
ANZIAM J. 58(2017), 314–323
doi:10.1017/S1446181117000141

SCHEDULING ON TWO PARALLEL MACHINES WITH
TWO DEDICATED SERVERS

YIWEI JIANG1,2, PING ZHOU3, HUIJUAN WANG2 and JUELIANG HU) 2

(Received 24 May, 2016; accepted 15 October, 2016; first published online 25 May 2017)

Abstract

We study a nonpreemptive scheduling on two parallel identical machines with a
dedicated loading server and a dedicated unloading server. Each job has to be loaded
by the loading server before being processed on one of the machines and unloaded
immediately by the unloading server after its processing. The loading and unloading
times are both equal to one unit of time. The goal is to minimize the makespan. Since
the problem is NP-hard, we apply the classical list scheduling and largest processing
time heuristics, and show that they have worst-case ratios, 8/5 and 6/5, respectively.

2010 Mathematics subject classification: primary 90B35; secondary 90C27.

Keywords and phrases: scheduling, server, algorithm, worst-case ratio, makespan.

1. Introduction

In this paper, we consider a parallel-machine scheduling problem with two dedicated
servers: a loading server and an unloading server, which are used to load and unload
jobs onto and from the machines before and after their processing, respectively.
The applications of the scheduling with servers can be found in different areas,
such as flexible manufacturing systems (FMSs) [9], cellular manufacturing [1], the
semiconductor industry [8] and the steel-making industry [15].

The problem can be described as follows. We are given a sequence J =

{J1, J2, . . . , Jn} of n independent jobs, which must be processed on one of the two
identical machines M1 and M2. Job J j is associated with a loading time s j, a processing
time p j and an unloading time t j, all of which are positive integers. Each job J j has
to be loaded by the loading server S1 before its processing and the loading time is
s j. Similarly, after finishing processing, a job has to be unloaded by the unloading
server S2 from the machine and the unloading time is t j. Once the loading (unloading)

1College of Finance and Trade, Ningbo Dahongying University, Ningbo 315175, China;
e-mail: ywjiang@zstu.edu.cn.
2School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China; e-mail: hujlhz@163.com.
3College of Humanities, Zhejiang Business College, Hangzhou 310053, China.
c© Australian Mathematical Society 2017, Serial-fee code 1446-1811/2017 $16.00

314

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

http://orcid.org/0000-0002-9779-0613
http://orcid.org/0000-0003-0763-536X
mailto:ywjiang@zstu.edu.cn
mailto:hujlhz@163.com
https://doi.org/10.1017/S1446181117000141

[2] Scheduling on two parallel machines with two dedicated servers 315

is finished, the loading (unloading) server is free to load (unload) another job. The
servers cannot load or unload jobs onto or from a machine when the machine is
busy processing a job. Preemption is not considered in our paper. The objective is
to minimize the makespan, that is, the completion time of the last job. Using the
three-field notation for describing scheduling problems, we denote our problem as
P2, S 2|s j, t j|Cmax for j = 1, 2, . . . , n.

We use the worst-case ratio to measure the performance of an off-line
approximation algorithm A. The worst-case ratio can be defined as the smallest
number ρ such that for anyJ , CA(J) ≤ ρC∗(J),where CA(J) (or CA in short) denotes
the makespan produced by A and C∗(J) (or C∗ in short) denotes the optimal makespan.
A worst-case ratio ρ is called tight if there is an instanceJ such that CA(J) = ρC∗(J)
or CA(J)/C∗(J)→ ρ as some parameters of the instance tend to a finite value or
infinity.

Research on parallel-machine scheduling with servers is abundant. Kravchenko
and Werner [10] showed that the problem P2, S 1|s j = 1|Cmax is binary NP-hard and
proposed a pseudo-polynomial algorithm. Hall et al. [3] showed that the problem
P2, S 1|p j = 1|Cmax can be solved in polynomial time and the problem P2, S 1|s j =

s|Cmax is strongly NP-hard. Brucker et al. [2] showed that the problem P2, S 1|p j =

p|Cmax is NP-hard. Kim and Lee [8] gave several heuristics for the problem with an
arbitrary number of machines. Jiang et al. [4] considered the preemptive variant of the
scheduling, that is, P2, S 1|pmpt|Cmax. For an on-line variant of the problem, Zhang
and Wirth [16] applied the LS (list scheduling) heuristic for three special cases where
jobs arrive over time. Su [12] applied the LPT (largest processing time) heuristic for
the on-line problem where jobs arrive over list. For the variant P2,S1|s j = 1|Cmax, Jiang
et al. [6] showed that the competitive ratio of LS is at least 8/5 and provided an on-line
algorithm with competitive ratio of 11/7. In addition, Ou et al. [11] and Werner and
Kravchenko [14] studied the problem with multiple servers. Beside the objective of
minimizing the makespan, Hall et al. [3] considered the objectives of minimizing the
maximum lateness and the total completion time. Wang and Cheng [13] proposed an
approximation algorithm for the problem to minimize the total weighted completion
time.

For the problem involving both loading and unloading operations, Jiang et al. [7]
considered the case P2, S 1|s j = t j = 1|Cmax and showed that LS and LPT have tight
worst-case ratios of 12/7 and 4/3, respectively. For the on-line variant of P2, S1|s j =

t j = 1|Cmax, Jiang et al. [6] presented an on-line algorithm with competitive ratio of
5/3, which is an improvement of LS. For the preemptive variant of the problem, Jiang
et al. [5] provided an O(n log n) solution algorithm. Besides, Xie et al. [15] considered
a relaxation of the problem in which the unloading operation can be delayed after a
job finishes processing.

In this paper, we consider parallel-machine scheduling with two servers. Here
the server cannot only load the jobs, but also unload the jobs similar to those in all
the above-mentioned studies. Our problem can be reduced to the classical problem
P2|Cmax|. So, we assume that the servers are different, namely, one is dedicated to load

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000141

316 Y. Jiang et al. [3]

a job onto the machine before its processing (loading server) and the other is dedicated
to unload the job after its processing (unloading server). The loading and unloading
times are both equal to one time unit. Preemption is not considered here. Since our
problem, denoted by P2, S 2|s j = t j = 1|Cmax, is NP-hard, we consider approximation
algorithms and show that the worst-case ratios of the heuristics LS and LPT are at most
8/5 and 6/5, respectively.

The rest of the paper is organized as follows. In Section 2 we provide some
preliminaries and in Section 3 we analyse the structure of LS and derive its worst-
case ratio. In Section 4 we consider the performance of LPT. Finally, we conclude the
paper in Section 5.

2. Preliminaries

In this section, we present the lower bounds of the optimal makespan for our
problem and introduce a couple of notations and definitions.

Let e j denote the execution time of J j, that is, e j = s j + p j + t j, where the loading
time s j = 1, the unloading time t j = 1 and the processing time p j is a positive integer.
So, we have e j = p j + 2 ≥ 3. Let E =

∑n
i=1 ei be the total execution time of all the jobs

and emax be the largest execution time among all jobs, that is, emax = max1≤i≤n{ei}.
Denote by CA and C∗ the makespan produced by algorithm A and the optimal
makespan, respectively. In the subsequent algorithms, let l1j and l2j be the current
completion times of M1 and M2, respectively, before scheduling job J j. We obtain
the following result, similar to the result on the optimal makespan provided by Jiang
et al. [7].

Lemma 2.1. For the problem P2, S 2|s j = t j = 1|Cmax, we have C∗ ≥ max{emax, (E +

2)/2}.

Proof. It is clear that C∗ ≥ emax. On the other hand, when the loading server loads
the first job onto one of the machines, the other machine must be idle. Similarly, a
machine must be idle when the unloading server unloads the last completed job. Thus,
there are at least two idle time units in the optimal scheduling. Together with the total
execution time E, we can conclude that the optimal makespan is at least (E + 2)/2 and
the result holds. �

We introduce two definitions to simplify the expression in the sequel, which are
illustrated in Figure 1.

Definition 2.2. (i) Two adjacent time units are called a double unloading time unit if
each is a job unloading time. The end time of a double unloading time unit is called
an EDT point. (ii) The time zero is defined as the first EDT point.

Definition 2.3. (i) A block B in a schedule is defined as a period of time between
two adjacent EDT points. (ii) The period of time from the last EDT to the end of the
schedule is called an unfinished block B′.

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000141

[4] Scheduling on two parallel machines with two dedicated servers 317

Figure 1. Definitions of EDT, block and unfinished block; structure of LS schedule.

3. List scheduling heuristic

In this section, we apply the LS heuristic to tackle our problem. The LS assigns
the current job to the first available machine at the earliest possible time, which can be
described in detail as follows.

Algorithm 1 List scheduling

step 1 Initially set j = 1 and l1j = l2j = 0.
step 2 (Job assignment) If l1j ≤ l2j , assign J j to machine M1; otherwise, assign it to M2.
step 3 (Job execution) The loading of the job J j starts at the earliest time such that its

unloading time cannot be the same as that of the job processing on the other
machine.

step 4 If no new job arrives, stop. Otherwise, j = j + 1, return to step 2.

Proposition 3.1. The structure of the schedule σ by LS must be one of the following
three types:

(i) an unfinished block, that is, σ = B′;
(ii) a number of successive blocks, that is, σ = (B1,B2, . . . ,Bk);

(iii) a number of successive blocks followed by an unfinished block, that is, σ =

(B1,B2, . . . ,Bk,B
′).

Proof. The proof follows from the LS rule and Definitions 2.2 and 2.3. Generally, we
obtain the structure of schedule σ as shown in Figure 1. �

We provide an important property of the block B in the schedule produced by LS.

Proposition 3.2. For any blockB, there is at most one idle time unit in the middle ofB.

Proof. By the LS rule, we always schedule the job as early as possible. Therefore,
we conclude that no new idle time is introduced before the formation of the block B
(that is, it is currently an unfinished block). We consider the assignment of any job
Jk ∈ B, except the first job in the block B. Clearly, if ek − 1 ≤ |l1k − l2k | ≤ ek + 1, job Jk

must be scheduled at the time min{l1k , l
2
k}, without introducing new idle time. On the

other hand, if ek = |l1k − l2k |, for job Jk, LS must schedule it at the time min{l1k , l
2
k} + 1

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000141

318 Y. Jiang et al. [5]

and an idle time unit is consequently introduced. At the same time, however, a block
is formed after scheduling this job. Hence, there is at most one idle time unit in the
middle of the block and the proof is complete. �

Let r(B) and r(B′) be the numbers of idle time units in the block B and the
unfinished block B′, respectively.

Corollary 3.3. For the general LS schedule σ = (B1,B2, . . . ,Bk,B
′), we have:

(i) r(B1) = 1 or 2; furthermore, r(B1) = 2 or 3 if r(B′) = ∅ and k = 1;
(ii) r(Bi) = 0 or 1 for any 2 ≤ i ≤ k; furthermore, r(Bk) = 1 or 2 if r(B′) = ∅;

(iii) r(B′) = 0 if k > 0 and r(B′) = 1 if k = 0.

Proof.

(i) It is clear that there is an idle time unit at the beginning of the block. Then we
have r(B1) = 1 or 2 due to Proposition 3.2. Moreover, if r(B′) = ∅ and k = 1, that
is, the obtained LS schedule consists of a single block, then we have r(B1) = 2
or 3 with the fact that there is an idle time unit at the end of the block.

(ii) For any 2 ≤ i ≤ k, we obtain that the idle time produced at the end of block Bi

can be used to load the first job in the next block Bi+1 as shown in Figure 1. This
implies that there is no idle time at the beginning and the end of the block. Thus,
we have r(Bi) = 0 or 1 by Proposition 3.2. If r(B′) = ∅, there is an idle time unit
at the end of the block Bk and thus r(Bk) = 1 or 2.

(iii) Note that there is no more idle time before the formation of a block. If k > 0,
there is no idle time at the beginning of B′ and thus r(B′) = 0. If k = 0,
that is, σ = B′, there thus is an idle time unit at the beginning of B′, that is,
r(B′) = 1. �

We now show that the worst-case ratio of LS is 8/5. Let l(B) and e(B) be the time
length of a block B and the total execution time of all the jobs in B, respectively.

Theorem 3.4. The worst-case ratio of LS is at most 8/5.

Proof. Let Jl be the last completed job and T be the start time of Jl; then CLS = T + el.
We consider two cases according to the structure of the schedule σ by Proposition 3.1.

Case 1. σ = B′. This is a single unfinished block. From Corollary 3.3(iii), we have
r(B′) = 1. From Lemma 2.1, it follows that the total execution time of all the jobs is at
least 2T − 1 + el and C∗ ≥ max{(2T + el + 1)/2, el} > max{(2T + el)/2, el}. Hence,

CLS

C∗
≤

T + el

max{(2T + el)/2, el}
≤

2T + 2el

2T + el
≤

3
2
<

8
5
, el ≤ 2T ,

T + el

el
≤

3
2
<

8
5
, el > 2T .

Case 2. σ = (B1,B2, . . . ,Bk,B
′). Let X =

∑k
i=1 l(Bi) be the total length of all the k

blocks. Note that l(B1) ≥ 4 and l(Bi) ≥ 3 for any 2 ≤ i ≤ k, since ei ≥ 3 for all 1 ≤ i ≤ n.

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000141

[6] Scheduling on two parallel machines with two dedicated servers 319

Thus,
X ≥ 3k + 1. (3.1)

If B′ = ∅, the total idle time is
∑k

i=1 r(Bi) ≤ k + 2 from Corollary 3.3(i) and (ii),
implying that E ≥ 2X − (k + 2). Noting that CLS = X and C∗ ≥ {2X − (k + 2) + 2}/2
due to Lemma 2.1,

CLS

C∗
≤

2X
2X − k

≤
2X

5X/3 + 1/3
<

6
5
<

8
5
.

If B′ , ∅, then, from Corollary 3.3, the total idle time is
∑k

i=1 r(Bi) ≤ k + 1 . Note
that B′ is scheduled after all the blocks, so the last completed job Jl must belong to B′.

If Jl is one of the first two jobs in B′, we have CLS = T + el ≤ X + el and E ≥
2X − (k + 1) + el ≥ 5X/3 − 2/3 + el, due to the inequality (3.1). From Lemma 2.1,

C∗ ≥ max
{5X/3 − 2/3 + el + 2

2
, el

}
≥ max

{5X/3 + 4/3 + el

2
, el

}
and, thus,

CLS

C∗
≤

X + el

max{(5X/3 + 4/3 + el)/2, el}
<

8
5
.

On the other hand, if Jl is not one of the first two jobs inB′, then there is at least one
job Jx in B′ that is scheduled before Jl, that is, ∆ = T − X ≥ ex − 1 ≥ 2. Let e(∆) be
the total execution time of the jobs processed on the two machines during the period
of time from X to T . Since there is no idle time in the middle of B′, we have e(∆) = 2∆

and thus E ≥ 2X − (k + 1) + e(∆) + el ≥ 5X/3 − 2/3 + el + 2∆ > 5(X + ∆)/3 − 2/3 + el
due to (3.1). Noting that CLS = T + el = X + ∆ + el and

C∗ ≥ max
{5(X + ∆)/3 + el + 4/3

2
, el

}
,

CLS

C∗
≤

(X + ∆) + el

max{(5(X + ∆)/3 + el + 4/3)/2, el}
<

8
5
.

The proof is now complete. �

4. LPT heuristic
In this section, we apply LPT to tackle our problem and show that its worst-case

ratio is at most 6/5. We describe LPT in detail in Algorithm 2.

Algorithm 2 Largest processing time

1. Sort all the jobs such that e1 ≥ e2 ≥ · · · ≥ en.
2. For any job Ji, 1 ≤ i ≤ n, schedule it by LS.

Note that the schedule σ produced by LPT is a list schedule with the jobs originally
listed in nonincreasing order of their processing times, so Propositions 3.1 and 3.2,
and Corollary 3.3, still apply in this section.

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000141

320 Y. Jiang et al. [7]

Lemma 4.1. If σ = B′, we have CLPT/C∗ ≤ 6/5.

Proof. Let l1 and l2 be the completion times of the machines M1 and M2, respectively.
Without loss of generality, we assume that l1 ≤ l2 and the last completion job is Jn.
Let T be the start time of job Jn, that is, CLPT = l2 = T + en. If there is only one job
on the machine M1, it is not difficult to obtain that the schedule generated by LPT is
optimal. So, we assume that at least two jobs are processed on the machine M1 and
thus l1 ≥ 2en. Since σ = B′, we conclude that there is only one idle time unit from
Corollary 3.3(iii), which implies that E = l1 + l2 − 1 and thus

C∗ ≥
l1 + l2 − 1 + 2

2
=

l1 + T + en + 1
2

.

Noting that no block is formed, the difference between the completion times of two
machines is at least two time units after scheduling any job. Then we have T ≤ l1 − 2.
Hence,

CLPT

C∗
≤

2T + 2en

l1 + T + en + 1
≤

2(l1 − 2) + 2en

l1 + l1 − 2 + en + 1
=

2l1 + 2en − 4
2l1 + en − 1

≤
6en − 4
5en − 1

<
6
5
. �

Next, we consider the case where the schedule σ consists of k (k ≥ 1) blocks
B1,B2, . . . ,Bk. Similar to the previous section, let l(Bi) and e(Bi) be the time length
of a block Bi and the total execution time of all the jobs in Bi, respectively, and denote
X =

∑k
i=1 l(Bi). Let q be the execution time of the smallest job in all the k blocks.

There are at least k jobs on each machine, because we have k blocks. Since there is at
least one idle time at the beginning of the schedule, we conclude that

X ≥ kq + 1. (4.1)

We first consider the case where B′ = ∅.

Lemma 4.2. If B′ = ∅, that is, σ = (B1,B2, . . . ,Bk), then CLPT/C∗ ≤ 6/5.

Proof. Suppose that there is only one block, that is, k = 1. By Corollary 3.3(i), there
are at most three idle time units. It implies that CLPT ≤ (E + 3)/2 and, thus,

CLPT

C∗
≤

(E + 3)/2
(E + 2)/2

≤ 6/5,

since E ≥ 3. So, we assume that k ≥ 2 below.
From Corollary 3.3(i) and (ii), we obtain that r(B1) ≤ 2, r(Bk) ≤ 2 and r(Bi) ≤ 1 for

any 2 ≤ i ≤ k − 1. It means that the total idle time is at most k + 2 time units, that is,
E ≥ 2X − (k + 2). From the inequality (4.1), CLPT = X ≥ kq + 1 > kq. Thus,

CLPT

C∗
≤

X
(E + 2)/2

≤
X

(2X − k)/2
=

1
1 − (k/2X)

≤
1

1 − (1/2q)
≤

6
5
,

where the last inequality holds because q ≥ 3. �

We next consider the case where B′ , ∅, which implies that the last completed job
Jl belongs to B′. By LPT, the execution time of Jl is not greater than any one of the

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000141

[8] Scheduling on two parallel machines with two dedicated servers 321

jobs in
⋃

1≤i≤k Bi, that is,
el ≤ q. (4.2)

Before giving the result for this case, we draw a conclusion for the job Jl as follows.

Lemma 4.3. If B′ , ∅, the job Jl cannot be the second job to be processed in B′.

Proof. Denote by Jx and Jy the first job and the second job, respectively, to be
processed in B′. Note that the job Jx must be loaded at time X − 1, because there
is an idle time at the end of the block Bk on one machine, while the job Jy must be
scheduled on the other machine, which is available at time X. Note that ex ≥ ey by the
LPT rule. It is clear that the job Jy is completed earlier than the job Jx if ey ≤ ex − 3.
On the other hand, if ex − 2 ≤ ey ≤ ex, Jx and Jy form a new block, which contradicts
the fact that both jobs are in B′. Hence, the second job Jy must be completed earlier
than the first job Jx, that is, Jl cannot be the second job in B′. �

Lemma 4.4. If σ = (B1,B2, . . . ,Bk,B
′), then CLPT/C∗ ≤ 6/5.

Proof. We begin with a special case where Jl is the first job in B′. Then

CLPT = X + el − 1.

Two cases are considered according to the number of the blocks.

Case (a). Let k = 1. If the block B1 exactly consists of two jobs, that is, J1 and J2, it
implies that Jl is the third job J3. We focus on the assignment of the job J3. If J3 and J2
are scheduled on the same machine, we must have e1 = e2 + 2 and CLPT = e2 + e3 + 1.
On the other hand, if J3 and J1 are scheduled on the same machine, then we have
e1 − 1 ≤ e2 ≤ e1 and thus CLPT = e1 + e3 ≤ e2 + e3 + 1. Obviously, C∗ ≥ e2 + e3. Hence,
CLPT/C∗ ≤ (e2 + e3 + 1)/(e2 + e3) < 6/5, since e2 ≥ e3 ≥ 3.

If there are at least three jobs in the block, then X = l(B1) ≥ 2q ≥ 2el. By
Corollary 3.3(i), there are at most three idle time units in the block before scheduling
Jl, so it follows that E ≥ 2X − 3 + el and C∗ > (2X + el − 1)/2. Therefore,

CLPT

C∗
≤

X + el − 1
(2X + el − 1)/2

≤
2X + 2el − 2
2X + el − 1

≤
6el − 2
5el − 1

<
6
5
.

Case (b). Let k ≥ 2. From the inequalities (4.1) and (4.2), we have X≥ kq + 1≥ kel + 1.
By Corollary 3.3(i) and (ii), there are at most k + 2 idle time units in all k blocks before
scheduling Jl. Thus, we have E ≥ 2X − (k + 2) + el and C∗ > (2X + el − k)/2, from
which it follows that

CLPT

C∗
≤

X + el − 1
(2X + el − k)/2

≤
2X + 2el − 2
2X + el − k

≤
2kel + 2 + 2el − 2
2kel + 2 + el − k

=
2elk + 2el

(2el − 1)k + el + 2
≤

6
5
,

where the last inequality holds because k ≥ 2 and el ≥ 3.

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000141

322 Y. Jiang et al. [9]

Now we consider the case where Jl is not the first job in B′. Together with
Lemma 4.3, we assume that Jl is not the first two jobs in B′. Let T be the start time of
the job Jl and ∆ = T − X, that is, CLPT = T + el = X + ∆ + el.

Moreover, at least one job in B′ is processed during the time interval [X, T] on
the machine processing Jl. Then we have ∆ = T − X ≥ el − 1. Noting that in B′,
the difference between the completion times of two machines is at least two time
units after scheduling any job, the completion time of the machine without processing
Jl is at least T + 2. Besides, it is easy to obtain that there are at most k + 1 idle
time units by Corollary 3.3. Therefore, we have E ≥ (T + 2) + (T + el) − (k + 1) =

2T + el − k + 1 and thus C∗ ≥ (2T + el − k + 3)/2 = (2X + 2∆ + el − k + 3)/2. Hence,
by the inequalities (4.1) and (4.2),

CLPT

C∗
≤

2X + 2∆ + 2el

2X + 2∆ + el − k + 3

≤
2kel + 2 + 2(el − 1) + 2el

2kel + 2 + 2(el − 1) + el − k + 3

=
2kel + 4el

2kel + 3el − k + 3
<

6
5
,

where the last inequality holds because k ≥ 1 and el ≥ 3. �

Summarizing the results from Lemmas 4.1, 4.2 and 4.4, we conclude the section
with the following result.

Theorem 4.5. The worst-case ratio of LPT is at most 6/5.

5. Conclusion
We studied a parallel-machine scheduling with two servers to minimize the

makespan, where each job has to be loaded by a loading server and unloaded by an
unloading server, respectively, before and after being processed on one of the two
machines. We assumed that both loading and unloading take one unit of time, and
showed that LS and LPT have worst-case ratios of 8/5 and 6/5, respectively. Note that
the bounds of our two algorithms are not tight, so it is very interesting to find their
tight bounds. In addition, it is also worth studying the performance of LS and LPT for
the scheduling on m machines.

Acknowledgements
The work is partially supported by China NSF, Grant Nos. 11571013 and 11471286,

and Zhejiang Provincial NSF of China under Grant No. LY14A010031.

References
[1] G. Batur, O. Karasan and M. Akturk, “Multiple part-type scheduling in flexible robotic cells”, Int.

J. Product. Econ. 135 (2012) 726–740; doi:10.1016/j.ijpe.2011.10.006.
[2] P. Brucker, C. Dhaenens-Flipo, S. Knust, S. A. Kravchenko and F. Werner, “Complexity results

for parallel machine problems with a single server”, J. Sched. 5 (2002) 429–457;
doi:10.1002/jos.120.

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1016/j.ijpe.2011.10.006
https://doi.org/10.1002/jos.120
https://doi.org/10.1017/S1446181117000141

[10] Scheduling on two parallel machines with two dedicated servers 323

[3] N. Hall, C. Potts and C. Sriskandarajah, “Parallel machine scheduling with a common server”,
Discrete Appl. Math. 102 (2000) 223–243; doi:10.1016/S0166-218X(99)00206-1.

[4] Y. Jiang, J. Dong and M. Ji, “Preemptive scheduling on two parallel machines with a single server”,
Comput. Ind. Eng. 66 (2013) 514–518; doi:10.1016/j.cie.2013.07.020.

[5] Y. Jiang, H. Wang and P. Zhou, “An optimal preemptive algorithm for the single-server parallel-
machine scheduling with loading and unloading times”, Asia-Pac. J. Oper. Res. 32 (2014) 11
pages; doi:10.1142/S0217595914500390.

[6] Y. Jiang, F. Yu, P. Zhou and J. Hu, “Online algorithms for scheduling on two parallel machines
with a single server”, Int. Trans. Oper. Res. 22 (2015) 913–927; doi:10.1111/itor.12136.

[7] Y. Jiang, Q. Zhang, J. Hu, J. Dong and M. Ji, “Single-server parallel-machine schduling with
loading and unloading times”, J. Comb. Optim. 30 (2015) 201–213;
doi:10.1007/s10878-014-9727-z.

[8] M. Y. Kim and Y. H. Lee, “MIP models and hybrid algorithm for minimizing the makespan
of parallel machines scheduling problem with a single server”, Comput. Oper. Res. 39 (2012)
2457–2468; doi:10.1016/j.cor.2011.12.011.

[9] C. Koulamas, “Scheduling two parallel semiautomatic machines to minimize machine
interference”, Comput. Oper. Res. 23 (1996) 945–956; doi:10.1016/0305-0548(96)00011-1.

[10] S. Kravchenko and F. Werner, “Parallel machine scheduling problems with a single server”, Math.
Comput. Modelling 26 (1997) 1–11; doi:10.1016/S0895-7177(97)00236-7.

[11] J. Ou, X. Qi and C. Lee, “Parallel machine scheduling with multiple unloading servers”, J. Sched.
13 (2010) 213–226; doi:10.1007/s10951-009-0104-1.

[12] C. Su, “Online LPT algorithms for parallel machines scheduling with a single server”, J. Comb.
Optim. 26 (2013) 480–488; doi:10.1007/s10878-011-9441-z.

[13] G. Wang and T. C. E. Cheng, “An approximation algorithm for parallel machine scheduling with
a common server”, J. Oper. Res. Soc. 52 (2001) 234–237; doi:10.1057/palgrave.jors.2601074.

[14] F. Werner and S. Kravchenko, “Scheduling with multiple servers”, Autom. Remote Control 71
(2010) 2109–2121; doi:10.1134/S0005117910100103.

[15] X. Xie, Y. Li, H. Zhou and Y. Zheng, “Scheduling parallel machines with a single server”, in:
Measurement, information and control (MIC) (IEEE, Harbin, China, 2012) 453–456;
doi:10.1109/MIC.2012.6273340.

[16] L. Zhang and A. Wirth, “On-line scheduling of two parallel machines with a single server”,
Comput. Oper. Res. 36 (2009) 1529–1553; doi:10.1016/j.cor.2008.02.015.

https://doi.org/10.1017/S1446181117000141 Published online by Cambridge University Press

https://doi.org/10.1016/S0166-218X(99)00206-1
https://doi.org/10.1016/j.cie.2013.07.020
https://doi.org/10.1142/S0217595914500390
https://doi.org/10.1111/itor.12136
https://doi.org/10.1007/s10878-014-9727-z
https://doi.org/10.1016/j.cor.2011.12.011
https://doi.org/10.1016/0305-0548(96)00011-1
https://doi.org/10.1016/S0895-7177(97)00236-7
https://doi.org/10.1007/s10951-009-0104-1
https://doi.org/10.1007/s10878-011-9441-z
https://doi.org/10.1057/palgrave.jors.2601074
https://doi.org/10.1134/S0005117910100103
https://doi.org/10.1109/MIC.2012.6273340
https://doi.org/10.1016/j.cor.2008.02.015
https://doi.org/10.1017/S1446181117000141

	Introduction
	Preliminaries
	List scheduling heuristic
	LPT heuristic
	Conclusion
	References

