J. Austral. Math. Soc. (Series A) 35 (1983), 236-253

THE BURKILL APPROXIMATELY CONTINUOUS INTEGRAL

P. S. BULLEN

(Received 21 December 1981)

Communicated by Gavin Brown

Abstract

This paper defines descriptive, Riemann, and constructive integrals equivalent to the approximately continuous integral of Burkill.

1980 Mathematics subject classification (Amer. Math. Soc.): 26 A 39.

1. Introduction

The simplest and most natural integral that integrates finite approximate derivatives is that of Burkill, [4]. However except for an important work of Tolstov, [25], it has not received much attention, in contrast to some fairly extensive investigations of other approximately continuous integrals; see Bullen, [3], for details and references. In this paper several alternative definitions of this Perron integral will be given; a descriptive integral, a totalization process, and a Riemann-like integral that has been suggested by Henstock, [6-8].

2. The Burkill integral and its basic properties

DEFINITION 1. (a) Let $f: [a, b] \to \overline{\mathbf{R}}$; then M is a major function of $f, M \in M_f^{\#}$, if and only if $M: [a, b] \to \mathbf{R}$ and:

(i) M is approximately continuous, $M \in C_{ap}$;

[[]This work was done while the author was a visiting professor at the University of Melbourne.] @ 1983 Australian Mathematical Society 0263-6115/83 \$A2.00 + 0.00

(ii) M(a) = 0; (iii) $lM'_{ap} > -\infty$ n.e. (except on a countable set); (iv) $lM'_{ap} \ge f$ a.e. (b) *m* is a minor function of *f*, $m \in M_{\#,f}$, if and only if $-m \in M_{-f}^{\#}$.

(c) F is
$$P_{ap}^*$$
-integrable, $f \in P_{ap}^*$ if and only if

 $-\infty < \sup\{t; t = m(b), m \in M_{\#,f}\} = \inf\{t; t = M(b), M \in M_f^{\#}\} < \infty,$

when the common value will be written $\int_a^f f$.

REMARKS. (1) In case of ambiguity we will talk about P_{ap}^* -major functions on [a, b], and so on.

(2) Clearly if $f \in P_{ap}^*$ then $M_f^{\#} \neq \emptyset$, $M_{\#,f} \neq \emptyset$.

LEMMA 2. (a) If $M \in M_f^{\#}$ then M is measurable, $M \in l[ACG]$, M'_{ap} exists, finite, a.e.

(b) If $M \in M_f^{\#}$ and $m \in M_{\#,f}$ then M - m is non-negative, increasing, continuous and differentiable a.e.

(c) If $M_f^{\#} \neq \emptyset$ then $f < \infty$ a.e. (d) If $f \in P_{ap}^{*}$ then f is finite a.e.

PROOF. (a) follows from results due to Ridder, [17, 18], while (b) follows from a result of Tolstov, [24], and O'Malley, [15], Sunouchi and Utagawa, [22]. (c), (d) are easy consequences of Definition 1.

REMARKS. (1) A function is l[ACG] when [a, b] is a countable union of closed sets on each of which it is lower absolutely continuous (see Ridder, [17-18]).

(2) The basic properties of the integral follow in the usual way; see, for instance, Burkill, [4]. In particular if $f \in P_{ap}^*$ then the P_{ap}^* -primitive, $F(x) = \int_a^x f$, $a \le x \le b$, is well-defined.

THEOREM 3. (a) If $f \in P_{ap}^*$, $M \in M_f^{\#}$, $m \in M_{\#,f}$, $F(x) = \int_a^x f$ then M - F and F - m are non-negative, increasing, continuous and differentiable a.e.

(b) If $f \in P_{ap}^*$, $F(x) = \int_a^x f$ then $F \in [ACG]$, $F \in C_{ap}$ and $F'_{ap} = f$ a.e.

(c) If $f \in P_{ap}^*$ then f is measurable.

(d) If $F \in C_{ap}$ and (i) $F'_{ap}(x)$ exists, finite, $x \notin E$, |E| = 0, (ii) uF'_{ap} and $|F'_{ap}$ are finite n.e., then if

$$f(x) = F'_{ap}(x), \qquad x \notin E,$$

= 0, $x \in E,$

 $f \in P^*_{ap}$.

(e) The P_{ap}^* - and the D-integrals are compatible. (f) If $f \in P_{ap}^*[\alpha, \beta]$, for all $\alpha, \beta, a < \alpha < \beta < b$ and if

$$\lim_{\substack{\alpha \to a \\ \beta \to b}} \int_{\alpha}^{\beta} f$$

exists, with value I say, then $f \in P_{ap}^*[a, b]$ and $\int_a^b f = I$.

(g) Let $f \in P_{ap}^*$, $F(x) = \int_a^x f$ then for all λ , $0 < \lambda < 1$, P perfect, there exists a closed portion, Q, of P, having, on [a, b], closed contiguous intervals $[a_n, b_n]$, $n \in N$, such that for all $n \in N$ there exists an $E_n \subset [a_n, b_n]$, and an M > 0, with $|E_n| \ge (1 - \lambda)(b_n - a_n)$ and such that for all $x_n \in E_n$, $\sum_n |F(x_n) - F(a_n)| < M$ and $\sum_n |F(b_n) - F(x_n)| < M$. (h) $D - P_{ap}^* \neq \emptyset$ and $P_{ap}^* - D \neq \emptyset$.

PROOF. (b) is due to Kubota, [9]; (e) is in Kubota, [10]; (f) is a result of Grimshaw, [5]; (g) is due to Tolstov, [25]; the rest either follow easily from Lemma 2, or other parts of Theorem 3, or can be found in these references, or in Burkill, [4].

Definition 1 is not exactly that given in Burkill, [4], and the object of the next lemma is to show that the two definitions give equivalent integrals. Let Definition 1(a) be modified by replacing (iii) and (iv) by:

(iii)¹ $M'_{ap} > -\infty$;

$$(\mathrm{iv})^1 \ M'_{ap} \ge f;$$

and denote the resulting class of major functions by $M_{\ell}^{\#1}$. Clearly $M_{\ell}^{\#1} \subset M_{\ell}^{\#}$.

LEMMA 4. For all $\varepsilon > 0$, $M \in M_f^{\#}$ there exists $M^1 \in M_f^{\#1}$ such that

(1)
$$M^{1}(b) \leq M(b) + \varepsilon.$$

PROOF. (a) Suppose Definition 1(a) is modified by replacing (iii) by:

(iii)² $lM'_{ap} > -\infty$, and call the resulting class of major functions $M_f^{\#2}$. We first prove the lemma with 1 replaced by 2.

First suppose that the countable exceptional set in Definition 1(a)(iii) is the singleton $\{c\}$, a < c < b (the cases c = a, c = b can be discussed in a similar way).

Let $\varepsilon > 0$, $M \in M_f^{\#}$ and let A be a set of density 1 at c on which M is continuous; choose a_1, b_1 so that $a < a_1 < c < b_1 < b$ and the oscillation of M on $A \cap [a_1, b_1]$ is less than ε . Define ω by

$$\omega(x) = \sup\{t: t = |M(y) - M(c)|, y \in A, |y - c| \le |x - c|\}$$

and let χ be an increasing, differentiable function with $\chi(a) = 0$, $\chi(b) = \varepsilon$, $\chi'(c) = \infty$. Now define

$$M^{2}(x) = M(x) + \chi(x), \quad a \le x \le a_{1},$$

= $M(x) + \chi(x) + \omega(a_{1}) - \omega(x), \quad a_{1} \le x \le c,$
= $M(x) + \chi(c) + \omega(a_{1}) + \omega(x), \quad c \le x \le b_{1},$
= $M(x) + \chi(x) + \omega(a_{1}) + \omega(b_{1}), \quad b_{1} \le x \le a;$

then $M^2 \in M_f^{\#2}$ and (1) holds.

If we let $\Delta = M^2 - M = \chi + \mu$ then the essential properties of μ are that it is increasing, continuous, $\mu(a) = 0$, $\mu(b) < 2\varepsilon$, and on a set of *h* having density 1 at the origin

$$M(c+h) - M(c) + \mu(c+h) - \mu(c) \geq 0.$$

Now suppose that the countable exceptional set in Definition 1(a)(iii) is c_n , $n \in N$, and for each c_n define a Δ_n , as Δ was defined above, but with ε replaced by $\varepsilon 2^n$; then if $M^2 = M + \sum_n \Delta_n$, $M \in M_f^{\# 2}$ and (1) holds.

(b) From Lemma 2(a) it follows that (iv), in the definition of $M_f^{\#2}$, can be replaced by

 $(\mathrm{iv})^2 M'_{ap} \ge f$, a.e.,

without affecting the definition of the integral.

(c) From (b) given $\varepsilon > 0$, $M \in \tilde{M}_f$ there exists $M^2 \in M_f^{\#2}$, satisfying $(iv)^2$, such that (1) holds. Now let

$$E = \left\{ x; (M^2)'_{ap}(x) < F(x), \text{ or } (M^2)'_{ap}(x) \text{ does not exist} \right\};$$

then |E| = 0. If then $T \in G_{\delta}$, $E \subset T$, |T| = 0 there exists a function $g: [a, b] \to \mathbb{R}$ such that (i) $g \in AC$, (ii) g is increasing, (iii) g is differentiable, (iv) $g'(x) = \infty$, $x \in T$, (v) $g'(x) \neq \infty$, $x \notin T$, (vi) g(a) = 0, (vii) $g(b) \leq \varepsilon$; Zahorski, [27], Tolstov, [26]. Now if $M^1 = M^2 + g$ then $M^1 \in M_f^{\pm 1}$ and (1) holds.

REMARKS. (1) The basic ideas for this lemma can be found in Aleksandrov, [1], Bosanquet, [2] and Grimshaw, [5].

(2) Burkill used the class $M_f^{\#2}$ to define his integral. It should also be remarked that there would be no loss in generality in assuming, in Definition 1, that f is finite, for in any case integrable functions are finite a.e. and if $f_1 = f_2$ a.e. then f_1 and f_2 are either both not integrable, or both integrable with the same integral.

Following Henstock, [6], a definition of Ward type can be given. Suppose Definition 1(a) is modified by replacing (iii) and (iv) by:

(iii)^W For all $x, a \le x \le b$, there exists a set E_x of density 1 at x such that $M(u) - M(v) \ge f(x)(u-v), u \le x \le v, u, v \in E_x$, and call the resulting class of major functions $WM_f^{\#}$.

[4]

P. S. Bullen

As in Henstock it follows that the integral defined this way, the WP_{ap}^* -integral, is equivalent to the one obtained from Definition 1 in which all the exceptional sets (Definition 1(a), (iii), (iv)) are empty, and the function f finite. Hence from the above discussion this integral of Ward type is equivalent to the P_{ap}^* -integral.

A different sort of variant of Definition 1 has been given by Sunouchi and Utagawa, [22]. In Definition 1(a) replace (1), (iii) and (iv) by:

SU-(i) M is measurable;

SU-(iii) $lM'_{ap} > -\infty$ (that is, (iii)²); SU-(iv) $lM'_{ap} \ge f$.

REMARK. The idea for this generalization is due to Saks, [20], who did the same for the classical Perron integral; he showed that the apparently more general integral was in fact equivalent to the original definition. We shall do the same in the present situation; until then we will call the integral defined this way the $SU-P_{ap}^*$ -integral. In their work, Sunouchi and Utagawa assumed f to be measurable but this is unnecessary as this property of integrable f can be proved (Theorem 3(c)).

3. A Riemann definition

A Riemann definition of an integral equivalent to the Burkill integral is suggested in Henstock, [7, 8], but no details are given.

DEFINITION 1. (a) A collection, Δ , of closed sub-intervals of [a, b] is an approximate full cover of [a, b], an AFC, if and only if for all $x, a \le x \le b$, there exists a measurable set $D_x, x \in D_x$, of density 1 at x, such that if $\alpha \le x \le \beta$, $\alpha, \beta \in D_x$, then $[\alpha, \beta] \in \Delta$.

(b) If Δ is an AFC of [a, b] then a Δ -partition of [a, b] is a $\{a_0, \ldots, a_n; x_1, \ldots, x_n\}$, where $a = a_0 < \cdots < a_n = b$, $a_{i-1} \le x_i \le a_i$, a_{i-1} , $a_i \in D_{x_i}$, $1 \le i \le n$.

LEMMA 2. If Δ is an AFC of [a, b] and $a \leq \alpha < \beta \leq b$ then there exists a Δ -partition of $[\alpha, \beta]$.

PROOF. This is a result of Thomson, [23].

DEFINITION 3. (a) If $f: [a, b] \to r \mathbf{R}$ then f is R^*_{ap} -integrable, $f \in R^*_{ap}$, if and only if there exists I such that for all $\varepsilon > 0$ there exists AFC, Δ , of [a, b], such

that for all Δ -partitions $\{a_0, \ldots, a_n; x_1, \ldots, x_n\}$ of [a, b] we have that

$$\left|I-\sum_{i=1}^n f(x_i)(a_i-a_{i_1})\right|<\varepsilon,$$

and then $\int_{a}^{b} f = I$.

(b) If $f: [a, b] \to \mathbf{R}$ then f is VR^*_{ap} -integrable, $f \in VR^*_{ap}$, if and only if there exists $F: [a, b] \to \mathbf{R}$ such that for all $\varepsilon > 0$ there exists AFC, Δ , of [a, b], and a non-decreasing $\phi: [a, b] \to \mathbf{R}$, with $\phi(b) - \phi(a) < \varepsilon$, such that for all u, v, $u \le x \le v$, $u, v \in D_x$, we have

$$|F(v) - F(u) - f(x)(v - u)| \leq \phi(v) - \phi(u),$$

$$F(b) - F(a)$$

and then $\int_a^b f = F(b) - F(a)$.

REMARKS. (1) The R_{ap}^* -integral is an example of what Henstock, [6], calls a Riemann complete integral, while the VR_{ap}^* -integral is an example of what he calls a variational integral; see also Kubota, [13, 14].

(2) The basic properties of these integrals follow in the standard manner; in particular we can talk of the R_{ap}^* -primitive, and the function F in (b) above (unique by Theorem 5 below) is the VR_{ap}^* -primitive.

(3) It is also easily seen that if R^* denotes Henstock's Riemann complete integral, that is equivalent to the classical Perron integral, then $R^* \subseteq R^*_{ap}$.

LEMMA 4. (a) $f \in R_{ap}^*$, with primitive F, if and only if for all $\varepsilon > 0$ there exists AFC, Δ , of [a, b], such that for all Δ -partitions $\{a_0, \ldots, a_n; x_1, \ldots, x_n\}$ of [a, b] we have that

$$\sum_{i=1}^{n} |F(a_i) - F(a_{i-1}) - f(x_i)(a_i - a_{i-1})| < \varepsilon.$$

(b) There is no loss in generality if, in Definition 3(b), it is assumed that $\phi \in C_{ap}$.

PROOF. The proofs are similar to those for the R^* -integral; Henstock, [7; page 33, 41].

THEOREM 5. $f \in \mathbb{R}^*_{ap}$ if and only if $f \in V\mathbb{R}^*_{ap}$, and then the integrals are equal.

PROOF. The proof follows that in Henstock [7; page 40]; see also Kubota [14].

Remark. If $E \subset [a, b]$, |E| = 0 and if

$$1_E(x) = 1, \qquad x \in E, \\ = 0, \qquad x \notin E,$$

then $1_E \in R^*$ and $\int_a^b 1_E = 0$: This can be used, in the usual way, to extend Definition 3 to functions that are finite a.e.

Let Δ be an AFC of [a, b], $\pi = \{a_0, \dots, a_n; x_1, \dots, x_n\}$ a Δ -partition of [a, b]; following Pfeffer, [16], we will write

$$S(f; a, b; \pi) = \sum_{i=1}^{ns} f(x_i)(a_i - a_{i-1}),$$

$$uS(f; a, b; \Delta) = \sup_{\pi} S(f; a, b; \pi),$$

$$uS(f; a, b) = \inf_{\Delta} uS(f; a, b; \Delta),$$

with analogous definitions of $lS(f; a, b; \Delta)$ and lS(f; a, b).

THEOREM 6. $f \in R^*_{ap}$ if and only if $-\infty < lS(f; a, b) = uS(f; a, b) < \infty$.

PROOF. The proof follows that in Pfeffer, [16].

We can now show that the P_{ap}^* - and $SU-P_{ap}^*$ -integrals are equivalent, and are equivalent to the R_{ap}^* -integral.

LEMMA 7. If
$$A = \inf\{t; t = M(b), M \in SU-M_t^{\#}\}$$
 then $A \ge uS(f; a, b)$.

PROOF. Let us assume A < uS(f; a, b), when there exists $M \in SU-M_f^{\#}$ such that M(b) < uS(f; a, b).

Given $\varepsilon > 0$, $x, a \le x \le b$, set E_x of density 1 at x such that if $u, v \in E_x$ then $M(v) - M(u) \ge (f(x) - \varepsilon)(v - u).$

This defines an AFC, Δ , of [a, b]; let $\pi = \{a_0, \dots, a_n; x, \dots, x_n\}$ be a Δ -partition of [a, b] and consider

$$S(f, a, b; \pi) = \sum_{i=1}^{n} f(x_i)(a_i - a_{i-1}) \leq M(b) + \varepsilon(b - u);$$

or

 $uS(f; a, b) \leq M(b).$

COROLLARY 8. $SU-P_{ap}^* \subset R_{ap}^*$.

PROOF. Immediate from Lemma 7 and Theorem 6.

LEMMA 9. $VR_{ap}^* \subset P_{ap}^*$.

PROOF. Let $f \in VR_{ap}^*$, F, ϕ as given in Definition 3(b), $\phi \in C_{ap}$, by Lemma 4(b); consider

$$\mathbf{M}=\mathbf{F}+\mathbf{\phi},\qquad \mathbf{m}=\mathbf{F}-\mathbf{\phi}.$$

Then $M \in WM_{f}^{\#}$, $m \in WM_{\#,f}$ and so $f \in WP_{ap}^{*}$ and hence $f \in P_{ap}^{*}$.

COROLLARY 10. (a) $P_{ap}^* = SUP_{ap}^*$. (b) $R_{ap}^* = P_{ap}^*$.

PROOF. Immediate from Corollary 8, Lemma 9 and Theorem 5.

REMARK. The above method can be used to given an alternative proof of Sak's result for the classical Perron integral.

4. A descriptive definition

DEFINITION 1. (a) $F \in AC_{ap}^*$ on a closed set $E, F \in AC_{ap}^*(E)$, if and only if (i) $F \in AC(E)$, (ii) for all λ , $0 < \lambda < 1$, there exists, on each closed contiguous interval of E, $[a_n, b_n]$, a set E_n^{λ} , and an $M^{\lambda} > 0$, $|E_n^{\lambda}| > (1 - \lambda)(b_n - a_n)$ such that for all $x_n \in E_n^{\lambda}$, $\sum_{n \in N} |F(x_n) - F(a_n)| < M^{\lambda}$, and $\sum_{n \in N} |F(b_n) - F(x_n)| < M^{\lambda}$.

(b) $F \in [ACG_{ap}^*]$ on [a, b] if and only if $[a, b] = \bigcup_{n \in N} E_n$, E_n closed and $F \in AC_{ap}^*(E_n)$, $n \in N$.

REMARK. It follows from Solomon's lemma, [1], that Definition 1(b) can be rephrased as:

 $F \in [ACG_{ap}^*]$ on [a, b] if and only if for all λ , $0 < \lambda < 1$, P perfect, there exists a closed portion Q of P, having on [a, b] closed contiguous intervals $[a_n, b_n]$, $n \in N$, such that for all $n \in N$ there exists $E_n^{\lambda} \subset$ $[a_n, b_n]$, $M^{\lambda} > 0$, $|E_n^{\lambda}| > (1 - \lambda)(b_n - a_n)$ and such that for all $x_n \in E_n^{\lambda}$, $\sum_{n \in N} |F(x_n) - F(a_n)| < M^{\lambda}$ and $\sum_{n \in N} |F(b_n) - F(\lambda_n)| < M^{\lambda}$.

We will first obtain some alternative forms of Definition 1(a). Let us define for $F: [a, b] \rightarrow \mathbb{R}$ and $A \in [a, b]$

$$\omega(F; A) = \sup\{t; t = |F(x) - F(y)|, x, y \in A\}.$$

LEMMA 2. If E is a bounded closed set, with extremities a, b, a < b, and closed contiguous intervals in [a, b], $[a_n, b_n]$, n > 1, then if $E_n \subset [a_n, b_n]$, $a_n, b_n \in E_n$, $n \ge 1$, $E_0 = E \cup \bigcup_{n \ge 1} E_n$,

$$\omega(F; E_0) \leq V(F; E) + 2\sum_{n\geq 1} \omega(F; E_n),$$

where V(F; E) is the variation of F on E.

(This is a slight generalization of a result in Saks, [1; page 231].)

LEMMA 3. If $f \in C_{ap}[a, b]$ then for all λ , $0 < \lambda < 1$, there exists $E^{\lambda} \subset [a, b]$, $a, b \in E^{\lambda}$ such that $|E^{\lambda}| > (1 - \lambda)(b - a)$ and $\omega(F; E^{\lambda}) < \infty$.

PROOF. Given $\varepsilon > 0$, $x \in [a, b]$, λ , $0 < \lambda < 1$, there exists $\delta > 0$, $E_x \subset [x - \delta, x + \delta[$ such that if $0 < h < \delta$, $|E_x \cap [x - h, x + h]| > 2(1 - \lambda)h$ and if $u \le x \le v$, $u, v \in E_x$, then $|F(v) - F(u)| < \varepsilon$.

The set of such E_x , $a \le x \le b$, defines an AFC, Δ , of [a, b]; let $\{a_0, \ldots, a_p; x_1, \ldots, x_p\}$ be a Δ -partition of [a, b]: and define

$$E^{\lambda} = \bigcup_{k=1}^{p} E_{x_{k}}$$

Then $|E^{\lambda}| > (1 - \lambda)(b - a)$ and if $u, v \in E^{\lambda}$, $u \in [a_{m-1}, a_m]$, $v \in [a_{n-1}, a_n]$, say,

$$|F(v) - F(u)| \leq \sum_{k=m+1}^{n-1} |F(a_k) - F(a_{k-1})| + |F(a_m) - F(u)| + |F(v) - F(a_{n-1})| \leq \varepsilon p,$$

which is sufficient to prove the lemma.

THEOREM 4. $F \in AC_{ap}^{*}(E)$ if and only if (a) $F \in AC(E)$, (b) for all λ , $0 < \lambda < 1$, there exists, on each closed contiguous interval $[a_n, b_n]$ of E, a set E_n^{λ} , a_n , $b_n \in E_n^{\lambda}$, $|E_n^{\lambda}| > (1 - \lambda)(b_n - a_n)$ and $\sum_{n \in N} \omega(F; E_n^{\lambda}) < \infty$.

PROOF. Let $F \in AC_{ap}^*(E)$, $\tilde{E}_n^{\lambda} = E_n^{\lambda} \cup \{a_n, b_n\}$, where E_n^{λ} are the sets of Definition 1(a)(ii); let $x_n, y_n \in \tilde{E}_n^{\lambda}$, $n \in N$. Then

 $|F(y_n) - F(x_n)| \le |F(x_n) - F(a_n)| + |F(y_n) - F(b_n)| + |F(a_n) - F(b_n)|;$ since $F \in AC(E)$, $\sum_{n \in N} |F(a_n) - F(b_n)| < \infty$ and the result follows from Definition 1(a)(ii). The converse is immediate. THEOREM 5. $F \in AC_{ap}^{*}(E)$ if and only if for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $\alpha_{1} < \beta_{1} < \cdots < \beta_{p}$, points of E, if $\sum_{k=1}^{p} (\beta_{k} - \alpha_{k}) < \delta$ then for all λ , $0 < \lambda < 1$, there exists $E_{k}^{\lambda} \subset [\alpha_{k}, \beta_{k}], \alpha_{k}, \beta_{k} \in E_{k}^{\lambda}, |E_{k}^{\lambda}| > (1 - \lambda)(\beta_{k} - \alpha_{k}),$ $1 \le k \le p$, and $\sum_{k=1}^{p} \omega(F; E_{k}^{\lambda}) < \varepsilon$.

PROOF. (i) Let $F \in AC_{ap}^{*}(E)$; then $F \in AC(E)$ and so given $\varepsilon > 0$, there exists $\delta > 0$ such that for all $\alpha_1 < \beta_1 < \cdots < \beta_p$, points of E, if $\sum_{k=1}^{p} (\beta_k - \alpha_k) < \delta$ then $\sum_{k=1}^{p} V(F; E_n[\alpha_k, \beta_k]) < \varepsilon$. Further, by Theorem 4, and with its notation, there exists n_0 such that $\sum_{n>n_0} \omega(F; E_n^{\lambda}) < \varepsilon$.

Let $\delta_0 = \min\{\delta; b_n - a_n, n \le n_0\}$ and let $\alpha_1 < \beta_1 < \cdots < \beta_p$, points of *E*, be such that $\sum_{k=1}^{p} \beta_k - \alpha_k < \delta_0$. Define

$$\tilde{E}_k^{\lambda} = E \cap [\alpha_k, \beta_k] \cup \bigcup_{n \in N_k} E_n^{\lambda}$$

where

$$n_k = \{n; [a_n, b_n] \subset [\alpha_k, \beta_k]\};$$

clearly if $n \in N_k$, then $n > n_0$. By Lemma 2,

$$\omega(F; \tilde{E}_k) \leq V(F; E_n[\alpha_k, \beta_k]) + 2 \sum_{n \in N_k} \omega(F; E_n^{\lambda}).$$

Hence

$$\sum_{k=1}^{p} \omega(F; \tilde{E}_{k}) \leq 3\varepsilon$$

(ii) To prove the converse first note that the condition given implies that $F \in AC(E)$. Using the notation of Definition 1(a)(ii) let N_0 be such that if $n > n_0$ then $\sum_{n>n_0} (b_n - a_n) < \delta$: then from the condition given $E_n^{\lambda} \subset [a_n, b_n], a_n, b_n \in E_n^{\lambda}, |E_n^{\lambda}| > (1 - \lambda)(b_n - a_n)$ and $\sum_{n>n_0} \omega(F; E_n^{\lambda}) < \varepsilon$.

If $n \le n_0$ divide each $[a_n, b_n]$ into a finite number of intervals each of length less than δ , and we easily see that there exists $E_n^{\lambda} \subset [a_n, b_n], |E_n^{\lambda}| > (1 - \lambda)(b_n - a_n)$ and $\omega(F; E_n^{\lambda}) < \infty$. From this it follows that $F \in AC_{ap}^*(E)$.

DEFINITION 6. Let *E* be a closed set, with closed contiguous integrals $[a_n, b_n]$, $n \in N$; let $x \in E'$, E_x a set of unit density at x such that there exists $\varepsilon > 0$ with $a_n, b_n \in E_x$ if $[a_n, b_n] \subset]x - \frac{1}{2}\varepsilon$, $x + \frac{1}{2}\varepsilon[$, say if $n \in N_x$ for short; we will write for *F*: $[a, b] \to \mathbf{R}$, a, b the extremities of *E*,

$$\omega_{n,ap}(F) = \sup_{\alpha,\beta\in E_x\cap[a_n,b_n]} |F(\beta) - F(\alpha)|.$$

THEOREM 7. If $F \in AC^*_{ap}(E)$ then (a) $F \in AC(E)$, (b) for all $x \in E'$, $\sum_{n \in N, \omega_{n,ap}} (F) < \infty$. **PROOF.** It suffices to prove (b). Since $F \in AC_{ap}^*(E)$, by Theorem 4, for all λ , $0 < \lambda < 1$, there exists n_{λ} such that

$$\sum_{n>n_{\lambda}}\omega(F; E_n^{\lambda}) \leq \frac{1}{2^{\lambda}}$$

Let $\varepsilon_{\lambda} = \min_{n \le n_{\lambda}} (b_n - a_n)$, $N_{x,\lambda} = \{n; [a_n, b_n] \subset]x - \frac{1}{2}\varepsilon_{\lambda}, x + \frac{1}{2}\varepsilon_{\lambda}[\}$ when $\sum_{n \in N_{x,\lambda}} \omega(F, E_n^{\lambda}) < 1/2^{\lambda};$ put $E_x^{\lambda} = \bigcup_{\lambda \in N_{x,\lambda}} E_n^{\lambda}$. Now define $E_x^0 = \bigcup_{n \ge 1} E_x^{1/2}$, $\varepsilon_0 = \sup_{n \ge 1} \varepsilon_{1/n}$, when $E_x^0 \subset]x - \frac{1}{2}\varepsilon_0, x + \frac{1}{2}\varepsilon_0[;$ let $N_x = \{n; [a_n, b_n] \subset]x - \frac{1}{2}\varepsilon_0, x + \frac{1}{2}\varepsilon_0[]$ and finally $E_x = E_x^0 \cup E \cap]x - \frac{1}{2}\varepsilon_0, x + \frac{1}{2}\varepsilon_0[]$.

Then E_x has density 1 at x and if $x_n, y_n \in E_x \cap [a_n, b_n], n \in N_x$,

$$\sum_{n \in N_x} |F(x_n) - F(y_n)| = \sum_{m \ge 1} \sum_{n \in N_{x,1/m}} |F(x_n) - F(y_n)| \le 1,$$

which completes the proof.

THEOREM 8. If E is a closed set with extremities a, b, a < b, F: $[a, b] \rightarrow \mathbf{R}$ and if (a) $F \in C_{ap}[a, b]$, (b) $F \in AC(E)$, (c) for all $x \in E'$, $\sum_{n \in N_x} \omega_{n,ap}(F) < \infty$, then $F \in AC^*_{ap}(E)$.

PROOF. If $x \in E'$ consider $E_x \cap [a_n, b_n]$, $n \in N_x$, then for all λ , $0 < \lambda < 1$, there exists $E_n^{\lambda} \subset [a_n, b_n]$, $a_n, b_n \in E_n^{\lambda}$, such that $|E_n^{\lambda}| > (1 - \lambda)(b_n - a_n)$ and clearly $\omega(F; E_n^{\lambda}) < \omega_{n,ap}(F)$. The family of $|x - \frac{1}{2}\varepsilon, x + \frac{1}{2}\varepsilon|$ covers E' and so a finite sub-family of these intervals also covers E'. Hence there exists a finite set of integers N_0 such that $\sum_{n>N_0} \omega(F; E_n^{\lambda}) < \infty$; since $F \in C_{ap}[a, b]$, the intervals $[a_n, b_n]$, $n \in N_0$, can be handled using Lemma 3.

DEFINITION 9. If *E* is a closed set with extremities *a*, *b*, *F*: $[a, b] \rightarrow \mathbf{R}$, then *F* is lAC_{ap}^* on *E*, $F \in lAC_{ap}^*(E)$ if and only if for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $\alpha_1 < \beta_1 < \cdots < \beta_p$, points of *E*, if $\sum_{k=1}^{p} (\beta_k - \alpha_k) < \delta$, then for all λ , $0 < \lambda < 1$, there exists $E_k^{\lambda} \subset [\alpha_k, \beta_k]$, α_k , $\beta_k \in E_k^{\lambda}$, $|E_k^{\lambda}| > (1 - \lambda)(\beta_k - \alpha_k)$ such that for all $x_k \in E_k^{\lambda}$, $1 \le k \le p$,

$$\sum_{k=1}^{p} F(x_k) - F(\alpha_k) > -\varepsilon,$$

$$\sum_{k=1}^{p} F(\beta_k) - F(x_k) > -\varepsilon.$$

REMARKS. (1) An analogous definition can be made for $F \in uAc_{ap}^*(E)$ and, from Theorem 5, $F \in AC_{ap}^*(E)$ if and only if $F \in AC_{ap}^*(E) \cap lAC_{ap}^*(E)$.

(2) Further, as in Definition 1(b), we can now define the classes $u[ACG_{ap}^*]$ and $l[ACG_{ap}^*]$.

THEOREM 10. If $F: [a, b] \to \mathbb{R}$, $F \in C_{ap}[a, b]$, $lF'_{ap} > -\infty$ n.e. then $F \in l[ACG^*_{ap}]$.

PROOF. Ridder, [19], proves under these conditions that $F \in I[ACG]$; the rest follows from Tolstov's proof of Theorem 1.3(g), Tolstov, [25].

REMARK. The basic lemma in Tolstov, [25], can be used to shorten Ridder's result since it shows that certain sets in Ridder's proof are closed.

COROLLARY 12. If $F: [a, b] \to \mathbf{R}$, $F \in C_{ap}[a, b]$, $-\infty < lF'_{ap} \le uF'_{ap} < \infty$, n.e. then $F \in [ACG^*_{ap}]$.

We can now define a descriptive integral that will be equivalent to the P_{an}^* -integral.

DEFINITION 13. If $f: [a, b] \to \overline{\mathbf{R}}$ then $f \in D_{ap}^*$, f is D_{ap}^* -integrable, if and only if there exists $F \in C_{ap}[a, b], F \in [ACG_{ap}^*]$ and $F'_{ap} = fa.e.$; then $\int_a^x f = F(x) - F(a)$.

REMARK. The basic properties of the class of approximately continuous -[ACG] functions, of which the approximately continuous $-[ACG_{ap}^*]$ functions is a sub-class, Ridder, [18, 19], Kubota, [9], show that this definition is meaningful.

THEOREM 14. If $f \in P_{ap}^*$ then $f \in D_{ap}^*$, with integrals equal.

PROOF. This follows from Theorems 1.3(b), (g), and the remark following Definition 1.

To prove the converse of Theorem 14 we will use the R_{ap}^* -integral and for this need to show that this integral has what are usually called Cauchy and Harnack properties. That the R_{ap}^* -integral has the Cauchy property follows from the fact that the equivalent P_{ap}^* -integral does, Theorem 1.3(f), but we will give an independent proof.

THEOREM 15. If
$$f \in R^*_{ap}[\alpha, \beta]$$
, for all $\beta, \beta, a < \alpha < \beta < b$ and if
$$\lim_{\substack{\alpha \to a \\ \beta \to b}} \int_{\alpha}^{\beta} f$$

exists, with value I say, then $f \in R^*_{ap}[a, b]$, and $\int_a^b f = I$.

PROOF. It is sufficient to consider the case where for all β , $a < \beta < b$, $f \in R^*[a, \beta]$ and $\lim_{\beta \to b} \int_a^{\beta} f = I$. Let $a = \beta_0 < \beta_1 < \cdots$, $\lim_{n \to \infty} \beta_n = b$, $\varepsilon > 0$, then since $k \ge 1$, $f \in R^*_{ap}[\beta_k, \beta_{k-1}]$, there exists AFC, Δ_k , of $[\beta_k, \beta_{k-1}]$ such that for all Δ_k -partitions of $[\beta_k, \beta_{k-1}]$, $\{a_0^k, \ldots, ; x_1^k \cdots \}$,

$$\left|\int_{\beta_{k-1}}^{\beta_k} f - \sum f(x_i^k) (a_i^k - a_{i-1}^k)\right| < \frac{\varepsilon}{2^k}$$

Since $\lim_{\beta \to b} a_{a} \int_{a}^{\beta} f = I$, given $\varepsilon > 0$ there exists $\delta > 0$ and a set A of density 1 at b, $A \subset [b - \delta, b]$, such that if $x \in A$, $|I - \int_{a}^{x} f| < \varepsilon$, and $|(b - x)f(b)| < \varepsilon$. $\Delta = \bigcup_{x \in A} [x, b] \cup \bigcup_{k \ge 1} \Delta_{k}$ is an AFC of [a, b] and consider the Δ -partition $\{a_{0}, \ldots, a_{n}; x_{1}, \ldots, x_{n}\}$ of [a, b]:

$$\left| I - \sum_{i=1}^{n} f(x_i)(a_i - a_{i-1}) \right| \leq \left| \int_a^{a_{n-1}} f(x_i)(a_i - a_{i-1}) \right| + \left| I - \int_a^{a_{n-1}} f(x_i)(b - a_{n-1}) \right| \leq 3\varepsilon,$$

and so $\int_{a}^{b} f$ exists, with value *I*.

THEOREM 16. Let E be a perfect set, end points a, b, with closed contiguous intervals in [a, b], $[a_n, b_n]$, $n \in N$; suppose that $f \colon_E \in R^*_{ap}[a, b]$ and that for all $n \in N$, $f \in R^*_{ap}[a_n, b_n]$; suppose further that for all $x \in E$ there exists a set E_x of unit density at $x, \delta > 0$, with $a_n, b_n \in E_x$ if $[a_n, b_n] \subset]x - \frac{1}{2}\delta$, $x + \frac{1}{2}\delta[$, $n \in N_x$, for short and $\sum_{n \in N_x} \{\sup_{\alpha, \beta \in E_x \cap [a_n, b_n]} \mid \int_{\alpha}^{\beta} f \mid \} < \infty$; then $f \in R^*_{ap}[a, b]$ and

(1)
$$\int_{a}^{b} f = \int_{a}^{b} f \mathbf{1}_{E} + \sum_{n \in N} \int_{a_{\kappa}}^{b_{n}} f$$

PROOF. It is sufficient to prove that $f(1 - 1_E) \in R^*_{ap}[a, b]$. Note that the above conditions imply that for all $\varepsilon > 0$ there exists n_0 such that

$$\sum_{n>n_0}\left\{\sup_{\alpha,\beta\in E_x\cap\{a_n,b_n\}}\left|\int_{\alpha}^{\beta}f\right|\right\}<\varepsilon,$$

and so, in particular, the right-hand side of (1) is defined.

For each $n \in N$ there exists AFC Δ_n of $[a_n, b_n]$ such that for all Δ_n -partitions of $[a_n, b_n]$, $\{a_0^n, \ldots; x_1^n \cdots\}$,

$$\left|\int_{a_n}^{b_n} f - \sum f(x_i^n)(a_i^n - a_{n-1}^n)\right| < \frac{\varepsilon}{2^n}$$

At each $x \in E$ there exists $\tilde{E}_x \subset E_x$, of density 1 at x, containing all a_n , b_n , $n > n_0$, and $[a_n, b_n] \subset]x - \frac{1}{2}\delta$, $x + \frac{1}{2}\delta[$: let $\tilde{E}_x^* = \{[u, v]; u \le x \le v, u_1v \in \tilde{E}_x\}$.

[14]

Consider $\Delta = \bigcup_{n \in N} \Delta_n \cup \bigcup_{x \in E} \tilde{E}_x$, an AFC on [a, b], and $\{a_0, \ldots, a_p\}$ x_1, \ldots, x_p any Δ -partition of [a, b]:

$$\begin{split} \sum_{n \in N} \left| \int_{a_n}^{b_n} f - \sum_{i=1}^p f(1 - 1_E)(x_i)(a_i - a_{i-1}) \right| \\ &\leq \sum_{n > n_0} \left| \int f \right| + \left| \sum_{n \leq n_0} \int_{a_n}^{b_n} f - \sum f(x_i^n)(a_i^n - a_{i-1}^n) \right| \\ &< 2\varepsilon, \end{split}$$

which completes the proof.

THEOREM 17. If $f \in D_{ap}^*$ then $f \in R_{ap}^*$ and the integrals are equal.

PROOF. Let $f \in D_{ap}^*$, $E = \{x; a \le x \le b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \le b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \le b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \le b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{ is not } R_{ap}^*\text{-integrable in some } x \ge b \text{ and } f \text{$ neighbourhood of x}; assume $E \neq \emptyset$. From Theorem 15, E is perfect and if $[a_n, b_n]$, $n \in N$ are the closed continuous intervals of E, in [a, b], then $f \in [a, b]$ $R_{ap}^*[a_n, b_n], n \in N$. If $F(x) = D_{ap}^* - \int_a^x f$ then $f \in [ACG_{ap}^*]$ and so E contains a portion E_0 on which F is AC_{ap}^* ; let α, β be the extremities of E_0 . Since $F \in AC(E_0), F'_{ap} = f$ a.e. on E_0 and f is L-integrable there, and so $f l_E \in R^*_{ap}[a, b]$. Further since $F \in AC_{ap}^{*}(E_{0})$, by Theorem 8, all the conditions of Theorem 16 are satisfied on $[\alpha, \beta]$, and so $f \in R^*_{ap}[\alpha, \beta]$. This proves that $E = \emptyset$, and so $f \in R^*_{ap}[a, b].$

COROLLARY 18. $P_{ap}^* = R_{ap}^* = D_{ap}^*$.

5. An approximate total

The approximate-total* of $f, f: [a, b] \to \mathbf{R}, T^*_{ap} - \int_a^b f$, is constructed by the transfinite induction as indicated below; if the construction is possible we say that $f \in T^*_{av}$.

The process uses four operations:

(1) if $a \leq \alpha \leq \beta \leq b, f \in L[\alpha, \beta]$ then $T^*_{ap} - \int_{\alpha}^{\beta} f = L - \int_{\alpha}^{\beta} f;$

(2) if for all $\alpha', \beta', a \le \alpha < \alpha' < \beta' < \beta \le b$ we have evaluated $T_{ap}^* - \int_{\alpha'}^{\beta'} f$ and if

$$\lim_{\substack{\alpha' \to \alpha \\ \beta' \to \beta}} T^*_{ap} - \int_{\alpha'}^{\beta'} f$$

exists, then $T_{ap}^* - \int_{\alpha}^{\beta} f$ is defined to be this limit; (3) if $T^* - \int_{\alpha}^{\beta} f$ and $T^* = \int_{\beta}^{\delta} f$, $a \le \alpha < \beta < \beta \le b$, have been evaluated then $T_{ap}^* - \int_{\alpha}^{\delta} f$ is defined to be their sum;

(4) if $P \subset [a, b]$ is perfect, with extremities α , β , and if $f |_P \in L[\alpha, \beta]$, and if $f \in T^*_{ap}[\alpha_n, \beta_n]$, $[\alpha_n, \beta_n]$ being the closed contiguous intervals of P in $[\alpha, \beta]$, $n \in N$, and if further for all $x \in P$ there exists a set E_x of density 1 at $x, \delta > 0$ with $a_n, b_n \in E_x$, if $[a_n, b_n] \subset]x - \frac{1}{2}\delta$, $x + \frac{1}{2}\delta[$, $n \in N_x$, for short, and $\sum_{n \in N_x} \{\sup_{\alpha'_n, \beta'_n \in E_x \cap [\alpha_n, \beta_n]} | T^*_{ap} - \int_{\alpha'_n}^{\beta'_n} f | \} < \infty$, then $T^*_{ap} - \int_{\alpha}^{\beta} f$ is evaluated as $L - \int_{\alpha}^{\beta} f |_P + \sum_{n \in N} T^*_{ap} - \int_{\alpha'_n}^{\beta_n} f$.

REMARK. This operation is related to that used in an integral defined by Kubota, [11, 12], in the same way as the corresponding operation in the special Denjoy integral is related to that in the general Denjoy integral; Saks, [20; page 255].

The construction of $T_{ap}^* - \int_a^b f$ can now be described as follows.

Stage 1: Step 1. Let $E = \{x; a \le x \le b, f \text{ is not summable at } x\}$. If E is not nowhere dense, $f \notin T^*_{ap}$, if E is nowhere dense proceed to

Step 2. For all $[\alpha, \beta]$, $[\alpha, \beta] \cap E = \emptyset$ compute $T_{ap}^* - \int_{\alpha}^{\beta} f$ by operation (1). Step 3. If $[\alpha, \beta]$ is a closed contiguous interval of E see if

$$\lim_{\substack{\alpha' \to \alpha \\ \beta' \to \beta}} T^*_{ap} - \int_{\alpha}^{\beta} j$$

exists; if not $f \notin T_{ap}^*$, if so compute $T_{ap}^* - \int_{\alpha}^{\beta} f$ by operation (2).

Step 4. For all $[\alpha, \beta]$, $[\alpha, \beta] \cap E' = \emptyset$ compute $T^*_{ap} - \int_{\alpha}^{\beta} f$ by operation (3).

Step 5. Applying step 3 to the contiguous intervals of E', then by a transfinite process using steps 4 and 3, we either find that $f \notin T_{ap}^*$, or will have computed $T_{ap}^* - \int_{\alpha}^{\beta} f$ for all $[\alpha, \beta]$, closed contiguous intervals of the perfect kernel P of E; if $P = \emptyset$ we have completed the calculation, if not proceed to

Stage 2: Step 1. Let $\tilde{E} = \{x; x \in P \text{ and } f \mid_p \text{ is not summable at } x\}$. If \tilde{E} is not nowhere dense in $P, f \notin T_{ap}^*$; if \tilde{E} is nowhere dense on P, proceed to

Step 2. For all $[\alpha, \beta]$, $[\alpha, \beta] \cap \tilde{E} = \emptyset$ compute $T_{ap}^* - \int_{\alpha}^{\beta} f$ as described in stage 3 below. If this is not possible $f \notin T_{ap}^*$, if it is use steps 3, 4 of stage 1 to compute, if possible $T_{ap}^* - \int_{\alpha}^{\beta} f$ for all $[\alpha, \beta]$, closed contiguous intervals of the perfect kernel of \tilde{E} .

Step 3. A transfinite process using the above steps then either finds $f \notin T_{ap}^*$ or computes $T_{ap}^* - \int_{\alpha}^{\beta} f$ on the closed contiguous intervals of $E_1 = E$, $E_2 = \tilde{E}$, $E_3, \ldots, E_{\lambda}, \ldots$, where if λ has a predecessor E_{λ} is nowhere dense in the perfect kernel, $P_{\lambda-1}$ of $E_{\lambda-1}$ and $E_{\lambda} = \{x; x \in P_{\lambda-1} \text{ and } f |_{P_{\lambda-1}}$ is not summable at $x\}$, while if λ has no predecessor $E_{\lambda} = \bigcap_{\mu < \lambda} E_{\mu}$. For some $\nu < \Omega$, $E_{\nu} = \emptyset$, $E_{\nu-1} \neq \emptyset$, that is, either $P_{\nu-1} = \emptyset$ or $f |_{P_{\nu-1}} \in L[a, b]$; in either case stages 1-3 applied to $E_{\nu-1}$ completes the computation.

The Burkill integral

Stage 3: (From step 2 of stage 2 we have to compute $T_{ap}^* - \int_{\alpha}^{\beta} f$ where $[\alpha, \beta]$ defines a closed portion of a perfect set P, Q say, with $f l_0$ summable, and on the closed contiguous intervals in $[\alpha, \beta]$ of Q, $[\alpha_n, \beta_n]$, $T^*_{ap} - \int_{\alpha_n}^{\beta_n} f$ has already been computed, $n \in N$.)

Step 1. Let x be a regular point of Q if there exists a set E_x , of density 1 at x, $\delta > 0$, with α_n , $\beta_n \in E_x$ if $[\alpha_n, \beta_n] \subset]x - \frac{1}{2}\delta$, $x + \frac{1}{2}\delta[$, $n \in N_x$ for short, and $\sum_{n \in N_x} \{\sup_{\alpha'_n, \beta'_n \in E_x \cap [\alpha_n, \beta_n]} | T_{ap}^* - \int_{\alpha'}^{\beta} f | \} < \infty; \text{ let } E \text{ be the set of non-regular points of } Q. \text{ If } E \text{ is not nowhere dense in } Q, f \notin T_{ap}^*, \text{ if it is proceed to} \end{cases}$

Step 2. For all $[\alpha', \beta'], [\alpha', \beta'] \cap E = \emptyset$ compute $T_{ap}^* - \int_{\alpha'}^{\beta'} f$ by operation (4). Step 3. Proceed as in stage 1 to obtain $T_{ap}^* - \int_{\alpha'}^{\beta'} f$ on all $[\alpha', \beta']$ closed contiguous intervals of the perfect kernel of E; then proceed to stage 2 again.

To facilitate the discussion of the T_{ap}^* -integral we define for all α , $0 \le \alpha \le \Omega$, on [a, b] an integral $L_{ap}^{*,a}$; this follows the ideas of Saks, [20], and Kubota, [11, 12].

(a) $L_{ap}^{*,0} = L$.

(b) If for all $\alpha < \beta \leq \Omega$ we have defined $L_{ap}^{*,\alpha}$ in such a way that the integrals are compatible and if $\alpha < \alpha' < \beta$ then $L_{ap}^{*,\alpha'} \subset l_{ap}^{*,\alpha'}$ then I_1^{β} is the integral defined by

$$I_1^{\beta} = \bigcup_{\alpha < \beta} L_{ap}^{*,\alpha}, \quad I_1^{\beta} - \int_a^b f = L_{ap}^{*,\alpha_0} - \int_a^b f,$$

where

$$\alpha_0 = \min\{\alpha; f \in L^{*,\alpha}_{ap}\}.$$

(c) (i) If $\beta < \Omega$ then I_2^{β} is the integral $(I_1^{\beta})_{ap}^{C}$, see Definition 1(a) below; and

$$L_{ap}^{*,\beta} = \left(I_2^{\beta}\right)_{ap}^{H^*},$$

see Definition 1(b) below;

(ii) if $\beta = \Omega$,

$$L_{ap}^{*,\Omega} = I_1^{\Omega}.$$

DEFINITION 1. If I is an integral let $S_f = S = \{x; f \text{ is not } I \text{-integrable at } x\};$ then:

(a) the approximate Cauchy extension of I, I_{ap}^{C} , is defined as follows: $f \in I_{ap}^{C}$ if and only if there exists $F \in C_{ap}$ such that if $[a', b'] \cap S = \phi$ then $I - \int_{a'}^{b'} f =$ F(b') - F(a') then $I_{ap}^C - \int_a^b f = F(b) - F(a)$.

(b) the approximate Harnack^{*} extension of I, $I_{ap}^{H^*}$, is defined as follows: $f \in I_{an}^{H^*}$ if and only if (i) $f \mathbf{1}_S \in L$, (ii) if $[a_n, b_n]$, $n \in N$ are the closed contiguous intervals of S in [a, b] then f is I-integrable on each, and if x is a limit point of the

P. S. Bullen

 $[a_n, b_n]$ there exists a set E_x of unit density, $\delta > 0$, with $a_n, b_n \in E_x$ if $[a_n, b_n] \subset]x - \frac{1}{2}\delta$, $x + \frac{1}{2}\delta[$, $x \in N_x$ for short, and $\sum_{n \in N_x} \{\sup_{a'_n, b'_n \in E_x \cap [a_n, b_n]} |I - \int_{a'_n}^{b'_n} f| \} < \infty$, then

$$I_{ap}^{H^*} - \int_a^b f = L - \int_a^b f \mathbf{1}_S + \sum_{n \in \mathbb{N}} I - \int_a^b f.$$

The following theorem is then easily deduced, using the methods of Saks, [20], and Kubota, [11, 12].

THEOREM 2. (a) $((L_{ap}^{*,\Omega})_{ap}^{C})_{ap}^{H^{*}} = L_{ap}^{*,\Omega}$. (b) $L_{ap}^{*,\Omega} = T_{ap}^{*}$. (c) $L_{ap}^{*,\Omega} = D_{ap}^{*}$.

(d) If I is an approximately continuous integral such that (i) $L \subset I$, (ii) $(I_{ap}^{C})_{ap}^{*} = I$, then $D_{ap}^{*} \subset I$.

COROLLARY 3. $P_{ap}^* = R_{ap}^* = D_{ap}^* = T_{ap}^* = L_{ap}^{*,\Omega}$.

References

- A. Aleksandrov, 'Über die Äquivalenz des Perronschen und des Denjoyschen Integralbegriffes', Math. Z. 20 (1924), 213-222.
- [2] L. S. Bosanquet, 'A property of Cesàro-Perron integrals', Proc. Edinburgh Math. Soc. (2) 6 (1940), 160-165.
- [3] P. S. Bullen, 'Non-absolute integrals; a survey', Real Anal. Exchange 5 (1980), 195-259.
- [4] J. C. Burkill, 'The approximately continuous Perron integral', Math. Z. 34 (1931), 270-278.
- [5] M. E. Grimshaw, 'The Cauchy property of the generalised Perron integrals', Proc. Cambridge Philos. Soc. 30 (1934), 15-18.
- [6] R. Henstock, Theory of integration (London, 1963).
- [7] R. Henstock, Linear analysis (London, 1967).
- [8] R. Henstock, 'The variation on the real line', Proc. Roy. Irish Acad. Sect. A 79 (1979), 1-10.
- [9] Y. Kubota, 'An integral of Denjoy', I, Proc. Japan. Acad. 40 (1964), 713-717.
- [10] Y. Kubota, 'On the compatibility of the AP-and the D-integrals', Proc. Japan Acad. 44 (1968), 330-333.
- Y. Kubota, 'A characterization of the approximately continuous Denjoy integral', Canad. J. Math. 22 (1970), 219-226.
- [12] Y. Kubota, 'A constructive definition of the approximately continuous Denjoy integral', Canad. Math. Bull. 15 (1972), 103-108.
- [13] Y. Kubota, 'A direct proof that the RC-integral is equivalent to the D*-integral', Proc. Amer. Math. Soc. 80 (1980), 293-296.
- [14] Y. Kubota, 'An elementary theory of the special Denjoy integral', Math. Japon. 24 (1980), 507-520.
- [15] R. O'Malley, 'Selective derivatives', Acta Math. Acad. Sci. Hungar. 29 (1977), 77-79.
- [16] W. F. Pfeffer, The Riemann-Stieltjes approach to integration (Technical Report, TWISK 187, National Research Inst. for Math. Sci., Pretoria, 1980).

The Burkill integral

- [17] J. Ridder, 'Über den Perronschen Integralbegriff und seine Beziehung zu den R-, L- und D-Integralen', Math. Z. 34 (1932), 234-269.
- [18] J. Ridder, 'Über approximativ stetige Denjoy-Integrale', Fund. Math. 21 (1933), 1-10.
- [19] J. Ridder, 'Über die Gegenseitigen Beziehungen verschiedener approximativ stetiger Denjoy-Perron Integrale', Fund. Math. 22 (1934), 136-162.
- [20] S. Saks, Theory of the integral, 2nd ed., revised (New York, 1937).
- [21] D. W. Solomon, Denjoy integration in abstract spaces (Mem. Amer. Math. Soc. 85, 1969).
- [22] G. Sunouchi and M. Utagawa, 'The generalized Perron integrals', Tôhoku Math. J. 1 (1949), 95-99.
- [23] B. S. Thomson, 'On full coverings', Real Anal. Exchange 6 (1980-81), 77-93.
- [24] G. P. Tolstov, 'Sur quelques propriétés des fonctions approximativement continues', Mat. Sb. 5 (1939), 637-645.
- [25] G. P. Tolstov, 'Sur l'intégrale de Perron', Mat. Sb. 5 (1939), 647-659.
- [26] G. P. Tolstov, 'La méthode de Perron pour l'intégrale de Denjoy', Mat. Sb. 8 (1940), 149-167.
- [27] Z. Zahorski, 'Ueber die Menge der Punkte in welchen die Ableitung unendlich ist', Tôhoku Math. J. 48 (1941), 321-332.

Mathematics Department The University of British Columbia Vancouver, British Columbia Canada

[18]