)
12 100-100-100-100 10-10-10-10 130 250 (1, 45, 0.25, 0.25)

(2, 45, 0.25, 0.25)
(3, 45, 0.25, 0.25)
(4, 45, 0.25, 0.25)

13 100-100-100-100 10-10-10-10 14 993 250 (1, 45, 2, 60, 0.5, 0, 0, 0)
14 100-100-100-100 10-10-10-10 14 993 250 (1, 45, 2, 60, 0.63, 0, 0, 0)
15 100-100-100-100 10-10-10-10 14 993 250 (1, 45, 2, 60, 0.5, 0, 0, 0)

(3, 45, 4, 60, 0.5, 0, 0, 0)
16 100-100-100-100 10-10-10-10 14 993 500 (1, 45, 2, 60, 0.5, 0, 0, 0)
17 100-100-100-100 10-10-10-10 130 250 (1, 45, 0.5, 0.5)
18 100-100-100-100 10-10-10-10 130 250 (1, 45, 0.7, 0.7)
19 100-100-100-100 10-10-10-10 130 250 (1, 45, 0.5, 0.5)

(2, 60, 0.5, 0.5)
20 100-100-100-100 10-10-10-10 130 500 (1, 45, 0.5, 0.5)
21 100-100-100-100 10-10-10-10 130-14 993-130 f 250 (1, 45, 0.25, 0.25) (1, 45, 2, 60, 0.5, 0, 0, 0) (1, 45, 0.5, 0.5)
22 100-100-100-100 10-10-10-10 159 250 (1, 45, 0.25, 0.25)
23 100-100-100-100 10-10-10-10 199 250 (1, 45, 0.25, 0.25)

a The notation for marker maps indicates the number of markers on each chromosome. For Experiment 4, the 50 markers are evenly distributed across chromosome 1. For
Experiment 6, 40 markers are evenly distributed between 32.5 and 57.5 cM and the other 10 markers are evenly distributed across the rest of the chromosome.
b The notation for main effects is (chromosome, location, additive effect and dominance effect).
c The notation for gene–gene interactions is (chromosome 1, location 1, chromosome 2, location 2, additive–additive effect, additive–dominance effect, dominance–additive effect
and dominance–dominance effect).
d The notation for gene–environment interactions is (chromosome, location, additive effect and dominance effect).
e In Experiment 10, the prior number of QTLs was misspecified as five.
f In Experiment 21, the estimated number of tests is given separately for main effects, gene–gene interactions and gene–environment interactions.
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distribution. The MCMC algorithm was run for
400 000 iterations, with a thinning value of 20 and
no burn-in. The cost in the Bayes error function
was 0.5.

3. Results

Seven sets of simulations were performed. The first set
of simulations was designed to investigate stability to
chromosomal lengths and the marker map (Table 4).
In Experiment 2 compared with Experiment 1, the
lengths of the chromosomes differed but the number
of markers on each chromosome was the same. This
had the effect of increasing the intermarker distance
on the chromosome with the true QTL, so that the
estimation of the QTL location was less precise. In
Experiment 3 compared with Experiment 1, the
lengths of the chromosomes differed and the number
of markers differed such that the average intermarker
distance was the same. In Experiment 4 compared
with Experiment 1, chromosome 1 (on which was one
QTL) was saturated with markers. In Experiment 5
compared with Experiment 1, marker density was
increased evenly across all chromosomes. In Exper-
iment 6 compared with Experiment 1, only the inter-
val of chromosome 1 surrounding the true QTL was
saturated. The total number of markers in Exper-
iments 4–6 was the same. The significance threshold,
the pFDR, and the pFNR were not sensitive to
chromosome lengths or marker placement.

The second set of simulations was designed to in-
vestigate mapping main effects as a function of QTL
location, effect size and sample size (Table 5). When a
QTL was located close to the edge of a chromosome

(Experiment 7), the interval for the QTL location was
truncated, leading to smaller widths and posterior
probabilities. The estimation of the true QTL location
was less accurate, with the bias being away from the
edge of the chromosome. Also, it was more difficult to
differentiate false versus true positive QTL, as can be
seen by larger pFDR estimates and smaller positive
predictive values. There were more false positive
QTL, although the average posterior probability for a
false positive QTL was smaller. With a larger effect
size (Experiment 8), the significance threshold was
markedly increased, implying a more stringent test.
The pFDR was much smaller and the positive pre-
dictive value was much larger for a QTL with a larger
effect. Sensitivity was reduced but specificity im-
proved, consistent with increased stringency. Cover-
age and the true positive posterior probability both
increased and the true positive width decreased with
larger effects. The number of false positive QTLs
decreased but the false positive posterior probability
and the false positive width both increased. With a
larger sample size (Experiment 9), similar to increas-
ing the effect size, the significance threshold was in-
creased, implying a more stringent test. The pFDR
was much smaller and the positive predictive value
was much larger for a larger sample size. Sensitivity
was reduced but specificity increased, consistent with
a more stringent test. Coverage and the true positive
posterior probability both increased and the true
positive width decreased with larger effects. The
number of false positive QTLs decreased but the false
positive posterior probability and the false positive
width both increased. A misspecified prior (Exper-
iment 10) had no effect.

Table 4. Mean operating characteristics for mapping main effects as a function of chromosome lengths and
the marker map

Experiment

1 2 3 4 5 6

Significance threshold 0.011 0.011 0.012 0.010 0.011 0.008
pFDR 0.11 0.11 0.10 0.16 0.15 0.17
pFNR 0.0090 0.0105 0.0106 0.0081 0.0087 0.0074
Bayes error 0.060 0.062 0.058 0.085 0.080 0.087
Sensitivity 0.86 0.87 0.85 0.88 0.87 0.89
Specificity 0.98 0.94 0.96 0.96 0.96 0.95
Positive predictive value 0.89 0.89 0.90 0.84 0.85 0.83
Negative predictive value 0.99 0.99 0.99 0.99 0.99 0.99
Proportion of true null hypotheses 0.90 0.84 0.86 0.87 0.88 0.86
Proportion of true alternative hypotheses 0.10 0.16 0.14 0.13 0.12 0.14
Number of false positive intervals 2.1 3.9 3.2 4.3 3.7 4.8
False positive interval width 11.9 11.5 11.3 8.9 9.0 9.1
False positive interval posterior probability 0.19 0.14 0.15 0.12 0.13 0.11
Coverage 0.80 0.76 0.82 0.81 0.80 0.81
True positive peak location 44.2 46.5 45.4 44.4 44.7 44.5
True positive interval width 24.6 34.4 28.0 28.4 26.5 28.5
True positive interval posterior probability 0.65 0.62 0.66 0.67 0.64 0.73
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The third set of simulations was designed to inves-
tigate mapping multiple QTLs (Table 6). Increases in
the amount of true positive signal due to multiple true
QTLs had effects as expected on all of the operating
characteristics (Experiments 11 and 12). The pFDR
and the number of false positive intervals were smaller
with multiple QTLs. Power increased as the number
of QTLs increased, or equivalently, as the proportion
of true alternative hypotheses increased.

The fourth set of simulations was designed to in-
vestigate mapping gene–gene interactions (Table 7).

Not surprisingly, the pFDR was much larger for
gene–gene interactions than for main effects (Exper-
iment 13). The vast majority of claims of significance
were in fact false positives, but with vanishingly small
posterior probabilities. On average, it wasy100 times
easier to distinguish false positives from true positives
for gene–gene interactions than for main effects.
Increasing the effect size (Experiment 14), the num-
ber of gene–gene interactions (Experiment 15) or the
sample size (Experiment 16) had the same conse-
quences as for main effects. As expected, large sample

Table 6. Mean operating characteristics for mapping main effects as a function of QTL number

Experiment

1 11 12

Significance threshold 0.011 0.012 0.011
pFDR 0.11 0.084 0.073
pFNR 0.0090 0.0095 0.0099
Bayes error 0.060 0.047 0.042
Sensitivity 0.86 0.88 0.91
Specificity 0.98 0.98 0.97
Positive predictive value 0.89 0.92 0.93
Negative predictive value 0.99 0.99 0.99
Proportion of true null hypotheses 0.90 0.86 0.77
Proportion of true alternative hypotheses 0.10 0.14 0.23
Number of false positive intervals 2.1 1.8 1.9
False positive interval width 11.9 12.3 10.9
False positive interval probability 0.19 0.22 0.21
Coverage 0.80 0.69 0.67
True positive peak location 44.2 43.8/58.6 43.9
True positive interval width 24.6 27.0 27.4
True positive interval posterior probability 0.65 0.68 0.67

Table 5. Mean operating characteristics for mapping main effects as a function of QTL location, effect size,
sample size and prior (mis)specification

Experiment

1 7 8 9 10

Significance threshold 0.011 0.009 0.018 0.013 0.010
pFDR 0.11 0.18 0.031 0.047 0.11
pFNR 0.0090 0.0082 0.0097 0.0076 0.0089
Bayes error 0.060 0.092 0.021 0.027 0.061
Sensitivity 0.86 0.86 0.77 0.85 0.87
Specificity 0.98 0.96 1.00 0.99 0.98
Positive predictive value 0.89 0.82 0.97 0.95 0.89
Negative predictive value 0.99 0.99 0.99 0.99 0.99
Proportion of true null hypotheses 0.90 0.89 0.94 0.93 0.89
Proportion of true alternative hypotheses 0.10 0.11 0.06 0.07 0.11
Number of false positive intervals 2.1 3.5 0.4 0.7 2.4
False positive interval width 11.9 11.1 14.8 13.4 11.5
False positive interval probability 0.19 0.13 0.45 0.27 0.17
Coverage 0.80 0.83 0.94 0.94 0.80
True positive peak location 44.2 2.6 43.9 43.9 44.4
True positive interval width 24.6 15.5 14.6 20.2 26.8
True positive interval posterior probability 0.65 0.46 0.93 0.85 0.63
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sizes were critical for obtaining high levels of pre-
dictive values and posterior probabilities for true hy-
potheses (Experiment 16).

The fifth set of simulations was designed to in-
vestigate mapping gene–environment interactions
(Table 8). Under the specific conditions tested, gene–
environment interactions were easier to map than
main effects (Experiments 17–20). Otherwise, all of
the trends observed for main effects and gene–gene
interactions also held for gene–environment inter-
actions. The sixth set of simulations was designed
to investigate simultaneous mapping of main effects,
gene–gene interactions and gene–environment inter-
actions (Table 9). Error estimates were slightly larger
in the presence of all three types of genetics effects, but
there was no impediment to this type of joint analysis
(Experiment 21).

The seventh set of simulations was designed to in-
vestigate the effect of the estimated effective number
of tests (Table 10). This was accomplished by solving
eqn (6) for a=0.05 (Experiment 1), a=0.01 (Exper-
iment 22) and a=0.001 (Experiment 23). As the
estimated effective number of tests increased, the es-
timated values of the various operating characteristics
converged to their respective asymptotic limits.

4. Discussion

For Mendelian traits, statistical hypothesis testing
during QTL mapping is complicated by the fact that
genome-wide testing involves multiple comparisons.
For complex traits with multiple QTLs, a second
problem is induced by the fact that some unknown
proportion of tests, but usually many more than just
one test, are expected to be rejected. Under the latter
case, traditional corrections for multiple compari-
sons, such as Bonferroni corrections, are generally
conservative with respect to both multiplicity and
correlation. Recently developed methods, such as
FDR-controlling methods, retain more power, ideally
increase in power with an increasing number of
QTLs, and account for dependence among tests. In
this study, optimizing predictive value led to more
conservative control (1xspecificity<0.05) and sub-
optimal coverage (coverage<0.95) than expected by a
traditional experiment-wide significance level of 0.05.

Insertion of pseudomarkers at even intervals yields
a nearly balanced marker map, such that the false
nulls and true nulls are proportionally represented. If
the map of markers and pseudomarkers is sufficiently
dense, then tests of markers or intervals between

Table 7. Mean operating characteristics for mapping gene–gene interactions as a function of effect size,
QTL number and sample size

Experiment

13 14 15 16

Significance threshold 0.0010 0.0014 0.0014 0.0015
pFDR 0.38 0.20 0.26 0.10
pFNR 0.0001 0.0001 0.0001 0.0001
Bayes error 0.19 0.10 0.13 0.051
Sensitivity 0.68 0.82 0.78 0.90
Specificity 0.99 1.00 1.00 1.00
Positive predictive value 0.62 0.80 0.74 0.90
Negative predictive value 1.00 1.00 1.00 1.00
Proportion of true null hypotheses 0.999 0.998 0.998 0.998
Proportion of true alternative hypotheses 0.001 0.002 0.002 0.002
Number of false positive intervals 581 259 300 82
False positive interval width 1 0.21 0.22 0.24 0.26
False positive interval width 2 0.21 0.22 0.24 0.27
False positive interval probability 0.0005 0.0009 0.0010 0.0023
Coverage 1 0.45 0.66 0.33 0.78
True positive peak location 1 43.7 43.6 43.6 44.1
True positive interval width 1 18.1 15.4 17.7 14.6
True positive peak location 2 58.4 59.0 59.0 59.0
True positive interval width 2 19.9 17.8 19.4 16.8
True positive interval posterior probability 1 0.34 0.52 0.40 0.63
Coverage 2 0.32
True positive peak location 3 44.4
True positive interval width 3 16.4
True positive peak location 4 58.9
True positive interval width 4 18.1
True positive interval posterior probability 2 0.34
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markers are correlated through linkage. Thus, it is
crucial to account for linkage by estimating the effec-
tive number of tests. The ‘width’ of a test defines a
proper unit of testing that accounts for all markers
and pseudomarkers in tight linkage. This test defi-
nition prevents the manipulation of the FDR by

marker placement (Fernando et al., 2004; Chen &
Storey, 2006). Herein, I describe a new implemen-
tation of a Bayesian FDR-controlling method. The
proposed method extends previous ones by con-
trolling the overall error rate by simultaneously con-
trolling the FDR and the FNR. The proposed method

Table 8. Mean operating characteristics for mapping gene–environment interactions as a function of
effect size, QTL number and sample size

Experiment

17 18 19 20

Significance threshold 0.012 0.015 0.012 0.012
pFDR 0.056 0.021 0.047 0.018
pFNR 0.0056 0.0055 0.0061 0.0037
Bayes error 0.031 0.013 0.026 0.011
Sensitivity 0.88 0.85 0.92 0.89
Specificity 0.99 1.00 0.99 1.00
Positive predictive value 0.94 0.98 0.95 0.98
Negative predictive value 0.99 0.99 0.99 1.00
Proportion of true null hypotheses 0.93 0.95 0.88 0.96
Proportion of true alternative hypotheses 0.07 0.05 0.12 0.04
Number of false positive intervals 0.7 0.2 0.8 0.2
False positive interval width 13.6 14.5 13.9 15.0
False positive interval probability 0.26 0.46 0.33 0.47
Coverage 1 0.93 0.97 0.87 0.99
True positive peak location 1 43.8 43.9 43.9 43.8
True positive interval width 1 19.8 14.1 21.1 13.4
True positive interval posterior probability 1 0.82 0.95 0.84 0.96
Coverage 2 0.80
True positive peak location 2 58.9
True positive interval width 2 23.8
True positive interval posterior probability 2 0.82

Table 9. Simultaneous mapping of main effects, gene–gene interactions and gene–environment interactions
(Experiment 21)

Main
effect

Gene–gene
interaction

Gene–environment
interaction

Significance threshold 0.0095 0.00096 0.014
pFDR 0.16 0.44 0.091
pFNR 0.0084 0.0001 0.0087
Bayes error 0.083 0.22 0.050
Sensitivity 0.88 0.64 0.86
Specificity 0.96 0.99 0.98
Positive predictive value 0.84 0.56 0.91
Negative predictive value 0.99 1.00 0.99
Proportion of true null hypotheses 0.87 0.999 0.88
Proportion of true alternative hypotheses 0.13 0.001 0.12
Number of false positive intervals 3.8 636 2.3
False positive interval width 1 10.4 0.22 13.0
False positive interval width 2 0.22
False positive interval probability 0.13 0.0005 0.21
Coverage 0.75 0.37 0.85
True positive peak location 1 44.0 59.4 59.3
True positive interval width 1 26.7 19.8 23.6
True positive peak location 2 44.1
True positive interval width 2 18.1
True positive interval posterior probability 0.52 0.30 0.74

D. Shriner 156

https://doi.org/10.1017/S001667230900010X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230900010X


accounts for the effective number of tests in a genome-
wide linkage scan, although the relevant parameter a
is merely a nuisance parameter and could be elim-
inated by integration. Critically, the proposed method
accounts for the correlation among markers within a
linkage region. The proposed method is applicable for
continuous, binary and ordinal traits and for multiple
interacting QTL mapping, i.e. with an arbitrary num-
ber of QTLs with arbitrary genetic effects.

For multiple QTLs mapping, it is unlikely that any
single model sampled by the MCMC algorithm would
correctly contain all QTLs. This problem is ad-
dressable through the use of Bayesian model averag-
ing to estimate parameters for each QTL marginally.
Also, the overall Bayes error rate decreased with
multiple QTLs. With multiple QTLs, a greater
proportion of alternative hypotheses are true, and
pFDR-controlling methods tend to be more powerful
in these situations (Storey, 2002). Since different types
of genetic effects can be estimated with differing levels
of accuracy and precision, it seems reasonable to op-
timize mapping for main effects, gene–gene interac-
tions and gene–environment interactions separately.

The most commonly used summary statistic in
Bayesian hypothesis testing is the Bayes factor, de-
fined as the ratio of the posterior odds to the prior
odds (Jeffreys, 1961; Kass & Raftery, 1995). Equi-
valently, the Bayes factor is the ratio of the marginal
likelihoods of the data under the two hypotheses. The
Bayes factor can be seen as the Bayesian counterpart
to the likelihood ratio statistic, which is based on
maximization (rather than integration) in frequentist
analysis. Under certain regularity conditions, the

Bayesian information criterion (Schwarz, 1978) is
approximately equal to x2ln(Bayes factor) (Kass &
Wasserman, 1995). Thus, Bayes factors can be useful
not only in a manner similar to LOD scores but also
in the model selection framework.

On the other hand, there are disadvantages with
using Bayes factors. First, the interpretation of Bayes
factors, just as with the interpretation of likelihood
ratio statistics in the frequentist framework, depends
on a subjective significance threshold (Jeffreys, 1961;
Kass & Raftery, 1995). Increasing the stringency of
the threshold will increase specificity at the cost of
reducing sensitivity. Minimizing the expected loss
function provides an objective, data-driven solution
to this problem. Second, Bayes factors depend criti-
cally upon the prior distributions. Whereas this de-
pendency has not been particularly problematic for
single trait analysis, it appears to be problematic for
testing pleiotropy in multiple trait analysis (Banerjee
et al., 2008). The prior probability that a locus affects
none of the traits, i.e., the intersection of all of the null
hypotheses, tends to become vanishingly small as the
number of traits increases, thereby potentially yield-
ing enormously large Bayes factors that are unstable
and difficult to calibrate. In this context, analysing the
posterior probability profile appears to be more trac-
table than analysing Bayes factors (Banerjee et al.,
2008).

False positive error rates in Bayesian analyses can
be affected by the specification of prior distributions.
The posterior distribution of the number of QTLs is
influenced by the prior distribution of the number of
QTLs, whereas the Bayes factor tends to be relatively

Table 10. Mean operating characteristics for mapping main effects
as a function of the estimated effective number of tests

Experiment

1 22 23

Estimated number of tests 130 159 199
Significance threshold 0.011 0.011 0.011
pFDR 0.11 0.095 0.077
pFNR 0.009 0.0074 0.0059
Bayes error 0.060 0.051 0.041
Sensitivity 0.86 0.88 0.90
Specificity 0.98 0.98 0.98
Positive predictive value 0.89 0.91 0.92
Negative predictive value 0.99 0.99 0.99
Proportion of true null hypotheses 0.90 0.89 0.89
Proportion of true alternative hypotheses 0.10 0.11 0.11
Number of false positive intervals 2.1 2.3 2.4
False positive interval width 11.9 11.2 10.4
False positive interval posterior probability 0.19 0.17 0.15
Coverage 0.80 0.82 0.82
True positive peak location 44.2 43.6 44.0
True positive interval width 24.6 24.4 25.2
True positive interval posterior probability 0.65 0.64 0.64
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insensitive to the prior distribution of the number
of QTLs (Yi & Shriner, 2008). In contrast, the prior
distribution of effect sizes tends to more strongly af-
fect false positive error rates. The point-normal prior
induces shrinkage of effect sizes towards zero, which
has the advantages of reducing model space by re-
moving most loci from the model and reducing the
false positive error rate, independent of whether pos-
terior inference is made through Bayes factors or the
Bayes error.

The merit of optimizing prediction rather than
classification remains an open question. In this study,
optimization of prediction tended to be conservative,
as evident by sub-optimal coverage and large speci-
ficities. Maximizing the positive predictive value
sacrifices detection of smaller effects in favour of
higher positive predictive values for larger effects.
Thus, optimizing prediction may have particular ben-
efit in genome-wide analysis by improving repli-
cability of findings.
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