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Abstract

We developed a cloud microphysics parameterization for the icosahedral nonhydrostatic modeling framework
(ICON) model based on physics-informed machine learning (ML). By training our ML model on high-resolution
simulation data, we enhance the representation of cloud microphysics in Earth system models (ESMs) compared to
traditional parameterization schemes, in particular by considering the influence of high-resolution dynamics that are
not resolved in coarse ESMs. We run a global, kilometer-scale ICON simulation with a one-moment cloud
microphysics scheme, the complex graupel scheme, to generate 12 days of training data. Our ML approach combines
a microphysics trigger classifier and a regression model. The microphysics trigger classifier identifies the grid cells
where changes due to the cloud microphysical parameterization are expected. In those, the workflow continues by
calling the regression model and additionally includes physical constraints for mass positivity and water mass
conservation to ensure physical consistency. The microphysics trigger classifier achieves an F1 score of 0.93 on
classifying unseen grid cells. The regression model reaches an R? score of 0.72 averaged over all seven microphysical
tendencies on simulated days used for validation only. This results in a combined offline performance of 0.78. Using
explainability techniques, we explored the correlations between input and output features, finding a strong alignment
with the graupel scheme and, hence, physical understanding of cloud microphysical processes. This parameterization
provides the foundation to advance the representation of cloud microphysical processes in climate models with ML,
leading to more accurate climate projections and improved comprehension of the Earth’s climate system.

Impact Statement

This new cloud microphysics parameterization has the potential to enhance climate model accuracy, contributing
to a better understanding of climate-relevant processes, in particular taking into account the influence of highly
resolved dynamics on cloud microphysical processes. More accurate and robust climate projections are essential
for informed decision-making and risk assessment in addressing the global warming crisis.

1. Introduction

The parameterization of cloud microphysics is a central component in Earth system models (ESMs),
working closely coupled with the convection scheme to model the behavior of clouds in coarse-scale
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ESMs. It calculates the formation, growth, and removal of liquid and solid water particles and captures
phase changes. The accurate representation of these processes is crucial for reliable climate projections, as
they significantly influence the lifetime and brightness of clouds and, in general, the transport of water and
energy through the atmosphere. As uncertainties in microphysical processes, particularly those involving
ice particles, can greatly affect climate models, addressing these challenges is essential for improving
climate projections (Morrison et al., 2020).

The focus of this study is to enhance the representation of subgrid-scale cloud microphysics within the
coarse-scale icosahedral nonhydrostatic modeling framework (ICON) model (Zangl et al., 2014; Gior-
getta et al., 2018), which traditionally employs the single-moment microphysical scheme of Lohmann and
Roeckner (1996). This scheme solves prognostic equations for the mass mixing ratios (mmrs) of water
vapor, cloud water, cloud ice, and rain. To improve upon this baseline, we develop a machine learning
(ML)-based parameterization trained on high-resolution ICON simulation data that use a more complex
single-moment scheme, that is, the graupel scheme of Baldauf et al. (2011), Rutledge and Hobbs (1984).
Another option would have been to use a two-moment cloud microphysics scheme (Seifert and Beheng,
2006). These schemes provide a more detailed representation of cloud processes but are computationally
significantly more expensive, especially for convection-permitting simulations at high resolution. Due to the
computational constraints of our study, we chose a single-moment scheme. This scheme has been used in
convection-permitting high-resolution simulations (simulation data for this study), as well as in coarse
simulations together with an additional convection parameterization. In addition to the scheme of Lohmann
and Roeckner (1996), it calculates the mmr of snow and graupel and provides precipitation rates for rain,
snow, and graupel. All microphysical schemes considered here also solve the prognostic equations for
temperature resulting from microphysical processes, such as latent heat release from phase changes.

ML made great strides in enhancing ESMs by replacing traditional parameterizations that are based on
empirical and physical understanding and representing the statistical effect of a given process at the grid
scale of the climate model (Rasp et al., 2018; Reichstein et al., 2019; Grundner et al., 2022; Fuchs et al.,
2024). For this, ML models are trained on short high-resolution climate simulations or observations and
then coupled to the coarse climate model, potentially eliminating long-standing biases in ESMs (Gentine
et al., 2021; Eyring et al., 2024). Over the last years, learning the cloud microphysics parameterization
with ML models has been an active field of research (Han et al., 2020; Gettelman et al., 2021; Perkins
et al., 2023; Seifert and Siewert, 2024; Sharma and Greenberg, 2024). Existing ML approaches often
struggle with the balance between computational efficiency and physical accuracy, particularly when
upscaling from high-resolution data to coarser model grids.

So far, studies have emulated cloud microphysics parameterizations using the same model and
resolution as the simulation data (Han et al., 2020; Gettelman et al., 2021; Perkins et al., 2023). These
approaches aim to improve computational efficiency by accelerating ESMs while precisely replicating
existing parameterizations, without expecting to enhance the physical representation of microphysics.
Alternatively, some approaches learn from more detailed microphysics parameterizations using super-
droplet box models (Seifert and Siewert, 2024; Sharma and Greenberg, 2024). These methods aim to
enhance the representation of cloud microphysics and reduce biases in coarse-resolution ESMs through
detailed high-resolution simulations. However, switching from superdroplet box models to global climate
simulations can introduce issues. The differences in scale, boundary conditions, and dynamics between
box models and ESMs can complicate the integration and accuracy of ML parameterizations. Further-
more, the computational requirements of ML-based superdroplet parameterizations differ significantly
from classical parameterizations typically used in an ESM. This adds an extra layer of technical
complexity when implementing such models in highly nonlinear systems like ICON.

In this study, we aimed to leverage the strengths of the previously mentioned approaches. We expand
upon our previous work presented in Sarauer et al. (2024) and now provide a more comprehensive
analysis. We use simulations from our target model, ICON, to generate training data for the ML
parameterization. However, instead of merely emulating the model, we enhance our approach by learning
from simulations with a better resolution at a convection-permitting horizontal scale of 5 km and use a
more detailed single-moment scheme, that is, the graupel scheme. As a consequence, at the target
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resolution of 80 km, the ML model is able to preserve the influence of crucial subgrid-scale dynamics and
their nonlinear interactions with the larger-scale flow on cloud microphysics. Although this approach
complicates the distinction between contributions from subgrid-scale dynamics and microphysical
processes, it ensures a more accurate representation of their combined influence on cloud properties
and their temporal evolution at coarser resolutions. This will be especially beneficial when parameterizing
cloud convection in a combined parameterization with microphysics in future studies, where other
dynamical parameters such as vertical updraft velocity or aerosol activation will be taken into account
as additional input parameters. Even though the ML parameterization has not yet been coupled to ICON,
this approach is believed to be able to enhance the representation of cloud microphysical processes in
climate models, with the potential for more accurate climate projections by the resulting hybrid ESM
(Eyring et al., 2024).

2. Methodology
2.1. Underlying dataset

We generate high-resolution data through a simulation setup utilizing the atmospheric component of the
ESM ICON Sapphire (Hohenegger et al., 2023; Segura et al., 2025), in a similar setup to Weiss and Stier
(2024). In contrast to the simulation of Hohenegger et al. (2023), the sea surface temperature and sea ice
concentrations are prescribed. The horizontal resolution is about 5 km. The atmosphere is discretized with
90 vertical levels, and the land is discretized with 5 soil layers. The time step At is 40 s. We use ERAS
boundary conditions by Hersbach et al. (2020) and initialize the model with historical weather data, ozone
concentrations, aerosol concentrations, ocean properties such as the sea surface temperature and sea ice
concentration, and land properties. To keep the data volume manageable, we save the data every three
simulated hours. Specifically, we store the time-averaged values of all input and output parameters used in
the ML parameterization (see Appendix, Table Al) over 3-hour periods, rather than instantaneous
tendencies. This allows the ML model to learn from smoothed data and reduces the likelihood of
predicting extreme outliers that could destabilize online-coupled simulations (Yu et al., 2024). We run
the simulation for 22 days, from 20 January to 9 February 2020, and discard the first 10 days as a spin-up
period, which leaves us with 12 days of data. An illustration of the microphysical hydrometeors, used as
inputs for our ML framework, derived from the simulation is given in Figure 1.

Subsequently, we apply horizontal coarse-graining mapping the data to a lower-resolution ICON grid
(80 km) using the method from Grundner et al. (2022). The coarse-graining is performed on the entire
dataset including both inputs (temperature, pressure, mmrs) and outputs (tendency temperature, tenden-
cies mmrs). Coarse-graining is done by estimating grid-scale mean values through a weighted sum of
high-resolution grid cells, where weights represent the fraction of the grid cell volume that each high-
resolution cell fills. This allows us to approximate the large-scale state variables that are inputs for our
cloud microphysics parameterization and ensures that the parameterization performs consistently across
various spatial resolutions. After the coarse-graining, we select a random subset within the first 9 days
after spin-up of our simulation for training and validation. We test our method on the 3 remaining days of
the simulation. We scale the data with respect to the standard deviation and the mean of the training set.

2.2. Overview of ML model

Since the ultimate goal is to develop an ML-based cloud microphysics parameterization that runs online in
an ICON simulation, we prioritize a multilayer perceptron (MLP)-based architecture developed in
PyTorch (Paszke et al., 2019), which can be applied to each grid cell of the ICON model individually.
Figure 2 shows an overview of the ML-based parameterization developed in this work. The considered
input and output parameters are the same as in the traditional graupel scheme. The tendencies are solely
based on microphysical processes, for example, tendency temperature considered here is only a result
of latent heat release or cooling by phase changes. For the used set of input and output parameters and
their description, the reader is referred to Appendix, Table Al. The ML-based cloud microphysics
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2020-02-05T00:00:00Z - height level 70

Figure 1. Map of mmrs. Obtained from the simulation on model level 70, corresponding to a height of
about 3 km. The upper figure shows water vapor (rved), cloud water (blue), and cloud ice (green). The
lower figure shows rain (red), snow (blue), and graupel (green). Earth illustration from NASA Visible
Earth (2024).

parameterization is split into a classifier and a regression task: if the classifier determines that in a
specific grid cell, the microphysics scheme is triggered and the workflow continues by calling the
regression model. Otherwise, we assume that all tendencies are zero for this grid cell and pass a zero
vector. While end-to-end training of the classifier and regression tasks showed a similar performance as
the modular approach, we opted for separate training to maintain modularity, which is crucial for the
explainability of individual components. Nevertheless, for future work involving online coupling, an
end-to-end trained model may be considered.

2.3. Microphysics trigger classifier

Similarly to Gettelman et al. (2021) and Perkins et al. (2023), we choose an approach to first classify the
grid cells into those with and without active clouds, that is, according to whether we expect any change in
our grid cell due to the cloud microphysical parameterization. Similar to Perkins et al. (2023), we need to
apply proper preselection criteria to our dataset before the model training. Additionally, for the training
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Figure 2. Overview of the presented ML parameterization pipeline. Left, the input variables. Right, the
output variables are listed, and for more details, see Tuble Al. In the center, step 1 illustrates the classifier
MLP, and step 2 illustrates the regression MLP.

and testing datasets, we only consider a grid cell as triggered when the sum of all microphysical
hydrometeor tendencies Am,, fulfills the criterion

ZIAmql >€, 2.1

q

with the computational threshold € = 10~1°. The tendency Am, represents the rate of change of the mmr
per internal model time step A¢ in the ICON simulation, which is 40 s in this study. By examining the
underlying dataset of this study, we find that 81% of the grid cells are not changed by the microphysics
scheme, which makes it especially important to sort out the inactive cells before performing the regression
task. This happens in step 1 of our ML-based cloud microphysics parameterization. We train a simple
MLP with 8 input nodes for the microphysical input parameters, as shown in Figure 2 with 2 hidden layers
with 256 and 512 nodes and 1 output node for the classification task. We use dropout layers in between to
avoid overfitting to the training dataset. The network uses rectified linear unit (ReLU) (Agarap, 2019)
activation functions after the first and second layers to introduce nonlinearity and a sigmoid activation
function at the end to produce a probability between 0 and 1. If the output value is larger than 0.5, we
consider the microphysics scheme to be triggered and continue by calling the regression model. Otherwise,
we assume that all tendencies are zero for this grid cell and pass a zero vector. We train the microphysics
trigger classifier for 20 epochs on a random subset of 25 million samples selected from the 9 training days
and evaluate on the 3 validation days.

2.4. Physics-constrained microphysics regression model

After training the trigger classifier, we predict the tendencies of triggered grid cells with the MLP-based
regression model. It is structured as follows: 8 input nodes for the microphysical input parameters,
3 hidden layers with 512 nodes each using the ReLU activation (Agarap, 2019), and 7 output nodes using
linear activation. Additionally, we include a residual connection between the input and output layers to
preserve mass throughout the prediction for physical consistency. We use dropout layers and batch
normalization to avoid overfitting to the training dataset. We train the microphysics regression model for
30 epochs on a random subset of 10 million samples selected from the 9 training days and evaluate on the
3 validation days.

During the preselection procedure of our simulated dataset, we find that the classical parameterization
produces negative masses, or tendencies that lead to negative masses after the application of the classical
parameterization in 4% of the samples in the preselected dataset. When these effects occur in the classical
parameterization, the ICON model sets the negative masses to zero and recalculates the tendencies. To
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incorporate this correction into our model, we apply the method of physics constraining for negative
masses following the approach of Harder et al. (2022). We modify the weights of the output layer during
the optimization of the MLP, constraining all tendencies Ag not fulfilling the condition

Mgz = Mg +At-Amg > 0. 2.2)

where my,, is the mmr after the application of the parameterization, and m,, is the mmr before the
application of the parameterization.

Additionally, we incorporate a constraint that ensures water mass conservation for the microphysical
hydrometeors

Zm,m = Z (mq,t(J +At- Amq). 2.3)
q q

The total mmr of hydrometeors after applying the microphysics scheme, m,,,, must equal the sum of
mmrs of the initial hydrometeors m, ;, plus the sum of all tendencies Am,.

2.5. Explainability

As discussed by de Burgh-Day and Leeuwenburg (2023), incorporating domain knowledge into ML
parameterizations increases the performance. Therefore, the strategy of this work is to stay as physically
consistent as possible. Therefore, we introduce constraints to avoid unphysical negative mmrs. To further
ensure consistency, we examine the model’s behavior with explainability methods in each substep. For the
purpose of explainability, we use the SHAP (SHapley Additive exPlanations package [Lundberg and Lee,
20177). This package follows the game theory approach of the calculation of Shapley values. The Shapley
values quantify the contribution of each input feature to the prediction of a model by comparing it to all
possible combinations of features. The effect of this feature value on the output is determined by how
much it increases or decreases the prediction relative to the model’s baseline prediction, with the Shapley
value reflecting this impact. We perform this analysis for the classifier and regression model individually.
A high feature value in combination with a positive Shapley value means that with an increasing value of
this input variable, we expect an increase in the respective model output. A low feature value and positive
Shapley value means that by decreasing this feature value, we expect an increase in the output variable.
The closer the Shapley value is to zero, the harder it is to explain the model’s behavior. With these
analyses, we can find the most relevant features for the two parts of our ML framework. Additionally, for
each input feature, we can examine whether it has a negative or positive correlation with the model output.
This helps us to see if the model is learning processes and relationships that we would actually expect from
our physical understanding.

3. Results

Our study evaluates the performance of a physics-informed, ML-based cloud microphysics parameter-
ization using coarse-grained data from a global, high-resolution ICON simulation for training, testing, and
validation. We focus on identifying the MLP algorithms that best capture the data’s characteristics while
being as simple as possible for computational efficiency. This includes both the microphysics trigger
classifier and the regression model.

3.1. Microphysics trigger classifier

For the first part of our ML framework, the microphysics trigger classifier, we develop an MLP-based
classifier to predict whether a given grid cell state will result in changes to microphysical properties. The
model achieves a good performance, with an F1 score of 0.93 and a receiver operating characteristic area
under curve (ROC-AUC) (Fawcett, 2006) of 0.99. The F1 score measures a model’s balance between
precision and recall, while ROC-AUC assesses its overall ability to distinguish between classes.
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Figure 3. Classification performance. The left image shows the confusion matrix, comparing predicted
and true classes. The color intensity represents the ratio of samples in each class to the total number for
that class. The right image shows the Shapley analysis. The input variables are listed in importance for the
respective output variable from top to bottom. For each feature, red represents large values of a variable,
and blue represents small ones. The x-axis shows the Shapley values.

The performance is also illustrated in Figure 3. The confusion matrix shows the performance of the
classification model by displaying the number of correct and incorrect predictions across different classes.
The ratios on the diagonal tell the proportion of correctly classified samples out of the total actual
samples of that class. The off-diagonal ratios represent the proportion of misclassified samples relative
to the actual total in that class. We observe a good classification performance. Additionally, the similar
ratios of false positives and false negatives indicate that the model does not exhibit a significant bias
toward the dominant class, confirming the robustness of our classifier. Further analysis using explain-
ability methods (Figure 3) shows that the mmr of rain is the most important feature for the microphysics
trigger classifier. Across all mmrs of microphysical hydrometeors, lower values reduce the probability
of microphysics triggering, while higher values increase it. This is consistent with our physical
understanding, as more microphysical processes occur in regions with higher cloud water or precipi-
tation content. Before implementing the classifier, we used threshold-based criteria to predict grid cell
activation. Our Shapley plot supports these previous threshold methods, confirming that cells with
sufficient cloud mmr (cloud water m, and cloud ice m;) or precipitation mmr (rain m;, snow my, and
graupel m,) are more likely to activate the microphysics scheme, previously (Sarauer et al., 2024)
defined by the following thresholds:

(me+m;) >10°kg kg™ ', (me+mg+my) >10 kg kg . 3.1

As expected, a broader range of features, such as temperature, air pressure, and water vapor
concentration, are correlated with microphysics triggering, as microphysical processes occur across a
wide range of values for these parameters and water vapor is present throughout the troposphere, where
cloud microphysics takes place. This evaluation of the microphysics trigger classifier shows that the grid
cells of interest are identified in a physically consistent manner. This provides a reliable basis for further
analysis and thus can be used as a strong foundation for the subsequent regression tasks.

3.2. Microphysics regression model

In the second part of our ML framework, we address the regression task for the grid cells classified as
triggered in the previous step. Despite the complexity of the cloud microphysics parameterization and low
first-order correlations (cf. Appendix, Figure A1), we are able to reach an R? score of 0.72 averaged over
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Table 1. Fit performance measures for the regression output in the ML framework

kg
Variable Description Mean [%] ? {kg's} RMSE [%] R?

tend ta mig  Tendency temperature 3.87-1073 2.31-107* 9.85-107° 0.685
tend qv_mig  Tendency mmr water vapor 1.77-107% 9.91-10°% 4.20-107% 0.687
tend_qc_mig Tendency mmr cloud water 8.51-10710 8.92.1078 4.01-107% 0.608

tend qi mig  Tendency mmr cloud ice 2.71-1071°  2.92.107° 1.39-10~° 0.837
tend qr mig  Tendency mmr rain 1.13-107° 1.71-1078 7.90-10~° 0.739
tend qs mig  Tendency mmr snow 5.46-1071°  891.107° 6.02-10~° 0.646
tend qg mig  Tendency mmr graupel 5.02-101° 1.86-107% 8.44-107° 0.837

Note. The table shows for each output variable: arithmetic average (mean) and standard deviation (o), root mean squared error (RMSE), and coefficient
of determination (R?).

all output features, achieving the best regression output for the tendencies of cloud ice and graupel mmr
(both 0.84 R? score) and the worst regression output for the tendency of cloud water mmr (0.61 R? score).
The specific goodness of fit for the individual output features is presented in Table 1.

The low score for cloud water in the model likely stems from its complex and sensitive nature, driven
by many nonlinear, small-scale processes like droplet formation and growth, which are difficult to
accurately parameterize. Cloud water varies greatly at smaller scales, making it harder to represent
accurately. Additionally, the multitude of interactions of cloud water with other microphysical variables
can complicate an accurate prediction. On the other hand, cloud ice, graupel, snow, and rain are easier to
learn for the ML model, likely because their process representation is simpler in the classical, single
moment graupel scheme. Moreover, variables such as temperature and water vapor are typically less
sensitive, resulting in better model performance for these variables.

As illustrated in Figure 4, we see a good alignment between the prediction and test datasets (ground
truth) for cloud ice. A similar illustration for the other variables can be found in Appendix, Figures A2 and
A3. For all output features, the model effectively represents values near zero but has difficulty capturing
extreme outliers. Despite experimenting with various scaling methods such as the Standard Scaler,

Microphysics regression model for tendency of cloud ice mmr [kg - kg~! - s71]
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Figure 4. Regression performance. The left image shows the ML predictions of the regression model
versus ground truth of the tendency of cloud ice mmr. The colors illustrate the density of the data on a
logarithmic scale. The right image shows the Shapley analysis for the tendency of cloud ice mmr. The
input variables are listed in importance for the respective output variable from top to bottom. For each
feature, red represents large values of a variable, and blue represents small ones. The x-axis shows the
Shapley values.
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MinMax Scaler, Robust Scaler, and Log Scaler, accurately capturing these distributions remains a
challenge for ML algorithms, as none of the approaches investigated fully captured the variability in
the data while maintaining optimal training performance. In this work, we use the Standard Scaler, a
commonly applied preprocessing technique for training such models (e.g., Heuer et al., 2024). To gain
more insight into the relationships between input features and resulting model output, that is, micro-
physical tendencies, we apply explainability techniques.

Figure 4 shows illustrations of our explainability method for the microphysical tendency of cloud ice.
The Shapley illustrations of the other tendencies can be found in Appendix, Figures A2 and A3. Generally,
across all features, we observe a strong correlation between microphysical tendencies and both air
pressure and temperature. This correlation is expected, as water vapor is of great importance to cloud
formation and evolution, which itself is strongly influenced by temperature and pressure. The cloud ice
tendency is positively correlated with a higher amount of cloud water and cloud ice content, as indicated
by positive Shapley values for positive feature values. This could be a result of the frequent coexistence of
cloud water and cloud ice in mixed clouds. Conversely, high feature values for water vapor go together
with mostly negative Shapley values. Additionally, we would expect with our physical understanding that
low temperature values should have positive Shapley values for ice, as low temperatures are required for
the formation of cloud ice. However, the ML model shows positive Shapley values for cloud ice mmr for
high temperature values. This could be due to higher temperatures resulting in a higher amount of water
vapor that can, for example, condensate, which can lead to higher microphysical tendencies.

Constraining unphysical values during the training through a modified loss function, prohibiting
negative masses, and ensuring water mass conservation as described above does not have an impact on the
overall performance of the ML parameterization. Nevertheless, we expect the constrained ML param-
eterization to lead to an improved and stable simulation when coupled with a climate model in
future work.

3.3. Combined model

To evaluate the overall performance of our ML-based cloud microphysics parameterization, we combine
the results of the microphysics trigger classifier and the physics-informed regression model. In this study,
the classifier achieved an F1 score of 0.93. This is particularly important because the dataset is
imbalanced, with only 19% of the grid cells with triggered cloud microphysics processes. For the
regression task, the model achieved an average R* score of 0.72. This R* score reflects the regression
model’s ability to predict the continuous outputs related to cloud microphysics processes within the
triggered cells. To provide a unified measure of performance and to allow for a fair comparison with
column-based methods like Perkins et al. (2023), we introduce a unified R* metric. This approach treats
the classification of non-triggered cells as regression outputs mapped to zero. Specifically, for all grid
cells, we compare the predicted values, which combine the classifier’s predictions and the regression
model’s outputs, against the true values, where nontriggered cells have an expected output of 0. This
unified approach ensures that the metric reflects performance across both tasks, including cases where the
regressor is incorrectly activated. This calculation results in an overall score of 0.78, which reflects a
strong model performance, balancing high classification accuracy with solid regression precision.

To conclude the analysis of our results, we consider the complex graupel mmr tendency predicted by
the ML model in comparison with the coarse-grained high-resolution data and a coarse reference
simulation (Figure 5). Similar illustrations for the microphysical tendencies can be found in Appendix,
Figures A4 and AS. The white spaces in the figures indicate grid cells where the microphysics scheme is
not activated, which illustrates the good representation of the triggered cells by the microphysics trigger
classifier. Nevertheless, when looking at the predicted values with the regression, we see an overesti-
mation of the tendency of graupel mmr, especially in the subtropics compared to the ground truth.
Additionally, we observe biases in the ML model for some extreme values of the other tendencies, for
example, underestimating the extremes in the tendency of cloud ice mmr and overestimating the extremes
in the tendency of cloud water mmr. This could also introduce discrepancies when coupling the model
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ML prediction, ground truth and baseline for tendency graupel [kg - kg~1 - s~ 1]
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Figure 5. ML prediction (left) of the tendency of graupel mmr averaged over 3 validation days (24 timesteps
in total) compared with the ground truth (center) and a coarse reference simulation (vight) for a random day
within the validation period. Colors represent the magnitude of the mmr tendency, averaged over longitude.
The x-axis is latitude, the y-axis is height, and white areas indicate no change due to microphysics.

with a coarse global climate model. Appendix includes the distributions of these tendencies and a brief
discussion. Despite this, the model demonstrates a reasonable distinction between areas of positive and
negative tendencies. It is important to highlight that our model achieves these results using only cell-based
information. This makes the model’s performance particularly interesting, as it successfully captures
physical processes and spatial distinctions. We compare our results with a reference simulation performed
at a coarser horizontal resolution. For this, we use the same setup as before and coarse-grain all initial
inputs for the simulation and run the simulation on the 80-km grid. This comparison shows that graupel
processes are much less pronounced in comparison to the high-resolution simulation, even after the
application of coarse-graining. However, since a convection parameterization is typically used at these
coarse resolutions, we expect to see less graupel. These findings support our hypothesis that our
ML-based cloud microphysics parameterization has the potential to improve the representation of
microphysical processes by implicitly better resolving relevant dynamics and variability compared to
an approach purely based on coarse-resolution output when integrated into the ICON model.

4. Conclusions

In this study, we conduct an analysis of cloud microphysical processes using a 22-day high-resolution
ICON simulation. Based on a simulation with 5-km resolution with 90 vertical layers and coarse-graining
of the data to 80-km resolution, we develop a novel ML-based framework to parameterize cloud
microphysics. Our approach combines a physics-informed MLP algorithm, which includes a microphys-
ics trigger classifier and a regression model, to address the complex problem of cloud microphysics. The
use of a high-resolution model simulation and a cell-based approach provides valuable insights into the
microphysical processes by learning from better resolved atmospheric dynamics that cannot be explicitly
resolved in low-resolution models.

The microphysics trigger classifier, which achieved an F1 score of 0.93 and an ROC-AUC of 0.99,
demonstrates good performance in identifying grid cells where microphysical processes are likely to
occur. This strong classification performance is important to select 19% of the grid cells that are
influenced by cloud microphysics processes. The classifier’s ability to accurately identify these cells
ensures that our regression model is applied only to the relevant cells. This will be especially important
when coupling this model to an ESM online.
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The regression model, trained on the identified triggered grid cells, achieved an average R? score of
0.72 across all output features. In particular, the model performs well in predicting the tendencies of
variables such as cloud ice and graupel, with the highest performance observed for both (0.84 R?).
However, challenges remain with the mmr of cloud water, which could stem from its representation in the
single moment graupel scheme and that cloud water is affected by a multitude of complex, small-scale
processes and therefore challenging to predict.

Our analysis aims for physical consistency using explainability methods. The Shapley values indicate
that features related to cloud water and cloud ice are the most important quantities in determining
microphysics triggering. This aligns with our physical understanding, where the presence of higher cloud
water or precipitation content increases the likelihood of phase changes due to microphysical processes.
The combined performance of our ML models, with an overall performance score of 0.78, shows that the
combination of classification and regression is effective. The model is able to balance classification
accuracy with regression precision. The combined model’s prediction of graupel mmr tendencies, while
demonstrating an overestimation in certain regions, still captures important spatial distinctions and
provides a promising approach to cloud microphysics parameterization.

While our results are promising, generating a more balanced training and validation dataset through
additional simulations at various times of the year could further enhance model performance. Further-
more, vertical updrafts, which are critical for accurately capturing some of the cloud microphysical key
processes, are only partially resolved even at this resolution. Updrafts influence microphysical rates such
as condensation, evaporation, and precipitation formation and are a significant source of biases in coarse-
resolution microphysical schemes where these dynamics are entirely parameterized (Stevens et al., 2020).
Our approach bridges this gap by indirectly learning the effects of unresolved dynamics on microphysics
from the high-resolution simulations, enabling the ML parameterization to some of these even when
applied to coarse-scale models. Future improvements could focus on utilizing even higher-resolution
data, such as those from Large Eddy Simulations (LES), which resolve vertical motion and mixing even
more accurately. Such advancements could further reduce biases and enhance the physical accuracy of
ML-based parameterizations for cloud microphysics. Finally, while the ML-based microphysics param-
eterization has not yet been coupled to ICON, implementing it in a global climate model will be crucial for
future work to fully assess potential benefits and impacts on climate projections. This step poses
significant technical challenges, including instabilities in simulation runs, the need for model retuning,
and the complexity of Fortran-Python bridges. Addressing these points is an ongoing effort, and the
technical details will be documented in future work. Overall, this study presents a novel approach in
parameterizing cloud microphysics, contributing to a better understanding of climate-relevant processes
and with the potential to improve the accuracy and robustness of climate projections, once coupled with
other ML-based parameterizations to advanced hybrid ESMs (Eyring et al., 2024).
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A. Appendix

Figure A1 shows the correlation between the considered input and output variables. The figure shows that the input and output
features show low correlation.

Figure A2 illustrates the regression results individually for the output variables tendency of temperature, water vapor mmr, and
cloud water mmr and their corresponding Shapley plots.

Figure A3 illustrates the regression results individually for the output variables tendency of rain mmr, snow mmr, and graupel
mmr and their corresponding Shapley plots.

Figure A4 and A5 present an illustration of the performance of the combined ML model.

Figure A6 shows the corresponding frequency distributions of the microphysical tendencies (see Section 3.3).

Table A1 lists the variables considered in this work.

A.1. Computing resources

We are only able to run the simulation for this short amount of time because of the substantial computing resources necessary for
running such a simulation (12 k node hours on the Levante cluster of the DKRZ for 30 days simulation) and for storing such a large
volume of data (25 TB for the 20 days of high-resolution data when reduced to 3-hourly output).

A.2. Frequency distributions of microphysical tendencies

Histograms were generated to visualize the frequency distributions of the microphysical tendencies for the coarse-resolution
simulation, the high-resolution ground truth, and the ML predictions (Figure A6). All distributions of the microphysical tendencies
show a large peak of near-zero values. For this reason, a logarithmic scaling of the y-axis has been chosen to better visualize all
relevant tendencies. The ML model (red) fails reproduce the tails of the tendency distributions of rain, snow, graupel, and cloud ice.
The tendency distribution of temperature is well captured by the ML model, and the tails of the water vapor and cloud liquid water
distributions are overestimated compared to the ground truth (gray). Even though the ML prediction does not capture the tails of
these distributions very well, the model performs well for values near zero, which explains its high overall performance for these
variables. In contrast, the coarse-resolution simulation (green) overestimates the frequencies of near-zero tendencies compared to
the ground truth for most variables, except for cloud water. The ML predictions generally underestimate near-zero values, except in
the case of cloud water, where an overestimation occurs. The histograms demonstrate reasonable similarities between the ML
predictions and the ground truth in terms of the general shape of the distributions, confirming the good agreement of the zonal mean
tendencies, as shown in Figures 5, A4 and AS.
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1.00
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Figure Al. Pearson autocorrelation matrix for all raw input and output parameters. For an explanation
of the variable short names, the reader is referred to Table Al. The color bar ranges from negative
correlation (blue) over no correlation (white) to positive correlation (red).
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Microphysics regression model for tendency of temperature [K: s7!]
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Figure A2. Regression performance. The left images show the ML predictions of the regression model
versus ground truth of the tendency of temperature, water vapor mmr, and cloud water mmr. The colors
illustrate the density of the data on a logarithmic scale. The right images show the Shapley analysis for the
tendency of temperature, water vapor mmr, and cloud water mmr. The input variables are listed in
importance for the respective output variable from top to bottom. For each feature, red represents large
values of a variable, and blue represents small ones. The x-axis shows the Shapley values.
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Microphysics regression model for tendency of rain mmr [kg - kg1 - s71]
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Figure A3. Regression performance. The left images show the ML predictions of the regression model
versus ground truth of the tendency of rain mmr, snow mmr, and graupel mmr. The colors illustrate the
density of the data on a logarithmic scale. The right images show the Shapley analysis for the tendency of
rain mmr, snow mmy, and graupel mmr. The input variables are listed in importance for the respective
output variable from top to bottom. For each feature, red represents large values of a variable, and blue
represents small ones. The x-axis shows the Shapley values.
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ML prediction, ground truth and baseline for tendency temperature [K - s 1]
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Figure A4. ML prediction (left) of the tendency of temperature, water vapor, and cloud water mmr
averaged over 3 validation days (24 timesteps in total) compared with the ground truth (center) and a
coarse reference simulation (vight) for a random day within the validation period. Colors represent the
magnitude of the mmr tendency, averaged over longitude. The x-axis is latitude, the y-axis is height, and
white areas indicate no change due to microphysics.
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ML prediction, ground truth and baseline for tendency cloud ice [kg - kg~ 1 - s~ 1]
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Figure A5. ML prediction (left) of the tendency of cloud ice, rain, and snow mmr averaged over
3 validation days (24 timesteps in total) compared with the ground truth (center) and a coarse reference
simulation (right) for a random day within the validation period. Colors represent the magnitude of the
mmr tendency, averaged over longitude. The x-axis is latitude, the y-axis is height, and white areas

indicate no change due to microphysics.
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Distributions of microphysical tendencies (standardized)
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Figure A6. Histograms of the microphysical tendencies averaged over 3 validation days (24 timesteps in
total) for the high-resolution ground truth (gray), coarse-resolution simulation (green), and ML
predictions (red). The histograms are standardized, and the number of entries is shown on a logarithmic
scale to improve readability.
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Table Al. Overview of all considered input and output features of the MLP model
Type Short name Description Unit
Input pf_mig (p) Air pressure Pa
Input ta_mig (7) Temperature K
Input qv_mig (m,) Water vapor mmr kg/kg
Input qc_mig (m,) Cloud water mmr kg/kg
Input qi_mig (m;) Cloud ice mmr kg/kg
Input qr_mig (m,) Rain mmr kg/kg
Input gs_mig (my) Snow mmr kg/kg
Input qg_mig (mg) Graupel mmr kg/kg
Output tend ta mig (AT) Tendency of temperature K/s
Output tend_qv_mig (Am,) Tendency of water vapor mmr kg/(kg-s)
Output tend qc_mig (Am,) Tendency of cloud water mmr kg/(kg-s)
Output tend _qi_mig (Am;) Tendency of cloud ice mmr kg/(kg-s)
Output tend_qr_mig (Am,) Tendency of rain mmr kg/(kg-s)
Output tend_gs_mig (Amy) Tendency of snow mmr kg/(kg:-s)
Output tend_qg_mig (Amy) Tendency of graupel mmr kg/(kg-s)
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