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ABSTRACT. In the deep ice cores drilled at the GRIP, NGRIP and GISP2 sites in Greenland and at Byrd

Station and the summit of Law Dome in Antarctica, the mean crystal size increases with depth in the

shallow subsurface and reaches steady values at intermediate depth. This behaviour has been attributed

to the competition between grain-boundary migration driven crystal growth and crystal polygonization,

but the effects of changing crystal dislocation density and non-equiaxed crystal shape in this

competition are uncertain. We study these effects with a simple model. It describes how the mean

height and width of crystals evolve as they flatten under vertical compression, and as crystal growth and

polygonization compete. The polygonization rate is assumed to be proportional to the mean dislocation

density across crystals. Migration recrystallization, which can affect crystal growth via strain-induced

grain boundary migration but whose impact on the mean crystal size is difficult to quantify for ice at

present, is not accounted for. When applied to the five ice-core sites, the model simulates the observed

crystal-size profiles well down to the bottom of their steady regions, although the match for Law Dome

is less satisfactory. Polygonization rate factors retrieved for the sites range from 10–5 to 10–2 a–1. We

conclude that since crystal size and dislocation density evolve in a strongly coupled manner, consistent

modelling requires multiple differential equations to track both of these variables. Future ice-core

analysis should also determine crystal size in all three principal directions.
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INTRODUCTION

Crystal size is a key textural parameter of glacier ice that can
influence its microstructural and bulk properties and carry
information about its deformation history. In polar ice cores,
depth profiles of mean crystal size are routinely measured
and studied alongside climatic records and changes in ice
fabric (e.g. c-axis orientation). In several deep cores,
including those recovered at the GRIP, NGRIP and GISP2
sites in Greenland, Byrd Station in West Antarctica and the
summit of Law Dome in East Antarctica, these profiles show
that crystal size increases through the top few hundred
metres; below this, it grows more slowly to reach approxi-
mately steady values in the middle part of the core, before
rising again (sometimes after a dip) to large values near the
ice-sheet base (Fig. 1).

Research of past decades until several years ago (e.g.
Alley, 1992; Alley and others, 1995; Gow and others, 1997;
Thorsteinsson and others, 1997; De La Chapelle and others,
1998; Duval, 2000; Svensson and others, 2003; Durand and
others, 2006a; also summary by Cuffey and Paterson, 2010)
has led to the hypothesis that the crystal-size profiles are
shaped by three main mechanisms, as follows. At shallow
depths, the dominant mechanism is temperature-controlled
normal grain growth, in which grain-boundary migration
causes larger crystals to grow at the expense of smaller
crystals, so that the mean crystal size increases with time
(age) (e.g. Gow, 1969). Deeper down, while normal grain
growth continues to operate, stored strain energy in the
crystals causes them to split by polygonization at an
increasing rate. Also called ‘rotation recrystallization’, this
mechanism starts occurring in the shallow subsurface
(Durand and others, 2008) but is apparently important at
intermediate depths, where its effect in reducing the mean
crystal size is thought to balance normal grain growth to

cause the region of steady grain size in the profiles (Alley and
others, 1995; Thorsteinsson and others, 1997). At still greater
depths, where the ice temperature exceeds about –108C, a
third mechanism, known as migration recrystallization,
becomes dominant (Duval and Castelnau, 1995). Driven by
release of stored strain energy, it causes accelerated grain-
boundary motion and possibly nucleation of new grains (e.g.
Hamann and others, 2007) and is considered responsible for
the dramatic increase in grain size on the profiles near the
bed. Note that much of the understanding of these
mechanisms has come from interpretation of data on crystal
fabric as well as size, and profiles shaped very differently
from those in Figure 1 have been measured from the Vostok
and EPICA ice cores. The low strain rate and temperature in
these cores keep recrystallization rates low, so that crystal
size is influenced strongly by impurities (bubbles, solutes,
micro-particles) in the ice, which leave their imprint on the
profiles over a timescale of several glacial–interglacial cycles
(Durand and others, 2006a).

This three-stage or ‘tripartite’ hypothesis has recently been
criticized from several angles, as reviewed by Faria and
others (2014). First, the ‘classical’ parabolic law found for the
rate of normal grain growth in field samples of ice and firn
(Eqn (1) below) – and used in the hypothesis to describe the
growth mechanism – turns out to be different from the normal
grain growth law established for pure bubble-free ice
samples, which shows a much larger growth rate and steeper
temperature dependence (Azuma and others, 2012). Hence
the classical law describes not pure normal grain growth
(coarsening driven by grain boundary energy alone), but its
outcome complicated by the retardation effects of impurities,
which the law does not resolve. Numerical simulations also
suggest that the growth rate of deforming crystals depends on
their evolving microstructure and size distribution (Roessiger
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and others, 2011), echoing earlier simulations in which grain
flattening is found to alter the rate (Bons and Urai, 1992); nor
does the classical law distinguish these factors. A second
criticism concerns migration recrystallization. High-reso-
lution microstructural analysis of the EPICA Dronning Maud
Land (EDML) ice core has shown that strain-induced grain
boundary migration occurs in the firn (Kipfstuhl and others,
2009) and throughout the ice at all depths (Weikusat and
others, 2009) in this core. This means that the classical
growth law may also be corrupted by signals of migration
recrystallization. For the tripartite hypothesis, these realiza-
tions oppose its ideas that (1) pure normal grain growth
occurs at shallow depths, with minor influence by impurity
and strain-induced effects, and (2) migration recrystallization
is limited to the lowest part of the ice column. Establishing a
sound physical model of migration recrystallization for ice

thus seems to be essential; this is challenging because it can
affect crystal size and shape in complex ways (e.g. Hamann
and others, 2007).

In this paper we enrich this picture by exploring the
transition from growing to steady crystal size in the upper
part of the profiles in Figure 1, down to the bottom of their
steady regions (labelled ‘S’). Our main goal is to highlight
the roles of crystal dislocation density and non-equiaxed
crystal shape in the evolution. We do this with a mathemat-
ical model formulated to describe the competing effects of
grain-boundary migration driven crystal growth and poly-
gonization on the mean crystal size, and we test this model
by simulating the profiles. Matching the model to different
datasets allows us to estimate the polygonization rates in the
five cores. We learn that the problem is not addressable by a
single differential equation for the rate of change of crystal

Fig. 1. Measured depth profiles of mean crystal size in five polar ice cores. (a) Crystal width and height in the Greenland Ice Core Project
(GRIP) core, from Thorsteinsson and others (1997); (b) crystal width, height and vertical area in the GRIP core from Svensson and others
(2009); (c) crystal width, height and vertical area in the NorthGRIP (NGRIP) core, Greenland, from Svensson and others (2003); (d) crystal
width in the Greenland Ice Sheet Project 2 (GISP2) core, measured separately by Alley and Woods (1996) and Gow and others (1997);
(e) horizontal crystal area in the Byrd core, West Antarctica, from Gow and Williamson (1976); (f) horizontal and vertical crystal areas in the
Dome Summit South (DSS) core at Law Dome, East Antarctica, from Li and others (1998). In each profile, each point plots the mean crystal
size derived from measurements on a thin section, and ‘S’ marks the region of steady crystal size identified by us or from the original authors’
description (if available). The methods of measurement of crystal sizes are given in Table 1.
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size: the dislocation density must also be tracked, because
these variables are coupled.

Our model requires, for one of its competing terms, a
description of crystal growth. As we do not know how to
quantify the rate at which migration recrystallization affects
this growth via strain-induced effects (accelerated grain-
boundary motion and nucleation), we adopt the classical
parabolic law as an empirical descriptor of this growth; the
reasons and limitations of this choice are elaborated below.
Therefore we emphasize that what we study is a simplistic
‘toy’ model that does not resolve the effects of migration
recrystallization and impurities and other potentially import-
ant processes (which may, for instance, cause the rapid
variations on the profiles), and that our focus is on model
development: we are not proposing a universal model of
crystal-size evolution and dynamic recrystallization in ice.
Using the classical law raises a caveat for our numerical
results, but does not upset our conclusion about the
coupling, nor preclude future model adaptations. When
formulating the model, we consider some possibilities and
difficulties of including migration recrystallization in it.

In this connection, sophisticated numerical simulations
accounting for diverse recrystallization processes are now
used to study polar ice deformation at the crystal scale
(review by Montagnat and others, 2014). A second goal of
our paper is to offer benchmark results showing how well or
badly a simple model can be applied to multiple ice cores.
This might aid research seeking analytical understanding of
these simulations, comparing the properties of different
cores or assessing models of different complexity.

Previous authors have addressed various aspects of the
observed growth-to-steady transition in the crystal-size
profiles. Our model uses their insights but is formulated
in an original way to suit our purpose. Mathiesen and
others (2004) proposed a differential-equation model for
simulating the changing size distribution of crystal popula-
tions across the transition, in which grain growth is
represented as a diffusion process and polygonization as
a transfer of number density between grains of different
sizes; their model yielded an excellent match with the
crystal sizes in the NGRIP core down to 1000m depth.
Here we model the mean size of crystals rather than their
size distributions, because size distribution data are lacking
for some of the cores. Our model brings together three
concepts for the first time: (1) By tracking the mean height
and width of crystals with separate equations, it describes
their flattening by deformation in the ice column. (2) It
calculates the rate of grain-boundary migration driven
growth as being direction-dependent, as is necessary given
(1). (3) It relates the polygonization rate of crystals to the
mean dislocation density within them, and this leads to
equations for the coupled evolution of crystal size and
dislocation density. For this part of the model, we draw on
Montagnat and Duval’s (2000) instrumental work on
dislocation dynamics, which elucidates one way of the
coupling (how crystal size influences changing dislocation
density); we contribute a description of the reverse coup-
ling. As explained later, such two-way coupling features in
an earlier model by Durand and others (2006a) for the
crystal-size profile of the EPICA ice core, but we make
different assumptions from theirs.

Because the ice in the depth ranges of interest mostly
dates to the Holocene period (Table 1), we solve our model
in a forward sense with constant temperature and strain rate

as inputs and do not reconstruct the history of these variables
at the core sites.

THE MODEL

We consider how crystal (grain) size varies with depth z in
the ice sheet, specifically beneath ice-dome centres, where
the ice experiences uniaxial vertical compression at strain
rate _" (defined to be positive when compressive). Our model
may be modified for non-axisymmetric situations at ice
divides and flanks; this is not pursued currently. We
formulate equations with age t as the independent variable
and convert t to z later. Two key variables are the mean height
Dz and mean width Dx of the crystals, where x denotes the
radial direction. Thus the aspect ratio a=Dx /Dz quantifies
the degree of crystal flattening. Also, by idealizing the shape
of the crystals as ellipsoidal, we define their mean horizontal
area as AH= �Dx

2/4 and mean vertical area as AV= �DxDz /4;
these are the areas that result from projecting the crystals on
the horizontal and vertical planes, respectively.

Three processes interact in the model: (1) grain growth,
driven by grain boundary migration arising from the
tendency for crystals to lower their free energy, (2) geometric
deformation of the crystals under bulk vertical compression
and (3) polygonization, the splitting of crystals when
deformation causes dislocations in them to form subgrain
boundaries that evolve into grain boundaries; as said before,
polygonization reduces the mean crystal size. We consider
each process in turn and build it into the model.

‘Classical’ grain growth law

In many earlier descriptions, it is supposed that normal grain
growth causes the overall (non-directional) crystal size D to
increase with age t according to

dD

dt
¼ K

2D
, ð1Þ

or d(D 2)/dt=K, where the growth rate

K ¼ K0e
�Q=RT ð2Þ

depends on temperature T (K), and R is the gas constant
(8.314 J K–1 mol–1). For constant K, integration gives
D2 =Kt+ constant. Best fit of this parabolic growth law to
grain-size data from near-surface firn and ice at polar sites
with different temperatures (e.g. Gow, 1969; Duval, 1985;
Cuffey and Paterson, 2010) yields the activation energy
Q�40–60 kJmol–1 and the rate constant K0� 107mm2 a–1

(the precise values used in our simulations are discussed
later). For convenience we call the law with these par-
ameters the ‘classical’ law. In contrast, through laboratory
experiments, Azuma and others (2012) determined that with
the same equations and for pure bubble-free ice, the growth
rate K is several orders of magnitude larger and
Q=110–120 kJmol–1 (fig. 5 of their paper).

We choose the classical law for formulating our model for
the following reasons. Ice cores do not contain pure ice; by
starting with the pure normal growth rate, one would need to
quantify how impurities alter it. Although models exist for the
drag effect of bubbles and micro-particles on grain boundary
mobility (e.g. Alley and others, 1986; Durand and others,
2006a; Azuma and others, 2012), their use requires suitable
records of these factors for the cores, which we do not have
here. Crucially we still lack amodel for the effect of migration
recrystallization on the right-hand side of Eqn (1) (we have
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more to say about this below). Thus current knowledge
simply does not enable us to write a fully explanatory model
for the grain-boundary migration driven growth rate. The
alternative starting point – the classical law – is plausible
because it describes the growth rates measured at numerous
field sites. (Explaining why these rates deviate from the pure
rate is important, but not our goal.) To avoid confusion with
the pure process, in this paper we refer to the process
modelled by the classical law as ‘classical grain growth’.

This choice and its level of empiricism have short-
comings. We cannot treat migration recrystallization nor
impurities in our model; nor will we try to predict the effects
of crystal microstructure and dislocation density on K below.
An intrinsic assumption in our model simulations is that the
growth rate, which may already encapsulate such effects via
the classical parameters, does not change significantly with
depth (the simulations assume constant temperature, so
constant K). How valid this is can only be gauged once we

can reliably model all such effects on crystal size. This part
of the model awaits improvement, but does not compromise
our main insights and conclusion.

In order to define our modelling approach further, we
draw a strong analogy between our empirical description of
crystal growth and the parameterization of basal sliding in
glacier flow models, where simple (e.g. power) sliding laws
are assumed to allow different aspects of glacier and ice-
sheet motion to be studied, when the governing processes of
sliding (e.g. subglacial water and sediment dynamics) are
incompletely understood and still being researched. The
parameters in such laws are also constrained by observations.

Anisotropic grain growth

When the crystals are non-equiaxed (a 6¼1), we expect them
to coarsen in the vertical and radial directions at different
rates, because the migration velocities of grain boundaries
depend on their curvature. Herein, ‘anisotropic’ grain

Table 1. Information on the five ice cores studied in this paper, their crystal-size measurements, and summary data from their regions of
steady crystal size (S in Fig. 1). Indices (i)–(iv) identify repeated crystal-size datasets from the GRIP and GISP2 cores with their different
authors and measurement methods

Ice-core site

GRIP NGRIP GISP2 Byrd Law Dome (Dome
Summit South (DSS))

Site parameters
Flow style Dome Ridge Flank (28 km from

summit)
Flank Dome

Ice thickness (m) 3029 3085 3053 2164 1200
Surface temperature (8C)* –32 –31.5 –31 –28 [–27.5] –21.8 [–21]
Modern accumulation rate
(m ice eq a–1)

0.23 0.195 0.245 0.12 0.678

Vertical compressive strain
rate, _" (a–1)

1.03�10–4{ 7.4�10–5 1.4�10–4 7.9� 10–5 6.4�10–4

Age–depth scale used in
our calculations (source)

GICC05 (Rasmussen
and others, 2006;

Vinther and others, 2006)

GICC05 (Rasmussen
and others, 2006;

Vinther and others, 2006)

Meese–Sowers
timescale{

(Hammer and
others, 1994)

(Morgan and
others, 1997)

Thin-section measurements of crystal size
Thin-section type Vertical Vertical Horizontal and

vertical
Horizontal Horizontal and

vertical
Data source Thorsteinsson and others

(1997)(i);
Svensson and others (2009)(ii)

Svensson and others
(2003)

Alley and Woods
(1996)(iii); Gow

and others (1997)(iv)

Gow and
Williamson (1976)

Li and others
(1998)

Mean crystal-size variable
measured, and method
used

Width and height
by LI(i); vertical area

by MA(ii)

Width and height
by BB; vertical
area by MA

Width by LI(iii);
horizontal area by
MA50, converted to

width(iv)

Horizontal area
by MA

Horizontal and
vertical areas by MA

Data from region of steady grain size
Depth range (m) 700–1620(i);

500–1000(ii)
400–900 700–1678(iii);

1000–1678(iv)
600–1200 400–700

Age of ice at lower end of
depth range (ka)

11.6 5.5 11.7 14.7 1.6

Mean crystal width (mm) 3.97� 0.32(i); 3.13� 0.06(ii) 3.49� 0.16 3.00�0.35(iii);
6.83� 0.75(iv)

Mean crystal height (mm) 2.94� 0.27(i); 2.58� 0.09(ii) 2.91� 0.12
Mean horizontal crystal
area (mm2)

37.7�7.9 37.5� 25.4

Mean vertical crystal
area (mm2)

7.16�0.30(ii) 8.95� 0.83 29.9� 14.8

Note: Methods of crystal-size measurements: LI: linear intercept; BB: mean dimensions of rectangular bounding boxes enclosing the crystals; MA: mean area of

grains in an area of the thin section; MA50: mean area of the 50 largest grains in the thin section.
*We use the temperature value enclosed in brackets (where shown) rather than the surface temperature in our model simulations of crystal-size depth profiles.
{Derived from GICC05 age–depth scale for the core’s top 1620m and greater than the 7.4�10–5 a–1 used by some authors.
{Data available at: ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/greenland/summit/gisp2/depthage/gisp2age.txt
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growth refers to this directional phenomenon, not to
the dependence of the motion of grain boundaries on the
relative orientation between them and crystal lattices.

We now seek corresponding growth laws where the
directional coarsening rates are functions of Dz and Dx.
Unfortunately, the theory of Hillert (1965) explaining the
parabolic growth in Eqn (1) considers the overall grain size
and, as far as we know, has not been reformulated for
anisotropic grain shape. Lacking a firm theoretical basis
here, we motivate a model for the coarsening rates by using
recent computational evidence of Di Prinzio and Nasello
(2011). In their three-dimensional (3-D) Monte Carlo simu-
lation of flattened grains experiencing normal grain growth,
these authors observed that the overall size D still obeys
Eqn (1), and that Dz (the size along the axis of flattening)
obeys an equation of the same form:

dDz

dt
¼ K

2Dz
: ð3Þ

They went on to build a model for the changing elongation
ratio of crystals, with the aim of using this ratio to date
the ice.

Here we adopt Eqn (3) for Dz and use it with Eqn (1) to
derive a separate evolution equation for the mean crystal
width Dx. Define the overall grain size as the geometric
mean of the two directional grain sizes:

D ¼ Dx
2Dz

� �1=3
; ð4Þ

then we have

dðD3Þ
dt

¼ 3D2 dD

dt
¼ 2DxDz

dDx

dt
þDx

2 dDz

dt
:

Substituting for the rates dD/dt and dDz /dt from Eqns (1) and
(3), and casting the result in terms of Dz and Dx, yields

dDx

dt
¼ K

4Dx
3

Dx

Dz

� �2=3

� Dx

Dz

� �2
" #

: ð5Þ

Equivalently we can write

dDx

dt
¼ K

2Dx
gðaÞ, ð6Þ

in which the geometric factor

gðaÞ ¼ 1

2
3a 2=3 � a 2
� �

ð7Þ

measures how much the growth of Dx deviates from
parabolic. For a�1, as is typical for crystals found in ice
cores at domes and divides, the deviation is small because
then g(a)� 1 – 2(a – 1)2/3�1 by Taylor series expansion. Our
simulations below for the five cores would not be much
different if we made this approximation, but for complete-
ness we use Eqn (7).

Deformation

Vertical compression distorts most crystals by flattening
them. Given the axial symmetry, we account for this
flattening by modifying Eqn (3) and Eqn (6) to

dDz

dt
¼ K

2Dz
� _"Dz ð8Þ

and

dDx

dt
¼ K

2Dx
gðaÞ þ _"

2
Dx , ð9Þ

where the new terms describe a purely geometrical effect,

not any strain-induced effects on grain growth (which could
influence the terms in K, but which we said we are not
modelling). The assumption here, used also by Di Prinzio
and Nasello (2011) and made in two earlier studies of crystal
size by Madsen and Thorsteinsson (2001) and Svensson and
others (2003), is that the strain rate felt by the crystals on
average – when considering a large random sample of them
– equals the bulk strain rate, despite the different orientation
of their slip systems and the presence of grain boundaries.

Polygonization and the role of dislocations

Deformation can cause dislocations to pile up at internal tilt
walls (subgrain boundaries) in a crystal, dividing it into
subgrains that are initially misoriented from each other at
low angles. Polygonization occurs when further rotation of
the subgrains causes a subgrain boundary to increase
misorientation angle and form a grain boundary (Poirier,
1985; Alley, 1992). Hence our model of the polygonization
process involves dislocation dynamics.

De La Chapelle and others (1998) proposed that in
polycrystalline ice with a mean grain size D, the evolution of
the mean density of (immobile) dislocations � can be
described by

d�

dt
¼ _"

Db
� �0K�

D2
, ð10Þ

where b is the Burgers vector (4.5� 10–10m) and �0 is a
factor of order 1. The idea is that dislocations created during
deformation and acting as carriers of strain become
immobile after travelling a mean distance �D and add to
the dislocation density (a work-hardening effect). At the
same time, dislocations are removed as migrating grain
boundaries sweep past them (a recovery process). The two
terms on the right-hand side of Eqn (10) model the
production and recovery rates respectively, and predict both
rates to decrease with the grain size. The first term utilizes
the Orowan relation (Poirier, 1985), and �0 in the second
term can be raised to mimic higher dislocation density near
grain boundaries. Note that the definition of � as a mean
dislocation density does not imply that the actual dislocation
density is homogeneous across or within crystals (see our
discussion later of migration recrystallization). Also, Eqn (10)
is a highly simplified model. To explain the behaviour of
polycrystalline materials, metallurgists have built sophisti-
cated models of dislocation storage, which, for instance,
distinguish different kinds of dislocations and relate their
motion to microstructural changes, or include recovery
processes such as dislocation climb or annihilation (e.g.
Bergström, 1970; Nes, 1997; Kocks and Mecking, 2003).

Montagnat and Duval (2000) added a second recovery
term to Eqn (10) to represent the loss of dislocations to the
polygonization process. As explained later, this enabled
them to calculate the mean dislocation density � along
sections of ice cores where steady grain size is maintained
by competition between grain growth and polygonization.
By using measured profiles of D along several deep cores
(including GRIP and Byrd) and estimates for _" at these sites
as inputs to their modified equation, they showed that
predicted values of � are consistent with values measured
by X-ray diffraction on core samples (�1011m–2). Thus they
concluded that grain boundary migration and polygoniza-
tion are fundamental mechanisms underlying the creep
rheology of polar ice because these processes accommo-
date dislocation slip and counteract strain hardening. We
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use a key idea behind their calculation to develop our
model below.

Both Eqn (10) and its modified form by Montagnat and
Duval (2000) involve crystal size, but neither of them
describes how crystal size evolves. In order to link the
changing dislocation density � to the rates of change of Dz

and Dx, the crux for us is to link it first to the rate of crystal
splitting by polygonization. Weikusat and others (2011),
Hamann and others (2007) and Kipfstuhl and others (2006)
have used microscopy and diffraction techniques to study
the properties of subgrain boundaries in deformed poly-
crystalline ice at high resolution. Their observations reveal
the immense complexity of the sub-crystal processes leading
to polygonization. Here, in order to form a simple plausible
model of the polygonization rate without resolving these
processes, we conjecture that dislocation removal by
polygonization occurs at a rate proportional to � when
averaged over many crystals; i.e. the denser the dislocations,
the more of them (per unit time) participate in forming new
grain boundaries. Therefore we suppose

d�

dt
¼ _"

� Dx
2Dz

� �1=3
b
� �0K�

Dx
2Dz

� �2=3 � P�, ð11Þ

in which D is now expressed in terms of directional grain
sizes, and P, the polygonization rate factor, encompasses
influences such as temperature, microstructural properties
and impurity effects. From a statistical thermodynamical
viewpoint, one may expect an Arrhenius temperature
dependence, P/exp(–Qp /RT), with Qp being the activation
energy for limiting processes (e.g. lattice diffusion for
subgrain boundaries to reorganize into grain boundaries).
In Eqn (11) we have multiplied the dislocation production
rate term of De La Chapelle and others (1998) and
Montagnat and Duval (2000) by a constant 1/� (>1),
because most dislocations travel a distance limited by a
chord of the crystal cross section and not the full grain
diameter D. We use � =�/4 (assuming an elliptical section)
in our modelling, but acknowledge that � could be smaller if
most dislocations initiate within the crystals and become
immobile before reaching grain boundaries.

How fast is new grain boundary area created for a given
rate of consumption of dislocation density by polygoniza-
tion? Here we use Montagnat and Duval’s (2000) idea. At a
subgrain boundary with misorientation angle �, the disloca-
tion spacing h is given by

h ¼ b

2 tan ð�=2Þ ð12Þ

(Poirier, 1985). Montagnat and Duval (2000) assumed that
subgrain boundaries transform into grain boundaries when �
reaches a small critical angle �c = 58, so that h� b/�c.
Hence, if d�– of dislocation length per unit volume is
involved in polygonization, then the new area of grain
boundary per volume is dSv

+ = hd�–�bd�–/�c (cf. eqn (10) of
Montagnat and Duval, 2000). Our polygonization term in
Eqn (11) implies d�– = P�dt, and consequently

dSv
þ

dt
¼ b

�c

d��

dt
¼ bP�

�c
: ð13Þ

We next consider the impact of this area increase on the
directional grain sizes. For an overall grain size D, the
specific grain boundary area (area per unit volume; m–1) is

Sv ¼
c

D
, ð14Þ

where c� 3 is a dimensionless constant related to grain
shape. In our model, Sv may be conceived as the sum of the
area of essentially horizontal grain-boundary surfaces Sv,H
and the area of essentially vertical grain-boundary surfaces
Sv,V, with

Sv, H ¼
c2
Dz

, Sv, V ¼
c1
Dx

, ð15Þ

and c1�2 and c2�1. Durand and others (2008) studied the
distribution of misorientation angles between neighbouring
grains in the upper part of the NGRIP core and the
distribution of their c-axis orientations, and deduced that
polygonization occurs at all depths and is isotropic in that
core despite bulk deformation. Therefore we apportion the
area generation rate in Eqn (13) isotropically, to write

dSv, H
dt

¼ � c2

Dz
2

dDz

dt
¼ f

bP�

�c
, ð16aÞ

dSv, V
dt

¼ � c1

Dx
2

dDx

dt
¼ ð1� f Þ bP�

�c
, ð16bÞ

with the constant f equal to 1/3.

Coupled system

Gathering Eqns (11), (16a) and (16b), with the last two
rearranged to incorporate the effects of grain growth and
deformation from Eqns (8) and (9), we have

d�

dt
¼ _"

� Dx
2Dz

� �1=3
b
� �0K�

Dx
2Dz

� �2=3 � P�, ð17Þ

dDz

dt
¼ K

2Dz
� _"Dz � f

bP�

c2�c
Dz

2, ð18Þ

dDx

dt
¼ KgðaÞ

2Dx
þ _"Dx

2
� ð1� f Þ bP�

c1�c
Dx

2, ð19Þ

where g is given by Eqn (7). This is our complete model. If
we had formulated it for the overall grain size D and ignored
deformation, then Eqns (18) and (19) would become

dD

dt
¼ K

2D
� bP�

c�c
D2: ð20Þ

Our model differs from Montagnat and Duval’s (2000)
model in distinct ways. Most notably, those authors treated
the grain size as known; the assumption of steady state in
Eqn (20) then allowed them to determine the dislocation loss

rate P� ¼ K�c=bD
3 in their model), which is used in Eqn (17)

(without the �-correction) to find the equilibrium dislocation
density �EQ for the region of steady grain size (DEQ) in an ice
core:

�EQ ¼
1

�0b

_"DEQ

K
� �c
DEQ

� �
ð21Þ

(summary by Schulson and Duval, 2009, p. 128). In contrast,
our model in Eqns (17–19) predicts co-evolving grain
size and dislocation density and the depth profiles of
both of these quantities. By modelling grain size direction-
ally, we also account for textural anisotropy caused by
the deformation.

A further difference is that while Montagnat and Duval
(2000) supposed (following De La Chapelle and others,
1998) that polygonization becomes active only below a
certain depth in the ice column (400m at Byrd and 650m at
GRIP), polygonization is modelled here as occurring simul-
taneously with grain growth and deformation at all depths.
The notion that, within a continuum-modelling context,
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polygonization does not switch on abruptly at depth but can
occur at a low rate in the shallow subsurface has long been
held by one of us (T.H.J.), on the ground that the continuum
process refers to splitting of crystal collections in a statistical
sense rather than of individual crystals. A continuous rate
description for polygonization is consistent with the findings
of Durand and others (2008) that polygonization operates at
shallow depths at NGRIP, and is used in the models of
Mathiesen and others (2004) and Roessiger and others
(2011) and in earlier considerations by Jacka and Li (1994)
and Placidi and others (2004).

In studying the crystal-size profile of the EPICA Dome C
core, Durand and others (2006a) also devised a model that
includes coupling between grain-size and dislocation-
density evolution. While these authors considered impurity
effects in detail, they ignored deformation and anisotropic
grain growth and treated the loss of dislocations to
polygonization differently. Rather than express this loss via
a rate factor (P ), they posited a critical value of dislocation
density �c ¼ 2�c=bD, based on the assumption that the
subgrain size equals the grain size, below which poly-
gonization is turned off (equivalent to setting P� ¼ 0 in
Eqn (17)); otherwise � is locked at the critical value
(implying a dislocation loss rate P� that conspires with the
other terms in Eqn (17) to let � track �c). In contrast, our
model assumes no such discontinuity and calculates the
dislocation loss rate at all depths. We will see below that a
constant P-value suffices for it to match measured crystal-
size data.

Three other observables in an ice core may be predicted
by our model: the mean horizontal and vertical crystal areas
AH (=�Dx

2/4) and AV (=�DxDz /4) respectively and the aspect
ratio a (=Dx /Dz). Differentiating these variables with respect
to t and using Eqns (18) and (19) yields the evolution
equations

dAH

dt
¼ �K

4
gðaÞ þ _"AH � ð1� f Þ 4bP�ffiffiffi

�
p

c1�c
AH

3=2, ð22Þ

dAV

dt
¼ �K

8
aþ gðaÞ

a

� �
� _"

2
AV�

2bP�

�c
ffiffiffi
�

p ð1� f Þa
c1

þ f

c2

� �
AV

3=2

ffiffiffi
a

p

ð23Þ
and

da

dt
¼ �K gðaÞ � a2ð Þ

8AV
þ 3 _"

2
a� 2bP�

�c
ffiffiffi
�

p ð1� f Þa
c1

� f

c2

� � ffiffiffiffiffiffiffiffiffi
aAV

p
:

ð24Þ
If c1�2 and c2� 1, the expressions in the two pairs of
square brackets reduce to (a+1)/3 and (a – 1)/3 respectively
(we assume f=1/3).

MIGRATION RECRYSTALLIZATION

Although we have chosen not to model migration recrys-
tallization, it is worth considering how Eqns (17–19) might
be extended to treat this process, and the obstacles. During
dislocation creep, a difference in the dislocation density
between two neighbouring crystals (associated with their
stored strain energies) causes a driving force on the motion
of their common grain boundary – additional to the driving
force due to grain-boundary energy – that promotes grain-
boundary migration toward the crystal with higher strain
energy (Poirier, 1985). For a deforming crystal population,
this mechanism can change the motion of grain boundaries

by accelerating some of them, and also nucleate crystals.
Weikusat and others (2011, p. 469) estimated that, assuming
a dislocation density difference of 1012m–2 (an order of
magnitude larger than our simulated mean dislocation
densities below), the strain-induced energy exceeds the
grain-boundary energy for a nominal value of the grain-
boundary curvature observed in the EDML ice core.

In our model, the obvious terms that could be changed to
incorporate this mechanism are those three containing K,
because K encapsulates the driving force (e.g. they could be
made dependent on dislocation density). But the mean
density � does not suffice for this consideration: we need to
know the variation of dislocation density across crystals (let
us call this ~�) and preferably within crystals too. Making
arbitrary estimates of ~� (e.g. from the mean) does not help;
its underlying processes must be modelled. One way to do
this is to modify Eqn (17) to track the dislocation density on a
per crystal basis, by removing the averaging on �, Dz and Dx,
so that the dislocation production rate (hence dislocation
density) in differently sized crystals will differ. Thus we
reformulate the model for a population of crystals to follow
their distributions of �, Dz and Dx as probability density
functions and follow the statistics of neighbour–neighbour
relationships. This approach demands many local consid-
erations about the geometrical dependences of processes,
which is why recent efforts have tackled the problem with
numerical simulations (utilizing fast Fourier transform,
cellular automata or finite-element techniques) that resolve
the grain-boundary network (Montagnat and others, 2014).
We think that a continuum population approach is feasible
and can yield valuable insights that complement the
simulations, because an example exists in the work of
Mathiesen and others (2004).

Another point we wish to make is that because strain-
induced grain boundary motion enlarges some crystals and
shrinks others and participates in crystal nucleation, whether
it increases or decreases the mean crystal size of a sample,
and how fast relative to other processes, cannot be judged
from its visible occurrence alone without proper calcula-
tions (such as those mentioned above). As far as we know,
such calculations have not been made for the cores in
Figure 1, nor most other cores, and are much needed now.
Research on the importance of migration recrystallization
should also differentiate between its impacts on mean
crystal size, ice fabric and rheology, and be careful about
generalizing the relative importances of processes from one
core to another. What we can infer safely from this
discussion is that dislocation density and crystal size are
pervasively coupled in the crystal-size problem.

PRELIMINARY ANALYSIS OF THE MODEL

The model will be applied to the upper part of the ice
column where _" is near-constant, and the ice near-iso-
thermal, so that the rates K and P are assumed constant. As
initial conditions (at t=0 and on the ice-sheet surface), we
impose small Dz, Dx (�Dz) and � to represent fine-grained
ice with equiaxed grains that have undergone little deform-
ation. We ignore complex processes in the firn and use the
same model there.

With constant _", K and P, the model’s behaviour can
be anticipated before we evaluate it with data. From the
interactions described by Eqns (17–19), we expect the
dislocation density �, grain lengths Dx and Dz and areas AH
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and AV to increase initially (at shallow depths) and
equilibrate at large t (at depth). In this model, near-surface
grains grow primarily by (classical) grain growth because
they contain few dislocations to drive fast polygonization;
but their small size means that deformation creates
dislocations at a high rate that outstrips dislocation removal
by polygonization, so that � increases. As we descend into
the ice column (age increases), polygonization speeds up,
with two consequences. The removal rate of dislocations
increases to rival their production, which is slowed by a
larger grain size. Also, polygonization drives grain-size
reduction at a rate that rises to offset the rate of grain growth
(the former rate increases, and the latter rate decreases, with
grain size). The outcome is coupled evolution of grain size
and dislocation density toward steady values, with the grains
flattening under vertical compression.

This behaviour may be deduced from the equation for
each variable, where a growth term dominates when the
variable is small, and a large negative term counteracts
growth when the variable is large. Notice while polygoniza-
tion provides such stabilization in each equation, there is
additional stabilization in Eqn (17) from the term repre-
senting grain boundary migration, and in Eqns (18) and (23)
from the thinning ( _"-) term. Setting d/dt=0 in Eqns (17–19)
yields simultaneous equations for the equilibrium values of
�, Dz and Dx, but since their coupling precludes a closed-
form solution, we solve them numerically below. In the
Appendix, we analyze the isotropic version of the model
mathematically to show that its solution stabilizes towards
equilibrium but may oscillate for some model parameters,
with � or D overshooting the equilibrium before tending to
it. Slight overshooting in � is observed in two of our
simulations (Fig. 2b and c).

Equation (24) shows that grain flattening is driven
exclusively by vertical compression (second term on the
right-hand side) and occurs via positive feedback, but that
two other processes oppose this by causing elongated grains
to become equiaxed over time. Anisotropic grain growth
alone (the first term on the right of the equation) implies

da

dt
/ gðaÞ � a2 ¼ 3a2=3

2
1� a4=3
� �

, ð25Þ

whereas polygonization alone (the last term) implies

da

dt
/ � a1=2ða� 1Þ ð26Þ

(if we take c1� 2 and c2�1); both rates here are positive
when a<1 and negative when a>1, so these processes drive
the aspect ratio towards 1. That grain-boundary migration
driven grain growth has this effect is evidenced by the
simulations of Di Prinzio and Nasello (2011) and a cellular
automaton model of Raghavan and Sahay (2009). That
polygonization can have a similar effect is intuitive when we
consider how it splits flattened grains into daughter grains
whose shapes will be rounder on average.

The model highlights contrasting effects of the
vertical compression on the mean horizontal and vertical
crystal areas. The signs of the _"-terms in Eqns (22) and (23)
indicate that compression causes radial spreading of
crystals to increase AH, but in any vertical cut causes
material loss into the normal direction and net shrinkage of
AV. This has implications for crystal areas measured from
thin sections at shallow depths. Assuming small, equiaxed
grains (small AH�AV�A, a� g�1) and negligible poly-
gonization rate there, the growth rates in Eqns (22) and (23)

are approximately

dAH

dt
� �

4
K þ _"AH ¼

�

4
K0e

�Q=RT þ _"AH, ð27Þ

dAV

dt
� �

4
K � 0:5 _"AV ¼

�

4
K0e

�Q=RT � 0:5 _"AV: ð28Þ

These expressions show that apparent grain-growth rates
inferred from crystal sizes measured on horizontal and
vertical thin sections will diverge by 1:5 _"A, and be
enhanced and reduced (respectively) from the non-deform-
ing growth rate; thus estimates of K (and K0 and Q) derived
from such measurements may have errors that require
strain-rate correction, especially at high-accumulation sites
where _" is large. The errors are negligible (a few per cent of
K) at the GRIP, NGRIP, GISP2 and Byrd core sites and
slightly larger at Law Dome. The considerations here may
be repeated for pure shear beneath linear ice divides. In this
case, vertical compression enhances dAH/dt, but its effect
on dAV/dt depends on the azimuth of the vertical cut (this
rate is unaffected if the cut is perpendicular to the divide
axis and reduced if the cut parallels the axis). Even though
our model does not account for the effects of impurities and
migration recrystallization on grain growth, these results
underline the importance of determining crystal size in all
three principal directions from ice-core measurements.

TESTING THE MODEL WITH ICE-CORE DATA

We now examine how well the model can reproduce the
measured crystal-size depth profiles in Figure 1; in so doing,
we provide benchmark simulations for the five ice cores.
Table 1 summarizes key information about these cores,
including the crystal-size measurements made on them and
the methods used, and the mean and standard deviation of
crystal sizes in the steady region on each profile. A further
crystal-size profile from the ice core at Siple Dome, West
Antarctica, could be used, but we decide not to do so, given
complications at that site: the profile itself does not show a
clear steady region (DiPrinzio and others, 2005), and the
temperature and strain rate in the ice, which vary strongly
with depth today (Gow and Engelhardt, 2000; Elsberg and
others, 2004), might have changed during the Holocene due
to increasing accumulation rates and thinning of the dome
(Waddington and others, 2005).

Optimization procedure

We fit the model to the measurements in each dataset in two
steps. Since a prerequisite for a good match is that the model
simulates the right steady crystal size, we first optimize this
match, by integrating Eqns (17–19) numerically to find the
equilibrium values of Dx and Dz (and hence of AH and AV)
and by tuning the polygonization rate factor P. Generally, the
smaller the steady crystal size measured, the higher is the P-
value needed, if other factors remain constant. Age-to-depth
conversion is not required in this step, nor is the outcome
dependent on initial conditions. We then resimulate the
model with P at its optimal value, this time adjusting the
initial crystal sizes Dx(t=0) and Dz(t=0) (which are kept
equal) until the solutions Dx(t) and Dz(t) capture the
observed grain growth profile at shallow depths and its
curved approach to equilibrium as well as possible, when
these solutions are converted to depth solutions using the
age–depth scale of the core (Table 1). In this second step, the
initial mean dislocation density �(t=0) is set at the low value
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of 1010m–2, which is typical of annealed ice (Montagnat and
Duval, 2000). This step puts the model to a different test
because P is fixed and we do not alter other parameters.

In both steps, the model is solved as a forward problem
down to the bottom of the steady grain-size region. We do
not reconstruct the histories of ice temperature, accumu-
lation rate and age–depth scale of the cores (e.g. Morland,
2009). The model parameters are taken to be �c = 58
(following Montagnat and Duval, 2000), �0 = 1, � =�/4,
f=1/3, c1 = 2 and c2 = 1, and for each core we apply the
strain rates and temperatures listed in Table 1. The surface
temperature is used at GRIP, NGRIP and GISP2 because the
ice at these sites is near-isothermal through the depth
interval of the simulations. The ice temperature varies more
with depth at Byrd and Law Dome, so for these sites we use
the mean temperature of the interval (in brackets in Table 1).
Note that the assumption of unaxial compression is more
approximate for NGRIP, GISP2 and Byrd, as these sites do
not lie at dome summits.

Because the data from the five cores describe different
crystal-size variables, and sometimes multiple measure-
ments of a variable have been made on the same core, we
can choose different combinations of variables for the model
to match. When investigating each core, we optimize the
model once if data exist for only one variable (e.g. AH for
Byrd); we make separate optimizations if both crystal length
and area datasets or multiple datasets on the same variable
exist (e.g. the crystal width/height data for GRIP of
Thorsteinsson and others (1997) and of Svensson and others
(2009)). Moreover, if data exist for both measures of length
(Dx and Dz) or both measures of area (AH and AV), we match
the model to their steady values in a single optimization by
minimizing the mean square error of fit to both measures.
This pattern of application leads to three model optimiza-
tions for the GRIP core, two for the NGRIP and GISP2 cores
and one for the Byrd and Law Dome cores, and thus nine
sets of model-simulated depth profiles and nine estimates of
the polygonization rate factor P.

Before these optimizations, we multiply most of the
crystal-size data by a factor to correct for the ‘sectioning
effect’: thin-section samples of a core rarely intersect crystals
where they are widest, so the measured mean of crystal
length or area underestimates the true mean. In this regard,
different methods of measurement also suffer from different
biases (e.g. Jacka, 1984; Durand and others, 2006b). We
correct all of the records in Figure 1 except the crystal-width
record of Gow and others (1997) for GISP2 (Fig. 1d, crosses),
because none of those records have been treated for the
sectioning effect, and because Dx, Dz, AH and AV in our
model refer to true mean crystal dimensions. For simplicity
we use the same factor of 1.5 in all corrections. This value
derives from stereological calculations assuming monosized
spheres and holds for both crystal length and area (Under-
wood, 1970, table 4.1). We do not vary its value to account
for the effect of changing aspect ratio of the crystals, because
observations of their true 3-D shape are lacking and the
simulated values of the aspect ratio a below are close to 1
(Fig. 2). Nor do we reconcile the different methods of
measurement in this paper, as doing this properly requires
reapplying them to the same (and many) thin sections and
comparing the results.

We leave the GISP2 crystal-width data of Gow and others
(1997) unadjusted because these authors had effectively
corrected them for the sectioning effect, by measuring the

50 largest crystals in each thin section (footnote to Table 1);
multiplying the data by 1.5 would overcorrect them.
Although Durand and others (2006b) pointed out that
Gow’s correction method is not always consistent as it
samples one end of the grain-size distribution, Figure 1d
suggests that it works reasonably well at GISP2: throughout
the core, the mean crystal widths measured by Gow and
others (1997) are indeed roughly twice those measured by
Alley and Woods (1996) with another method (which need
the correction factor).

To estimate K0 and Q in Eqn (2), we use the grain growth
rates and temperatures compiled by Cuffey and Paterson
(2010, table 3.1) for shallow firn and ice at 13 different polar
sites. To reiterate, the growth law with these ‘classical’
parameters cannot resolve the effects of strain-induced grain
boundary migration and impurities on the mean grain size,
and the classical parameters may already be influenced by
these effects. Fitting Eqn (2) to these data yields K0 = 8.78
�106mm2 a–1 and Q=42.4 kJmol–1. However, we correct
the value of K0 here too, for two reasons. First, the growth
rates compiled by Cuffey and Paterson refer not to K in our
model, but to dA/dt, which is approximately equal to �K/4 at
shallow depths (Eqns (27) and (28)); thus a first correction
factor is 4/�. Second, most of the compiled growth rates are
based on measured grain sizes that have apparently not been
corrected for the sectioning effect; this implies a further
correction factor of 1.5. (More precisely, two of the growth
rates have been corrected, while a few others may derive
from crystal length squared (dD2/dt) rather than area and
need a larger correction factor of 1.52 for the sectioning
effect, but the level of information in the sources used by
Cuffey and Paterson makes this uncertain.) Here we
disregard the subtle non-uniformities in these data and
adopt 1.5�4/� as a fixed combined correction factor, and
hence the corrected rate constant K0 = 1.68� 107mm2 a–1,
for our modelling.

Modelled depth profiles

Figure 2 plots the optimal depth profiles simulated by our
model alongside the crystal-size measurements, which are
shown with the same symbols as in Figure 1 and have been
treated for the sectioning effect, as described above. Since
the model is meant to capture trends in the measurements,
not their rapid variations, we do not report r-square values of
fit, which would reflect these variations. In terms of
organization, Figure 2a and b show the results of model
optimizations made to the GRIP data of Thorsteinsson and
others (1997) and Svensson and others (2009) separately,
while Figure 2c–f show the results for NGRIP, GISP2, Byrd
and Law Dome. In Figure 2b and c, the results of different
matches made to crystal length and to crystal area are
distinguished by curve thickness, as indicated by the key on
the left. In Figure 2, we generally show crystal width and
height in the first column, area in the second, aspect ratio in
the third, and dislocation density in the fourth. Exceptions
appear in Figure 2d (for GISP2), where the first two panels
are both devoted to crystal length, and in Figure 2f (for Law
Dome) where they are devoted to area.

Figure 2 shows that the model can simulate the measure-
ments’ overall trajectories successfully, although less so in
the optimization for Law Dome. Putting aside this case and
considering the other eight optimizations first, the simulated
curves of crystal size and dislocation density show the
expected initial growth and equilibration. Importantly, when
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the model is optimized to match the mean steady grain
size(s) (be this Dx, Dz, AH, AV or their combinations), it also
fits the initial growth trend of the measurements and their
curved approach to steadiness, including the depth scale of
this approach; this match is achieved while P is kept
constant with depth in each simulation. (In Figure 2a we
verify the excellent match for GRIP by plotting AH against
age instead of depth.) The simulated aspect ratios show that
crystals flatten progressively with depth, with final values of
a in the range 1.1–1.5. Moreover, for the GRIP and NGRIP
cores (Fig. 2a–c), where data for both Dx and Dz exist, the
model is able to match their mean steady values simul-
taneously, although the simulated aspect ratios underesti-
mate the measured ratios slightly. The fluctuations or ‘noise’
on most of the measured profiles, not reproducible by the
model, suggest physical controls on the grain size unac-
counted by us, such as impurities.

Figure 2b and c show that for the GRIP and NGRIP
datasets of Svensson and others (2003, 2009), the model
optimized for Dx and Dz overestimates AV, and accordingly

the model optimized for AV underestimates Dx and Dz. This
discrepancy looks uniform and concerns the magnitude, not
form, of the curves. We trace its cause to the use of the same
correction factor on measured crystal area and lengths.
Svensson’s data of Dx, Dz and AV satisfy the relationship
AV= �DxDz /4 approximately (to within 15%), but after we
multiply all of them by 1.5, AV becomes 26–27% smaller on
average than what �DxDz /4 predicts; this is why the
optimizations for Dx and Dz together and for AV yield
different results. We have not tried using different correction
factors for crystal area and length to remove the discrepancy,
given the lack of information (other than a better fit) to justify
their choice. Instead, with Svensson’s datasets, we treat the
two optimizations as separate and report both of their
polygonization rate factors below.

The simulated dislocation densities reach equilibrium
values of the order of 1011m–2 and vary from core to core.
As expected, increasing �0 to 2 or 3 in the model lowers
these densities because grain boundary migration removes
dislocations faster (this was fully analysed by Montagnat and

Fig. 2.Modelled depth profiles of crystal size for the five ice cores in our study, down to the bottom end of their steady grain-size regions, as
defined in Figure 1. The rows refer to the (a, b) GRIP, (c) NGRIP, (d) GISP2, (e) Byrd and (f) Law Dome DSS ice cores. Also shown are crystal-
size measurements from Figure 1; except for the GISP2 crystal-width data of Gow and others (1997) (d, second panel), these measurements
have been multiplied by 1.5 to correct for the sectioning effect. In each panel, the curves depict simulated profiles of mean crystal width Dx,
height Dz, horizontal area AH, vertical area AV and aspect ratio a, and crystal dislocation density �. These profiles have been optimized to fit
different sets of measurements, as explained by the keys at the left-hand end. In (a), the points for AH derive from measurements of Dx via
AH=�Dx

2/4. In (a–c), the points for a derive from the measurements via Dx /Dz.
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Duval, 2000). Then the optimal polygonization rate factor P
changes correspondingly, but the model’s ability to match
the observed profiles and our evaluations later about the
spread of P are unaffected.

We turn to the model optimization for the DSS core at
Law Dome in Figure 2f. For this core, Li and others (1998)
measured AH and AV by counting all grains within a known
area on each thin section (Table 1), so large errors or biases
in their data are unlikely. However, their measurements
exhibit a strong scatter that is visible even in logarithmic
scale; it is therefore difficult to judge how plausible the fit
between model and data is. It may in fact be questioned
whether the measured crystal areas in the ‘steady region’
identified by us (400–700m depth; Fig. 1f) represent a steady
state. In this regard, Figure 2f shows that the simulated
profiles of crystal size and dislocation density have not
reached equilibrium in this region. If one interprets the
measured crystal areas there to be still increasing with
depth, then the model would be capturing roughly the right
trend. Even so, Figure 2f shows another problem. The rapid
growth of the shallow measurements (at <200m depth)
cannot be modelled for any prescribed initial grain size. The
model underestimates the grain-growth rate in this region,
which according to Li and Jacka (1999) is �3.84�
10–2mm2 a–1 for AH, when uncorrected for the sectioning

effect. This rate is enhanced by about three times compared
to the rate predicted by the classical growth law (best-fit
Eqn (2); again ignoring correction), consistent with what Li
and others (1998) and Li and Jacka (1999) have reported
before. The geometric effects of vertical compression that we
discussed in relation to Eqns (27) and (28) are limited at Law
Dome and cannot explain the observed large enhancement
in the growth rate of AH; besides, an enhanced growth rate is
observed for AV as well. Li and others (1998) suggested that
these enhancements are due to dynamic recrystallization
processes resulting from high compressive strain rate at the
site. A likely candidate is migration recrystallization; as
discussed before, future work could explore how to model
its physics.

Polygonization rate factor P

Table 2 lists the nine values of P found from the
optimizations. Figure 3 plots them against the ice tempera-
ture T and also 1/T. The error bars in P derive from model fit
to the upper- and lower-bound steady grain sizes in Table 1.
As some of the uncertainty with the model optimization for
the Law Dome DSS core is accounted by the error bar, we
include its P-value tentatively in this discussion.

The results in Figure 3 highlight the interesting question of
what governs the polygonization rate in polar ice. As

Fig. 2. Continued.
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mentioned before, P might increase with temperature
following an Arrhenius dependence, P/exp(–Qp /RT),
where Qp is activation energy. The P-values found for the
different cores and datasets vary considerably in the range
10–5 to 10–2 a–1, although a constant (depth-invariant) value
of P has enabled the model to match the measured crystal-
size profiles in each simulation. If we regard the P-values for
GRIP, NGRIP and GISP2 as a single cluster for central
Greenland (these sites have similar temperatures), and the
Byrd and Law Dome P-values as two other clusters, then
their general trend across the plot suggests that P decreases
with temperature: this is opposite to the expected Arrhenius
dependence. The strain rate is highest at Law Dome, second
highest at GISP2, and lowest at Byrd and NGRIP (Table 1), so
we do not see a clear pattern of control by _". And if we
increase the model parameter �0 or �c in the optimizations,
then all P-values in Figure 3 will shift up, but their pattern
remains similar. This means that unknown factors must

control the polygonization rate factor P, whether or not
temperature plays a role. One possibility is the evolving
microstructure within crystals, which might be accountable
partially through the dislocation density; another is the effect
of impurities on subgrain boundary formation. Other
recovery mechanisms beside polygonization may also be
significant in our cores, and they are not distinguished by the
model and are lumped into the rate P.

CONCLUSIONS

We have explored a continuum model of crystal-size
evolution that combines several ingredients: crystal flattening
under compression, directional grain growth, polygoniza-
tion, and the build-up and removal of crystal dislocations.
The model is not a complete description because it does not
resolve impurity and migration-recrystallization effects.
Simulations show its ability to match the upper part of the
crystal-size profiles from the GRIP, NGRIP, GISP2 and Byrd
ice cores (including both crystal width and height data from
the first two cores). Given recent observational evidence from
other ice cores of the importance of migration recrystalliza-
tion, our study might seem controversial for revisiting the
competition between grain growth and polygonization – an
idea from the ‘tripartite’ hypothesis. However, the competi-
tion is studied here as a subset of the full interactions and thus
a building block towards the general theory of crystal-size
evolution and dynamic recrystallization in ice. For those
engrossed in debates surrounding the validity of the tripartite
hypothesis, our finding that the simulations did not uni-
versally fail to fit the profiles means that two mutually
exclusive possibilities stand:

The impacts of migration recrystallization and impurities,
or of their variations with depth, on the rate of change of
mean crystal size are limited in comparison with the
impacts of the modelled processes, within the depth
ranges of the cores concerned.

These impacts significantly control the rate of change of
mean crystal size on the observed profiles, but the nature
of these controls is such that the profiles are reproducible
by a model formulated on incomplete physics.

Consequently, more extensive calculations are required to
quantify and disentangle the depth-varying impacts of
normal grain growth, impurities, migration recrystallization
and polygonization on the crystal size in the cores studied,
and generally in all existing cores. The impacts of these

Fig. 3. Polygonization rate factor P in the five ice cores of our study
(see labels under the plot) against ice temperature T and its
reciprocal variable 1/T. Each estimate of P is found by matching the
model in Eqns (17–19) to the mean crystal size in the steady crystal-
size region of the corresponding core (corrected for the sectioning
effect in most cases, as explained in the text). Plot symbols indicate
the crystal-size variables being matched in each optimization. The
indices (i)–(iv) follow those in Tables 1 and 2.

Table 2. Polygonization rate factors P (a–1) retrieved by optimizing our model to match the steady crystal sizes listed in Table 1 for the five ice
cores. The indices (i)–(iv) follow those in Table 1. For all but the crystal-width data at GISP2 measured by Gow and others (1997), the steady
crystal sizes are multiplied by 1.5 to correct for the sectioning effect prior to matching

Mean crystal-size variable(s)
used in the optimization

Ice-core site

GRIP NGRIP GISP2 Byrd Law Dome (DSS)

Width – – 6.6�10–4(iii);
1.0 �10–4(iv)

– –

Width and height 2.2�10–4(i);
7.4�10–4(ii)

9.1� 10–4 – – –

Horizontal area – – – 1.4�10–4 –
Vertical area 2.6� 10–3 5.9� 10–3 – – –
Horizontal and vertical areas – – – – 5.8�10–5
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processes on ice fabric and rheology need to be quantified
separately, and we caution against qualitative general-
izations about the relative dominance of processes from
one core to another.

In their review, Faria and others (2014) proposed a
conceptual model for the evolution of the mean (isotropic)
crystal size D by the equation

dD

dt
¼ FðD, _",T Þ, ð29Þ

where F is a rate function governed by the whole suite of
recrystallization processes (and is hence difficult to deter-
mine at present), and the form of F behaves as an ‘attractor’
in the 3-D state space of D, _" and T, so that F=0 defines the
steady-state grain size. (We have written Eqn (29) in a
mathematical notation different from the one used by Faria
and others (2014), after consulting the first author.) In the
current paper, we have explored some of the processes
determining F, and our results support a dynamical-system
view of the problem. Moreover, we now know that Eqn (29)
is not an adequate description of crystal-size evolution,
because the mean crystal size and mean dislocation density
(�) evolve in a strongly coupled manner. For polar ice in
axially symmetric deformation, three coupled first-order
differential equations are necessary to track the evolution of
two directional crystal sizes and dislocation density (e.g.
Eqns (17–19) or (22–24)); this introduces two more state
variables into the system besides D. Under non-axially-
symmetric configurations, mean crystal sizes in three
orthogonal directions need to be tracked. And under axially
symmetric configurations where crystal flattening is small
(Dz�Dx�D), the two grain-size equations reduce approxi-
mately to a single evolution equation for D. However, the
system of co-evolving � and D cannot be further reduced
(Fig. 2; Appendix). Finally, we expect the inclusion of
migration recrystallization to complicate the coupling (e.g.
by adding a measure of the spatial variation of dislocation
density or of stored strain energy as a state variable).

One of our motivations is to evaluate data from multiple
ice cores in a comparative study. Most previous simulations
of crystal size investigated its variation in individual cores,
although the model of Mathiesen and others (2004) has been
fitted to the GRIP and NGRIP profiles in separate publica-
tions (Mathiesen and others, 2004; Svensson and others,
2009). With new data from future cores, more comprehen-
sive comparisons will be possible.

It was not straightforward for us to work with different ice
cores due to varying practices of measuring and reporting
crystal sizes. This calls for a much-needed standardization of
the measurement methods. Existing core samples could be
remeasured with different methods too, to increase the
compatibility between datasets.

An outstanding question is what governs the polygoniza-
tion rate. Whereas some authors described this rate in terms
of the average time crystals take to subdivide (e.g. De La
Chapelle and others, 1998), we have quantified it by the rate
of loss of dislocation density during polygonization, nor-
malized by the instantaneous dislocation density: the
resulting ratio is our rate factor P. A constant P enables our
model to match individual crystal-size profiles – not just
their steady values, but also their growth and approach to
steadiness. And as the temperature T and strain rate _" are
constant in each simulation, the triplet (T, _", P ) completely
determines the modelled profiles in the depth range of

interest. But while P should depend on temperature, the
pattern of P-values found for the different cores (Fig. 3)
suggests that additional factors operate. Microstructural
analysis, which has been used to map various sub-crystal-
scale mechanisms at high resolution, may shed light on
these factors.
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APPENDIX

Here we examine the local stability of the isotropic grain-
size evolution model in Eqns (17) and (20)

d�

dt
¼ _"

�Db
� �0K�

D2
� P�, ðA1Þ

dD

dt
¼ K

2D
� bP�

c�c
D2, ðA2Þ

to understand how its solution approaches equilibrium. To
simplify the algebra, it is useful to define the constants

B1 ¼
bP

c�c
, B2 ¼

_"

�b
: ðA3Þ

Setting d/dt to zero in Eqns (A1) and (A2) and solving for D
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and � yields the equilibrium grain size

DEQ
2 ¼ KP

4B1B2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�0B1B2

P2

r" #
ðA4Þ

and the equilibrium dislocation density

�EQ ¼
K

2B1DEQ
3
: ðA5Þ

WritingD=DEQ +d and �= �EQ + r, expanding Eqns (A1) and
(A2), and linearizing, leads to the system of equations

d

dt

r
d

� �
¼ M

r
d

� �
, ðA6Þ

where

M ¼ � P þ �0K
DEQ

2

� �
� �EQ

DEQ
P � �0K

DEQ
2

� �

�B1DEQ
2 �3B1�EQDEQ

 !
: ðA7Þ

Let the solutions d and r be / exp(�t), and then non-trivial
solutions have the eigenvalue � which satisfies

M� �Ij j ¼ 0, ðA8Þ
or (after expanding and doing the algebra)

�2 þ � �0 þ
3

2

� �
K

DEQ
2
þ P

" #
þ K

DEQ
2

2�0K

DEQ
2
þ P

" #
¼ 0:

ðA9Þ
As this quadratic equation for � has positive coefficients, its
roots are either real and negative, or complex with a
negative real part. Thus d and r decay exponentially,
implying D and � reach equilibrium stably. However, the

decay is oscillatory if

�0 þ
3

2

� �
þ B3

� �2
< 4 2�0 þ B3ð Þ, ðA10Þ

in which the constant is

B3 ¼
PDEQ

2

K
ð> 0Þ: ðA11Þ

For 0.5 <�0 < 4.5, which holds true for the values of �0 used
in this paper (�0 ¼ 1) and experimented by Montagnat and
Duval (2000) (�0 ¼1–3), the condition in Eqn (A10) for
oscillations to occur is satisfied if

B3 < 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0 � 0:5

p
� ð�0 � 0:5Þ: ðA12Þ

Outside this range of �0, the condition is never satisfied (for
B3 > 0).

Finally we relate B3 to the model parameters. By
substituting for the equilibrium grain size DEQ from Eqn
(A4) and defining

B4 ¼
B1B2

P2
¼ _"

P�c�c
, ðA13Þ

Eqn (A11) becomes

B3 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8�0B4

p

4B4
, ðA14Þ

which is a decreasing function that has a 1/B4-type
singularity as B4! 0 and tends to 0 as B4!1. Thus,
ultimately the parameter that governs whether the decay
oscillates is _"=P�c�c ð¼ B4). For sufficiently small P, B4 will
be large enough and B3 small enough to cause oscillations.
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