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Abstract

The aim of this paper is to introduce a new measure of noncompactness on the Sobolev space Wn,p[0,T ].
As an application, we investigate the existence of solutions for some classes of functional integro-
differential equations in this space using Darbo’s fixed point theorem.
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1. Introduction

Sobolev spaces play a prominent role in modern analysis, in particular, in the theory
of partial differential equations and its applications in mathematical physics. They
form an indispensable tool in approximation theory, spectral theory and differential
geometry. The theory of these spaces is also of interest in itself.

Integro-differential equations (IDE) feature in many fields of biological science,
applied mathematics, physics and other disciplines, such as the theory of elasticity,
biomechanics, electromagnetic, electrodynamics, fluid dynamics, heat and mass
transfer and oscillating magnetic fields (see, for example, [11, 14, 16]). A range of
numerical methods have been applied to the study of IDE. Some examples are the tau
method, direct methods, collocation methods, Runge–Kutta methods, wavelet methods
and spline approximation (see, for example, [5, 9, 10, 17, 20, 23]).

In 1930, Kuratowski [18] introduced the concept of measure of noncompactness.
Later, Banaś and Goebel [7] generalised this concept axiomatically, which is more
convenient in applications. The tool of measure of noncompactness has been used in
the theory of operator equations in Banach spaces. The fixed point theorems derived
from them have many applications. There is considerable literature devoted to this
subject (see, for example, [6, 8, 12, 15, 16, 21, 22]). The principal application of
measures of noncompactness in fixed point theory is through Darbo’s fixed point
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theorem [7]. This yields a tool to investigate the existence and behaviour of solutions
of many classes of integral equations such as those of Volterra, Fredholm and Uryson
types (see [1, 2, 12, 13]).

Motivated by these investigations and the measures of noncompactness considered
in [7], we introduce a new measure of noncompactness on the Sobolev space
Wn,p[0,T ]. Then we study the problem of existence of solutions of the functional
integro-differential equation

x(n+1)(t) = f
(
t, x(ξ(t)), x′(ξ(t)), . . . , x(n)(ξ(t)),

∫ β(t)

0
k(t, s)x(s) ds

)
(1.1)

in the Sobolev space Wn,p[0,T ] where t ∈ [0, T ]. In our considerations, we apply
Darbo’s fixed point theorem associated with this new measure of noncompactness.

2. Preliminaries

In this section, we recall some basic facts concerning measures of noncompactness,
defined axiomatically in Definition 2.1 below. Let R denote the set of real numbers
and R+ = [0, +∞). Let (E, ‖ · ‖) be a real Banach space with zero element 0. Let
B(x, r) denote the closed ball centred at x with radius r. The symbol Br stands for the
ball B(0, r). For X, a nonempty subset of E, we denote by X and Conv X the closure
and the closed convex hull of X, respectively. Denote by ME the family of nonempty
bounded subsets of E and by NE its subfamily consisting of all relatively compact
subsets of E.

Definition 2.1 [7]. A mapping µ :ME −→ R+ is called a measure of noncompactness
on E if it satisfies the following conditions:

(1) the family ker µ = {X ∈ME : µ(X) = 0} is nonempty and ker µ ⊂ NE;
(2) X ⊂ Y =⇒ µ(X) ≤ µ(Y);
(3) µ(X) = µ(X);
(4) µ(Conv X) = µ(X);
(5) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1];
(6) if {Xn} is a sequence of closed sets fromME such that Xn+1 ⊂ Xn for n = 1, 2, . . . ,

and if limn→∞ µ(Xn) = 0, then X∞ =
⋂∞

n=1 Xn , ∅.

We recall the well-known fixed point theorem of Darbo type.

Theorem 2.2 [7]. Let Ω be a nonempty, bounded, closed and convex subset of the space
E and µ a measure of noncompactness on E. Let F : Ω −→ Ω be a continuous mapping
such that there exists a constant k ∈ [0, 1) with the property

µ(FX) ≤ kµ(X)

for any nonempty subset X of Ω. Then F has a fixed point in the set Ω.
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We introduce a measure of noncompactness on the space Lp[0,T ]. In order to define
this measure, take an arbitrary set X ofMLp[0,T ]. For x ∈ X and ε > 0, set

ω(x, ε) = sup{‖τhx − x‖p : |h| < ε},
ω(X, ε) = sup{ω(x, ε) : x ∈ X},

where

τhx(t) =

{
x(t + h) 0 ≤ t + h ≤ T,
0 otherwise,

for all t, h ∈ [0,T ]. Then define

ω0(X) = lim
ε−→0

ω(X, ε).

The mapping ω0 = ω0(X) is a measure of noncompactness on the space Lp[0,T ] [7].

3. Main results

In this section, we introduce a measure of noncompactness on the Sobolev space
Wn,p[0, T ]. The Sobolev space Wn,p([0, T ]) is defined to consist of those measurable
functions f which, together with all their distributional derivatives f (k) of order k ≤ n,
belong to Lp[0,T ] with the norm

‖ f ‖n,p = max
0≤k≤n

‖ f (k)‖p,

where f (0) = f .

Theorem 3.1. Suppose 1 ≤ n <∞ and X is a bounded subset of Wn,p[0,T ]. Set X(0) = X
and X(k) = {x(k) : x ∈ X}. Then µ :MWn,p[0,T ] −→ R+ given by

µ(X) = max
0≤k≤n

ω0(X(k))

is a measure of noncompactness on Wn,p[0,T ].

The proof relies on the following observations.

Lemma 3.2 [3]. Suppose µ1, µ2, . . . , µn are measures of noncompactness on Banach
spaces E1, E2, . . . , En respectively. Moreover, assume that the function F : Rn

+ −→ R+

is convex and F(x1, . . . , xn) = 0 if and only if xi = 0 for i = 1, 2, . . . , n. Then

µ(X) = F(µ1(X1), µ2(X2), . . . , µn(Xn))

defines a measure of noncompactness on E1 × E2 × · · · × En, where Xi denotes the
natural projection of X into Ei for i = 1, 2, . . . , n.

Lemma 3.3 [19]. For i = 1, 2, let (Ei, ‖.‖i) be Banach spaces and let L : E1 −→ E2
be a one-to-one, continuous linear operator of E1 onto E2. If µ2 is a measure of
noncompactness on E2, define, for X ∈ME1 ,

µ̃2(X) := µ2(LX).

Then µ̃2 is a measure of noncompactness on E1.
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Proof of Theorem 3.1. First, consider E = (Lp[0,T ])n+1 equipped with the norm

‖(x1, . . . , xn, xn+1)‖ = max
1≤i≤n+1

‖xi‖p.

Set F(x1, . . . , xn+1) = max1≤i≤n+1 xi for any (x1, . . . , xn+1) ∈ Rn+1
+ . All the conditions of

Lemma 3.2 are satisfied, so

µ2(X) := max
1≤i≤n+1

ω0(Xi)

defines a measure of noncompactness on the space E, where Xi denotes the natural
projection of X for i = 1, 2, . . . , n + 1. Define the operator L : Wn,p[0,T ] −→ E by

L(x) = (x, x′, x′′, x(3), . . . , x(n)).

Obviously, L is a one-to-one and continuous linear operator. We show that
L(Wn,p[0, T ]) is closed in E. To do this, choose {xn} ⊂ Wn,p[0, T ]) such that L(xn)
is a Cauchy sequence in E. Thus, for any ε > 0, there exists N ∈ N such that for any
k,m > N,

‖L(xk − xm)‖ < ε.

So,

‖xk − xm‖n,p = max
0≤i≤n

‖x(i)
k − x(i)

m ‖p = ‖(xk − xm, x′k − x′m, . . . , x
(n)
k − x(n)

m )‖

= ‖L(xk − xm)‖ < ε.

Therefore, {xn} is a Cauchy sequence of Wn,p[0, T ] and there exists x ∈ Wn,p[0, T ]
such that xn −→ x. Since L is continuous, L(xn) −→ L(x). This implies that Y =

L(Wn,p[0, T ]) is closed. Thus, the operator L : Wn,p[0, T ] −→ Y is a one-to-one and
continuous linear operator of Wn,p[0, T ] onto Y . Since Y is a closed subspace of X, µ2
is a measure of noncompactness on Y . Hence, for X ∈MWn,p[0,T ],

µ̃2(X) = µ2(LX) = max
0≤k≤n

ω0(X(k)) = µ(X).

Now, using Lemma 3.3, the proof is complete. �

Corollary 3.4. Let F be a bounded subset of Wn,p[0, T ]. Then the following two
conditions are equivalent:

(i) F is a totally bounded subset of Cn[a, b].
(ii) For every ε > 0, there exists δ > 0 such that

‖τh f (k) − f (k)‖p < ε

for all 0 ≤ k ≤ n, h ∈ [a, b] with |h| < δ and f ∈ F .

Proof. Suppose F satisfies condition (i). Then µ(F ) = 0 and, for any ε > 0, there
exists δ > 0 such that

ω(F (k), δ) < ε
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for all 0 ≤ k ≤ n. Thus, for any 0 ≤ k ≤ n, f ∈ F and h ∈ [a, b] such that |h| < δ,

‖τh f (k) − f (k)‖p ≤ ω( f (k), δ) ≤ ω(F (k), δ) ≤ ε,

and condition (ii) is satisfied. Conversely, assume that F satisfies condition (ii). Take
an arbitrary ε > 0. By condition (ii), there exists δ > 0 such that

‖τh f (k) − f (k)‖p < ε,

for all 0 ≤ k ≤ n and h ∈ [0,T ] with |h| < δ, so we have

max
0≤k≤n

ω( f (k), δ) = max
0≤k≤n

sup{‖τh f (k) − f (k)‖p : |h| ≤ δ} < ε

for all f ∈ F , and so
max
0≤k≤n

ω(F (k), δ) ≤ ε.

Therefore, µ(F ) = 0 and condition (i) is satisfied. �

4. Existence of solutions for some classes of integro-differential equations

In this section we study the existence of solutions for Equation (1.1).

Definition 4.1. A function f : [0, T ] × Rn −→ R is said to have the Carathéodory
property if:

(1) for all x ∈ Rn, the function t→ f (t, x) is measurable on [0,T ];
(2) for almost all t ∈ [0,T ], the function x→ f (t, x) is continuous on Rn.

Lemma 4.2. Let Ω be a Lebesgue measurable subset of Rn and 1 ≤ p ≤ ∞. If { fn}
is convergent to f ∈ Lp(Ω)) in the Lp-norm, then there is a subsequence { fnk } which
converges to f almost everywhere and there is g ∈ Lp(Ω), g ≥ 0, such that

| fnk (x)| ≤ g(x) for almost all x ∈ Ω.

Theorem 4.3 (Minkowski’s inequality for integrals, [4]). Suppose that (X,M, µ) and
(Y,N , ν) are σ-finite measure spaces and f is an (M⊗N)-measurable function on
X × Y. If f ≥ 0 and 1 ≤ p <∞, then( ∫ ( ∫

f (x, y) dν(y)
)p

dµ(x)
)1/p
≤

∫ (∫
f (x, y)p dµ(x)

)1/p
dν(y).

We will consider the Equation (1.1) under the following assumptions:

(i) ξ, β : [0,T ] −→ [0,T ] are measurable functions.
(ii) f : [0, T ] × Rn+2 −→ R satisfies the Carathéodory conditions and there exists a

function a ∈ Lq[a, b] such that

| f (t, x0, x1, . . . , xn+1)| ≤ a(t) max
0≤i≤n+1

|xi|. (4.1)
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(iii) k : [0,T ] × [0,T ] −→ R is a [0,T ] × [0,T ]-measurable function such that

ess sup
s∈[0,T ]

∫ T

0
|k(t, s)| dt ≤ 1 and ess sup

t∈[0,T ]

∫ T

0
|k(t, s)| ds ≤ 1.

(iv) D := max{T (n+1)/p/n!(pn + 1)1/p,T 1/p} ‖a‖q < 1.

Remark 4.4. Under hypothesis (iii), the linear operator K : Lp[0, T ] → Lp[0, T ]
defined by

(Kx)(t) =

∫ β(t)

0
k(t, s)x(s) ds

is a continuous linear operator and ‖Kx‖p ≤ ‖x‖p.

Theorem 4.5. Under assumptions (i)–(iv), the equation (1.1) has at least one solution
in the space Wn,p[0,T ].

Proof. The differential equation (1.1) has at least one solution in the space Wn+1,p[0,T ]
if and only if the nonlinear integral equation

u(t) = p(t) +
1
n!

∫ t

0
(t − s)n f (s, x(ξ(s)), x′(ξ(s)), . . . , x(n)(ξ(s)),Kx(s)) ds

has at least one solution in the space Wn,p[0,T ] where

p(t) = (t − T )
n∑

k=0

xk

k!
tn −

t
T

n∑
k=0

yk

k!
(t − T )n.

We define the operator F : Wn,p[0,T ] −→ Wn,p[0,T ] by

Fx(t) = p(t) +
1
n!

∫ t

0
(t − s)n f (s, x(ξ(s)), x′(ξ(s)), . . . , x(n)(ξ(s)),Kx(s)) ds. (4.2)

First, by considering the Carathéodory conditions, we infer that Fx is measurable for
any x ∈ Wn,p[0, T ]. Also, for any t ∈ R+ and 1 ≤ k ≤ n, Fx has measurable derivative
dk(Fx)(t)/dtk of order k (1 ≤ k ≤ n) given by

p(k)(t) +
1

(n − k)!

∫ t

0
(t − s)n−k f (s, x(ξ(s)), x′(ξ(s)), . . . , x(n)(ξ(s)),Kx(s)) ds.

Using conditions (i)–(iv), for arbitrarily fixed t ∈ [0,T ],( ∫ T

0

∣∣∣∣∣ 1
n!

∫ t

0
(t − s)n f (s, x(ξ(s)), x′(ξ(s)), . . . , x(n)(ξ(s)),Kx(s)) ds

∣∣∣∣∣p dt
)1/p

≤

( ∫ T

0

∣∣∣∣∣ 1
n!

∫ T

0
χ[0,t](s)(t − s)n f (s, x(ξ(s)), x′(ξ(s)), . . . , x(n)(ξ(s)),Kx(s)) ds

∣∣∣∣∣p dt
)1/p

≤
1
n!

∫ T

0

( ∫ T

0
|χ[0,t](s)(t − s)n f (s, x(ξ(s)), x′(ξ(s)), . . . , x(n)(ξ(s)),Kx(s))|p dt

)1/p
ds

≤
T (np+1)/p

n!(pn + 1)1/p

∫ T

0
|a(s)|max{|x(ξ(s))|, |x′(ξ(s))|, . . . , |x(n)(ξ(s))|, |Kx(s)|} ds.
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Thus, from (4.2),

‖Fx‖p ≤ ‖p‖p +
T (np+1)/p

n!(pn + 1)1/p ‖a‖q max{‖x(s)‖p, ‖x′(s)‖p, . . . , ‖x(n)‖p, ‖Kx‖p}

and similarly,∥∥∥∥∥dk(Fx)
dtk

∥∥∥∥∥
p
≤ ‖p‖p + T ((n−k)p+1)/p

(n−k)!(p(n−k)+1)1/p ‖a‖q max{‖x‖p, ‖x′‖p, . . . , ‖x(n)‖p, ‖Kx‖p}.

Hence,

‖Fx‖w ≤ ‖p‖p + max
{ T (n+1)/p

n!(pn + 1)1/p ,T
1/p

}
‖a‖q‖x‖w. (4.3)

From the inequality (4.3), F transforms the ball B̄r0 into itself where r0 = ‖p‖p/(1 − D).
Next, we show that the map F is continuous. Let {xm} be an arbitrary sequence

in Wn,p[0, T ] which converges to x ∈ Wn,p[0, T ] in the Wn,p[0, T ]-norm. Since the
Volterra integral operator K generated by k maps (continuously) the space Lp[0, T ]
into itself, Kxm converges to Kx. From Lemma 4.2, there is a subsequence {xmk }which
converges to x almost everywhere, such that {x(k)

mk } converges to x(k) almost everywhere
for all 1 ≤ k ≤ n, {Kxmk } converges to Kx almost everywhere and there is h ∈ Lp[0,T ],
h ≥ 0, such that

max{|xmk (ξ(t))|, |x
′
mk

(ξ(t))|, |x′′mk
(ξ(t))|, . . . , |x(n)

mk
(ξ(t))|, |Kxmk (t)|} ≤ h(t) (4.4)

almost everywhere on [0,T ]. Since xmk → x almost everywhere in [0,T ] and f satisfies
the Carathéodory conditions,

f (s, xmk (ξ(s)), . . . , x(n)
mk

(ξ(s)),Kxmk (s)) −→ f (s, x(ξ(s)), . . . , x(n)(ξ(s)),Kx(s)) (4.5)

for almost all t ∈ [0,T ]. From inequalities (4.1) and (4.4),

| f (s, xmk (ξ(s)), . . . , x(n)
mk

(ξ(s)),Kxmk (s))| ≤ a(s)h(s) almost everywhere on [0,T ]. (4.6)

From Lebesgue’s Dominated Convergence theorem, (4.5) and (4.6) yield∫ t

0
(t − s)n f (s, xmk (ξ(s)), . . . , x(n)

mk
(ξ(s)),Kxmk (s)) ds

−→

∫ t

0
(t − s)n f (s, x(ξ(s)), . . . , x(n)(ξ(s)),Kx(s)) ds (4.7)

for almost all t ∈ [0,T ]. Inequality (4.6) implies that

|F(xmk )(t)| ≤
∣∣∣∣∣ 1
n!

∫ t

0
(t − s)n f (s, xmk (s), . . . , x(n)

mk
(s),Kxmk (s)) ds

∣∣∣∣∣
≤

1
n!

∣∣∣∣∣ ∫ t

0
(t − s)na(s)h(s) ds

∣∣∣∣∣ (4.8)
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for almost all t ∈ [0,T ]. From the assumptions on a,( ∫ T

0

∣∣∣∣∣ ∫ t

0
(t − s)na(s)h(s) ds

∣∣∣∣∣p dt
)1/p
≤

∫ T

0

( ∫ T

0
|(t − s)na(s)h(s) dt|p

)1/p
ds

≤
T (np+1)/p

n!(pn + 1)1/p ‖a‖q‖h‖p. (4.9)

From inequalities (4.7), (4.8) and (4.9) and Lebesgue’s dominated Convergence
theorem,

‖Fxmk − Fx‖Lp −→ 0.

Since any sequence {xm} converging to x in Lp has a subsequence {xmk } such that
Fxmk −→ Fx in Lp, we conclude that F : Lp[0,T ] −→ Lp[0,T ] is a continuous operator.
By a similar argument, dk(Fx)/dtk : Lp[0, T ] −→ Lp[0, T ] is a continuous operator.
Thus, F : Wn,p[0,T ] −→ Wn,p[0,T ] is a continuous operator.

Finally, let X be a nonempty and bounded subset of B̄r0 and assume that ε > 0 is an
arbitrary constant. Let h ∈ [0,T ], with |h| ≤ ε and x ∈ X. Set

g(s) = f (s, x(ξ(s)), x′(ξ(s)), . . . , x(n)(ξ(s)),Kx(s))

and
m(s) = max{|x(ξ(s))|, |x′(ξ(s))|, . . . , |x(n)(ξ(s))|, |Kx(s)|}.

Then,

‖τhFx − Fx‖p ≤ ‖τh p − p‖p +
1
n!

( ∫ T

0

∣∣∣∣∣ ∫ t

0
[(t − s)n − (t + h − s)n]g(s) ds

∣∣∣∣∣pdt
)1/p

+
1
n!

( ∫ T

0

∣∣∣∣∣ ∫ t+h

t
(t + h − s)ng(s) ds

∣∣∣∣∣pdt
)1/p

≤ ‖τh p − p‖p +
1
n!

( ∫ T

0

∣∣∣∣∣ ∫ t

0
hn(2t + h)na(s)m(s) ds

∣∣∣∣∣pdt
)1/p

+
1
n!

( ∫ T

0

∣∣∣∣∣ ∫ t+h

t
(3T )na(s)m(s) ds

∣∣∣∣∣pdt
)1/p

≤ ‖τh p − p‖p +
nh
n!

∫ T

0
a(s)m(s)

( ∫ T

0
|(2t + h)n|pdt

)1/p
ds

+
3T n

n!

∫ T

0
a(s)m(s)

( ∫ T

0
χ[t,t+h](s) dt

)1/p
ds

≤ω(p, ε) +
nhT (2T + h)n

n!
‖a‖q max{‖x‖p, ‖x′‖p, . . . , ‖x(n)‖p, ‖Kx‖p}

+
3T n+1h

n!
‖a‖q max{‖x‖p, ‖x′‖p, . . . , ‖x(n)‖p, ‖Kx‖p}

≤ωT (p, ε) +

(nT (2T + ε)n

n!
+

3T n+1

n!

)
‖a‖qr0ε (4.10)
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and similarly,∥∥∥∥∥τh
f dk(Fx)

dtk −
dk(Fx)

dtk

∥∥∥∥∥
p
≤ ω(p(k), ε) +

(nT (2T + ε)n−k

(n − k)!
+

3T n−k+1

(n − k)!

)
‖a‖qr0ε. (4.11)

Since x was an arbitrary element of X in (4.10) and (4.11), this yields

ω(F(X), ε) ≤ ωT (p, ε) +

(nT (2T + ε)n

n!
+

3T n+1

n!

)
‖a‖qr0ε

and

ω([F(X)](k), ε) ≤ ω(p(k), ε) +

(nT (2T + ε)n−k

(n − k)!
+

3T n−k+1

(n − k)!

)
‖a‖qr0ε

for all 1 ≤ k ≤ n. Since {p} is a compact set, ω(p, ε) −→ 0 and ω(p(i), ε) −→ 0.
Therefore,

ω0(F(X)) = 0,
ω0([F(X)](k)) = 0

and, finally,
max
0≤k≤n

ω0([F(X)](k)) ≤ λ max
0≤k≤n

ω0(X(k)),

with λ = 0. From Theorem 2.2, the operator F has a fixed point x in B̄r0 and the
functional integral-differential equation (1.1) has at least one solution in Wn,p[0,T ]. �
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