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SUMMARY

It is widely acknowledged that genetic drift is an important source of
variation in response to artificial directional selection. How large should
a selection line be in order to reduce the effect of genetic drift to an
acceptably low level ?

This paper investigates two criteria that can be used to answer this
question in relation to short-term response to selection. The first criterion
is coefficient of variation of response, and the second criterion is chance
of success, where a successful selection programme is one in which the
observed response is greater than a certain proportion, /?, of expected
response.

For a simple mass selection programme with intensity i and heritability
h2, the size of population required in order for the coefficient of variation
of response to be y after t generations, is approximately 2/(yih)H, and
the size required for the chance of success to be a after t generations is
approximately 2{za/(/3—l)ih}!i/t, where za is the standard normal
deviate corresponding to the probability a.

As an example, suppose it is required that after t generations the
coefficient of variation of response be 10 % or that there be a 90 % chance
of achieving at least 9/10 of expected response. Since ih < 2 in most selec-
tion programmes, the size of population required is at least 50/t or 82/t
respectively. If ih ^ 1, the corresponding sizes are 200/t and 328ft.

Results are extended to enable the calculation of size of population
• required for any type of artificial directional selection programme,

including those in which generations overlap.

1. INTRODUCTION

The importance of population size in artificial selection programmes has been
increasingly recognized in two different ways during the last 20 years. Firstly, and
largely stemming from the work of Robertson (1960), it is now commonly recog-
nized that artificial selection in small populations results in the chance loss of
some desirable alleles, and hence leads to a decreased limit to selection. Secondly,
it is now realized that in small populations genetic drift is a very important source
of variation among selection lines, producing not only variation in mean response
(Hill, 1971; Bohren, 1975) but also variation in within-line additive genetic
variance (Bulmer, 1976; Avery & Hill, 1977).
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However, despite the widely recognized importance of population size in arti-
ficial selection programmes, only one attempt has been made to answer the ques-
tion so often asked in practice: how large should a population undergoing artificial
selection be in order to reduce the effect of genetic drift to an acceptably low
level ?

Comstock (1974, 1977) answered this question in terms of the limit to selection,
by solving for effective population size in the well-known chance-of-fixation
equation developed by Kimura (1957) and applied to the problem of artificial
selection by Robertson (1960). By assuming values for the size of allele effect and
initial allele frequency, Comstock (1974, 1977) calculated the size of population
required to ensure a certain probability of fixation of that allele. This approach is
useful in providing an indication as to the minimum population size required in
order to eventually capitalize on most of the genetic variance present in the base
population. In practice, however, those who have to design artificial selection
programmes, and those whose livelihoods depend on obtaining reasonable re-
sponse in the short term, need a rather different approach: they need to know,
for example, how large the population must be in order to give them a high prob-
ability of achieving at least a large proportion of the response predicted in the
short term.

Fortunately, with the recent advances in our understanding of variation in
response to artificial selection, as reviewed by Hill (1977a), it is now possible to
provide an approximate answer to this question. In this paper, the general
approach to calculating the size of population required for any particular arti-
ficial selection programme is outlined, and some general results are presented and
discussed.

2. MODEL

Consider a selection line derived from a large base population and undergoing
artificial directional selection with discrete generations for a quantitative character
with heritability h2, phenotypic variance a%, and additive genetic variance
a\ ( = h?cTp). Following Hill (1971), we assume that these parameters do not
change during selection. Thus the model does not cover long term selection
response. Assume initially that the population is monoecious, and that N indi-
viduals are selected as parents each generation from M individuals scored. A
contemporaneous control line is maintained, with K individuals randomly chosen
to be parents from J individuals scored. More general models incorporating over-
lapping generations, two sexes, divergent selection and lack of a control will be
considered below.

Let Xt and Ct be the phenotypic means in the selection line and control line
respectively, at generation (. Response to t generations of selection is then esti-
mated as

& = Xt-Ct. (1)
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Assuming no genotype-environment interaction between the selection line and its
control, the variance of response is given by

, (2)

where
cr%x = total drift variance in selection line,

cr%c = total drift variance in control line,

o~\x = measurement error variance in selection line,

<x\c = measurement error variance in control line.
Reviewing all previous work on variation in response to selection, Hill (1977a)
concluded that the most appropriate value for a\x is simply taA/N, and it is well
known that a\c = tcrA/K. These two expressions have the same form, but for
very different reasons. The latter is the usual expression for drift variance in an
unselected line. The former represents a compromise between a number of op-
posing factors (Robertson, 1977), including the effect of selecting parents that
resemble each other much more closely than if chosen at random, which tends to
decrease variance, and the effect of variance in within-line variance, which tends to
increase variance. Being essentially an empirical compromise, the relationship
^ ix = ta^/N is certainly approximate. It has, however, provided a satisfactory
description of variance in simulated selection lines (Robertson, 1977). The
appropriate values for variance due to measurement error are cr%fM and o%JJ for
the selection line and control line respectively. Substitution of these values into
(2) gives

o-% = taA(l/N+l/K) + o-2
P(l/M+l/J). (3)

Now, the expected response to t generations of selection is

R = tihaA, (4)
where i is the standardized selection differential. By assuming that phenotypic
and genotypic values of individuals are bivariate normally distributed, we then
have (Hill, 1971) that the observed response to selection (M) is normally distributed
with mean R and variance given by equation (3) above.

3. ANALYSIS

(i) Criteria

What criteria should be used in determining the size of population required for
artificial selection ? Of the many potential criteria, there are two that appear to be
particularly useful.

(a) Coefficient of variation

The coefficient of variation is commonly used as a dimensionless measure of
variability. In the present context, the expected coefficient of variation of response
to selection, o~R/R, can be evaluated from equations (3) and (4), for any selection
programme in which J, K, M, N, i, h2 and a%, are specified.
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If the selection and control lines are the same size, both in numbers measured
(M = J) and numbers selected (IV = K), then, from equation (3),

= 2cr*A(t+p/h*)/N, (5)

and the coefficient of variation is

crR/R = J[2(t+p/h?)]/tihJN, (6)

where p = N/M is the proportion selected. An even simpler expression for
coefficient of variation can be obtained if p is small, or if t is not too small such that
t > p/h2, in which case

crR/R = V2MV(M)- (7)

It should be noted that the assumptions required in order to obtain (7) are equiv-
alent to assuming that measurement error variance is negligible in comparison
with drift variance. Equation (7) represents a lower limit of the coefficient of
variation and hence, if anything, will lead to an over-optimistic view of the ad-
equacy of a particular selection programme. On the other hand, if p is not small,
and if t is sufficiently small such that p = th2, then o~R/R = 2/ihJ(Nt), which for
most selection programmes will lead to an under-estimate of adequacy.

For either situation, we have the very simple result that the coefficient of
variation of response to selection is determined solely by the parameter combina-
tion ih^Nt).

(b) Probability of success
We can define a successful selection programme as one in which the observed

response is greater than a proportion /? of expected response. The probability of
success, then, is the probability of achieving an observed response greater than a
proportion /? of expected response. This will be our second criterion for deciding
the size of population required for artificial selection.

Expressed algebraically, the probability of success is given by

Prob (£ > /3R) = Prob{(£-R)/<rB > (fi-i)R/aR}

= Prob{Z > (P-l)R/o-R}, (8)

where Z is a standard normal deviate. Thus the chance of success in a selection
programme is a function o£R/o~R> which is the inverse of the coefficient of variation
of response. From the previous section, it follows that the chance of success in a
selection programme is a function of the parameter combination ih*J(Nt).

From expression (8) it can be seen that the probability of the observed response
being greater than the expected response (/? = 1) is given by Prob (Z > 0), which
is 50 %, as expected. When /? = 0, the question becomes the quite interesting one
of what is the chance that the observed response will be positive rather than
negative? In other words, what is the probability of not going backwards?
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(ii) How large should a selection programme be?

In its most general form (as in equation (3)), the value of aR, and hence the
value of o-R/R, depends among other things on J, K, M and JV. For any model,
M and J are functions of N and K respectively, being determined by the respective
proportions selected. Thus for given proportions selected, there are really only
two independent population size parameters, N and K. In order to answer the
above question usefully, we have to reduce the number of independent population
size parameters to one, by specifying a relationship between JV and K. One such
relationship often occurring in practice is that the number of parents in the
selection and control lines is the same, in which case N = K.

As soon as o~R/R can be expressed as a function of only one population size
parameter (for example, N), we can ask what size of population is required, in
terms of each of the criteria outlined above.

(a) Coefficient of variation

For this criterion, we shall ask the following question: what size of population is
required in order to obtain a particular value of coefficient of variation of response,
say y. In this case, y is chosen as being the largest acceptable value for the co-
efficient of variation of response to selection.

To answer this question, we want the value of N for which

cxR/R = y. (9)

With the coefficient of variation as our criterion, the size of population required
for artificial selection, 8, is defined as the value of N that satisfies equation (9).
Using the simple expression for crR/R as given in equation (7), we have

8 = 2/(yih)H. (10)

Since equation (7) represents a lower limit of coefficient of variation, equation (10)
provides a lower limit to the size of population required. In other words, 8 as
given by (10), represents the smallest possible size of any selection programme
for which a coefficient of variation of y could be expected. If, for example, a
coefficient of variation of response of y = 10 % was thought to be adequate, and
noting that ik ^ 2 in most selection programmes, then a population size of a t
least 50/1 is required.

(b) Probability of success

Using our second criterion, the question now becomes the following: what size
of population is required in order to obtain, with a probability a, an observed
response that is greater than a proportion /? of expected response ?

To answer this question, we want the value of N which gives

Prob (£ > 0R) = a, (11)
or, from (8),

Prob {Z > (fi-l)R/crR} = a. (12)
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It follows that the observed response will be greater than flR with a probability a,
if the population size is such that

{fi- 1) R/<rn = za, (13)
where za is the relevant tabulated value of the standard normal deviate.

The size of population required for successful artificial selection, S, is now
defined as the value of N that satisfies equation (13).

Substitution of <rR/R from equation (7) into equation (13) and solving for
population size gives

S = 2{zJ(fi-l)ihY/t (14)
as the size of population required for successful artificial selection, which, as for
the previous criterion, is a minimum requirement.

Now, it could be argued that a reasonable criterion of success is to be 90 %
certain (a = 0-9) of achieving the objective, which gives za = 1-28. And if the
objective is to achieve at least 9/10 of the predicted response (/? = 0-9), then the
minimum size required is

S = 328/t(ihf. (15)
Since ih ^ 2 in most selection programmes, it follows that a population size of at
least 82ft is required for there to be a 90 % chance of achieving 9/10 of the pre-
dicted response after t generations.

4. EXTENSION OF THE MODEL
(i) Lack of a control

Many selection programmes, especially those in commercial operations, are
conducted without a control. It is therefore important to broaden our model to
include such programmes.

In the absence of a control, it must be assumed that there is no environmental
trend, and the potential importance of variance in common environmental effects
among generations must be accounted for. Following Hill (1971, 19726), we
assume that effects common to individuals within a generation are randomly and
independently distributed among generations, with mean zero and variance cr\.
This variance in common environmental effects is another source of error variance
in the selection line, so that we now have cr\x = o-%/M + a%, with drift variance
remaining unaltered as tcr^/N. In the absence of a control, the observed response is

M = Xt-X0 (16)
with expected variance

<T%=oix + *tx- (17)
Substituting the above values for o~$x and a\x into (17), and recalling that
M = N/p, we have

*% = o-2
A(t+2p/h^/N+2o-l (18)

By comparing equations (5) and (18) it can be seen that the difference in variance
of response between a selection programme with a control and one without a
control is tcx^/N — 2a% = <r\^ — 2cr\. Thus, if the common environmental variance
is one-half the drift variance, then the variance of response is similar with or
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without a control. If a% is greater than half the drift variance, then variance of
response is smaller with than without a control; if cr\ is less than half the drift
variance, then variance of response is larger with than without a control.

What values of a\ are likely to be met in practice? While few values of this
parameter are available in the literature, it is now possible (Hill, 19726) to estimate
a% from selection experiments quite simply. Once such a value has been deter-
mined, then appropriate adjustments can be made where necessary to the con-
clusions drawn from the model involving a control line.

For example, if o^ is larger than half the drift variance, the chance of success of
a particular selection programme will be less in the absence of a control, and vice
versa. Similarly, if o~\ is larger than half the drift variance, the size of population
required will be larger than if a control were maintained, and vice versa.

(ii) Divergent selection

An alternative programme to the one described in the basic model is to conduct
selection for the same character in opposite directions in two lines. This form of
selection was discussed extensively by Hill (1972a). Letting Xu> t and Xdi t represent
the phenotypic means of the up and down selection lines respectively, at generation
t we have _ _

M = XUtt-Xd>t, (19)

<r% = 2<rlx + 2o-*x, (20)
and if there is no asymmetry,

R = 2tiha-A. (21)

If N individuals are selected from M scored each generation in each line, with
N = pM as before, then

o% = 2<r\{t+p/h*)/N (22)

as in equation (5) for the basic model. Thus

<rR/R = J(t+p/h?)/tihJ(2N), (23)
which is one half the coefficient of variation for one selection line and a control
(equation (6)). Thus divergent selection is much more efficient than using one
selection line and a control, and the size of population required to satisfy a given
criterion is correspondingly lower. If, however, the comparison is between di-
vergent selection, and unidirectional selection without a control, then if a% = 0
and if the same total number of parents are selected in each case, divergent selec-
tion results in a doubling of response and a quadrupling of variance of response
(Hill, 1978), in which case coefficient of variation and hence the overall requirement
in relation to the number of individuals selected per generation remains the same
under both types of selection programmes.

(iii) Two sexes

In the most general case, the existence of two sexes involves four pathways by
which gametes can pass from parents to offspring (male to male, male to female,

https://doi.org/10.1017/S0016672300013951 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300013951


92 F. W. NICHOLAS

female to male and female to female), with expected response to t generations of
selection given by

R = tG<xA, (24)

where G is the average genetic superiority, in units of crA, of those individuals
selected as parents. In its most general form,

where ij and pt are respectively the intensity and the accuracy of selection for the
j th pathway. If accuracy of selection p3- is defined in the usual way as the correla-
tion between the criterion of selection and true breeding value, then equation
(24) is a completely general prediction of response to selection, incorporating the
whole range of possibilities from simple mass selection in both sexes, through to
selection for a sex-limited character and/or the use of any type of selection index.
With two sexes, drift variance in the selection line is now taA/Ne, where Ne is
effective population size. If Nm males and Nf females are selected as parents each
generation, then as usual, 1/Ne = l/4:Nm+i/4:Nf. And if Mm males and Mf

females are scored each generation in the selection line, then the measurement
error variance is simply the variance of the average of observations on males
and females, which is <r%/Me, where 1/Me = l/4ilfm+ l/4,Mf. In the same way,
drift variance and error variance in the control line can be written as t<rA/Ke and
cr%/Je respectively. Substitution of these values into equation (2) gives variance
of response, and combining this with equation (24) gives

(TR/R = <J[t(l/Ne+ 1/Ke) + (1/Jf e + l/Je)/h?]/tG (25)

in its most general form.
With the basic model we saw that a simple and yet useful expression for the size

of population required can be obtained by assuming that error variance is negli-
gible in comparison to drift variance and that the selection and control lines are
the same size. With two sexes this gives

O-R/B = J(2)/Gj(Net), (26)

which when substituted into equations (9) and (13) leads to

Se = 2/(yG)H (27)
and

Se = 2{zJ^-l)GY/t (28)

as the minimum eflFective population size required in relation to coefficient of
variation and chance of success respectively. Since equations (26), (27) and (28)
are analogous to those obtained with the basic monoecious model (equations (7),
(10) and (14)) the generalizations described for that model apply equally well to
the dioecious model.

The size of a selection line is often specified in terms of the number of breeding
males and/or females in the line at any one time. It would be useful, therefore, if
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values for these parameters could be obtained from Se. Fortunately, with discrete
generations and two sexes, this is a simple task for the most common situation
encountered, namely where the four pathways reduce to two (males to offspring,
and females to offspring). If x females are mated to each male in this situation,
then in general Ne = 4xNm/(l+x), where, as before, Nm is the number of male
parents used each generation. The required size of the selection line in terms of
breeding males is then

8m±8e(l+x)/4x, (29)

where Se is obtained from equations (27) or (28). As a special case of a well-known
relationship, if selection is much more intense in males than in females so that x is
very large, then Sm is approximately one-quarter of Se.

In terms of breeding females, the required size is

Sf = xSm. (30)

It is worth noting that if equal numbers of each sex are scored (Mm = Mf), then
x = Pf/pm, where pf and pm are the proportions selected of females and males
respectively.

(iv) Overlapping generations and two sexes

Extension of the model to include overlapping generations is essential from a
practical point of view, but involves more restrictions than the previous extensions.
The problem is that the simple expressions for expected response and for drift
variance apply only asymptotically in the case of overlapping generations (Hill,
19776; Johnson, 1977). Thus the extension to overlapping generations described
below is not valid for the first few time units (hereafter called years) of a selection
programme. Other assumptions that are necessary for a valid extension to over-
lapping generations are that the number of individuals entering the selection line
as parents each year, the age distribution of individuals within the line, and the
age distribution of parents of individuals born in any year are all fairly constant.
If these conditions are met, then the values for Ne and Ke are determined in exactly
the same way as described in the previous section (Hill, 1972c).

Reverting to the original model of a selection line and a control, and following
Hill (1972 c), the drift variance per year in the selection line is aA/NeL and in the
control line is aA/KeL, where L is the average generation interval, denned as the
average age of parents when their offspring are born. In its most general form

L =

where L} is the generation interval for the j th pathway. For simplicity, it is
assumed that L is the same in the selection and control lines. I t is obvious that the
error variances in the selection line and the control are the same for both discrete
and overlapping generations, since estimates of phenotypic means have to be
made in the same manner in either situation. Thus we now have o~%x = tcrA/NeL,
i-2-- = tcrA/KeL,o%x = cr'p/Me and <r\c = o~%/Je, which can be substituted directly
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into equation (2) to obtain the variance of response, noting that t is now the number
of years of selection.

Providing that care is taken in defining the various parameters in relation to
age structure (see, for example, James, 1977a), expected response to t years of
selection can be written as

R = t<rAG/L, (31)

in which case the most general expression for crR/R becomes

<rR/B = Zj[(l/Ne + l/Ke)t/l + (l/Me+ l/Je)/h*]/tG. (32)
Again, as in the previous section, we can obtain very simple expressions for

effective size of population required, if t > p/h2 or more specifically if measure-
ment error variance is negligible in comparison with drift variance, and by con-
sidering the situation where both the selection line and its control are of the same
size. In this case, equation (32) reduces to

<rR/R = J{2L)/GJ{Net), (33)

which after substitution into equations (9) and (13) gives

-8, = 2L/(7G)H (34)
and

Se = 2{zJ(p-\)GYL/t (35)
as the minimum effective size of population required. It should be noted that the
above values of crR/R and Se are the same as those for discrete generations
(equations (26), (27) and (28)), with t/L in place oi t. Since the generation interval
usually consists of at least several time periods in selection programmes with
overlapping generations, the assumption of negligible measurement error variance
in relation to drift variance is less valid here than for the case of discrete gener-
ations. Thus the coefficient of variation of response in equation (33) is likely to be
more of an under-estimate than its discrete generation counterpart in equation
(7), and the sizes of population required, as given in equations (34) and (35), are
also more likely to be underestimates, especially when t is small. In using these
equations in the design of selection programmes, therefore, it should be remem-
bered that the sizes of population obtained from equations (34) and (35) are
absolute minima.

As with discrete generation programmes, the size of selection lines where
generations overlap is often described in terms of the total number of breeding
males and/or females in use at any time. In order to discuss these parameters
where generations overlap, it is convenient to consider the two-pathway and four-
pathway situations separately.

(a) Two pathways

With overlapping generations, we need to specify not only the mating ratio (x),
but also the replacement rate for males (rm) and females (ry), where replacement
rate is the proportion of breeding individuals of the relevant sex that are replaced
each year. If m males and / females enter the selection line as parents each year,
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then the total numbers of male and female parents are m/rm and f/rf, respectively.
With a mating ratio of z, this gives f/rf = xm/rm. Now in general, Ne = ±NmNf/
{Nm + Nf), where, as before, Nm and Nf are the numbers of males and females
respectively entering the population each generation. If deaths and culling after
entry to the breeding population are negligible, then Nm = mL and Nf = fL.
Substitution of the relevant values, and solving in relation to the particular case
being considered in this paper leads to

Sm = 8e(rm + xrf)/4xrmr,L (36)

as the size of population in terms of breeding males required for successful artificial
selection, with Se being evaluated from equations (34) or (35). For females, we then
have

8/ = *8nr (37)
If equal numbers of males and females are scored, and if pm and pf are the respect-
ive proportions selected, then x = (Pfrm)/(pmrf). I t should be noted that if selec-
tion is much more intense on males than on females so that x is large, then Sm is
approximately Se/4trmL.

(b) Four pathways

Although there is no simple relationship between effective population size and
the numbers of breeding males and females for the four-pathway situation, a
useful approximation is Ne = 16NmmNmf/(BNmm + N^), as given by Robertson
(1954), where Nmm and Nmf are the numbers of males that enter the population
each generation to produce respectively male and female offspring. Because this
approximation involves the assumption of negligible differential selection within
subgroups of the population, it tends to give an over-estimate of the true Ne

(James, 1978). If mm and mf are the corresponding numbers of male parents
entering the population each year, and if deaths and culling after entry to the
breeding population are negligible, then Nmm = mmL and Nmf = mfL. Further-
more, if rmm and r^ are the respective replacement rates, then the actual numbers
of males in use at any one time are mm/rmm to breed males, and mf/rmf to breed
females, with the latter also being the total number of males in use at any one
time. If the ratio of males breeding females to males breeding males is y, then
after substitution and rearrangement we obtain

Smm = S^r^ + yr^/lGyr^r^L (38)

as the size of population in terms of males to breed males required for successful
artificial selection, with Se given as before by equations (34) or (35). The total
number of breeding males is then given by

Smf = ySmm- (39)

(v) Open nucleus breeding schemes

The general theory of open nucleus breeding schemes has been developed by
James (19776), Hopkins & James (1978) and James (1978). In the course of this

7 GRH 35
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work, very generalized expressions for response and variance of response were
obtained. Thus it is now possible to calculate the coefficient of variation of re-
sponse and hence the chance of success of any open nucleus breeding scheme.
Unfortunately, the expression for coefficient of variation can not be simplified to
the extent required to obtain a simple expression for the size of population re-
quired. Resort must be made, therefore, to numerical solution of equations
{9) or (13) in order to determine the size required for an open nucleus breeding
scheme.

5. RESULTS

(i) Criteria

The coefficient of variation of response to artificial selection is shown in Fig. 1
as a function of ih,J(Net), while Fig. 2 illustrates the chance of achieving an
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t discrete generations, or for t time units in a population with overlapping genera-
tions in which average generation interval is L time units. To obtain coefficient of
variation for selection on a sex-limited character and/or on any index, replace ih
with a = (S*_! ijPj)/4:.

observed response (B) greater than various proportions of expected response (B),
also as a function of ih^(Net). Fig. 1 was obtained directly from equation (26), and
the curves in Fig. 2 were obtained by substituting the value of <rB/B from
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Fig. 2. Chance of success in a directional selection programme with selection intensity
i and heritability h% in a population with effective size Ne. Chance of success is given
for t discrete generations of selection, and for t time units of selection in a population
with overlapping generations in which average generation interval is L time units.
To estimate chance of success for selection on a sex-limited character and/or on any
index, replace ih with O — (2*_! ^Pj)/4. Curves are drawn for /? = 0, £ and 9/10.

equation (26) into equation (8), for the general case of mass selection for a character
that can be scored in both sexes (G = ih). These figures also illustrate the co-
efficient of variation, or the chance of success after t time units of selection with
overlapping generations, as a function o£ih^](Net/L), from equations (33) and (8).

To illustrate the general conclusions that can be drawn from Figs. 1 and 2,
consider response to one generation or one time period of selection (t = 1). Note
that the limitation of the theory in relation to overlapping generations, as de-
scribed earlier, does not preclude consideration of one time-period of selection, so
long as that time period does not occur right at the beginning of the selection
programme. Most discrete generation selection programmes have values of
ih*J(Net) somewhere between 1 and 10 if t = 1. It can thus be seen from Fig. 1
that such programmes have a coefficient of variation of response between ap-
proximately 140% and 14%. I t can also be seen, from Fig. 2, that such pro-
grammes have at least a 76 % chance of resulting in some improvement (as distinct
from going backwards). At the same time, however, such programmes have less
than a 76 % chance of achieving 9/10 of the predicted response. For programmes
with overlapping generations and where time is measured in years, the value of
ih^(Net/L) often lies within the range 1-5 if t = 1, in which case the coefficient of

7-2
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variation lies between 140 % and 28 %. The chance of making at least some im-
provement in one year is at least 76 %, but the chance of achieving 9/10 of expected
response in one year is less than 64 %.

(ii) How large should a selection programme be?

In order to cater for as many different types of selection programmes as possible,
this question has been answered in terms of effective population size (8e), and the
size of population in terms of total breeding males (Sm) where selection is much
more intense on males than on females. In this situation, as we have seen, Sm

is approximately Se/4 with discrete generations, and Se/4rmL with overlapping
generations.
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Fig. 3. Effective population size required (S,) and total number of breeding males
required (Sm) in order to obtain a coefficient of variation of selection response (y)
equal to 5 %, 10 % and 20 %, for selection with intensity i and heritability h2.
Se and Sm are given for t discrete generations, and for t time units with overlapping
generations in which average generation interval is L time units. To obtain S, and
Sm for selection on a sex-limited character and/or on any index, replace ih with
G = (£}_! •i/»,)/4.

The results for these measures of population size are illustrated in Fig. 3, in
terms of coefficient of variation, and in Fig. 4, in relation to ensuring a 90%
chance of the observed response (M) being greater than various proportions of the
expected response (R). Values of Se were obtained from equations (27) and (28)
with discrete generations, and from equations (34) and (35) with overlapping
generations, in each case assuming mass selection for a character that can be
measured in both sexes (G = ih). The values on the right hand side of Fig. 3 and
4 are simply <Se/4, and so correspond approximately to Sm for discrete generations,
and to SmrmL for overlapping generations. It is evident that in order to be fairly
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Fig. 4. Effective population size required (Se) and total number of breeding males
required (Sm) in order to have a 90 % chance of achieving the proportions /? = 0,
\ and 9/10 of expected response to mass selection with intensity i and heritability h2.
Se and Sm are given for t discrete generations, and for t time units with overlapping
generations in which average generation interval is L time units. To estimate Se and
Sjn for selection on a sex-limited character and/or on any index, replace ih with

certain that observed response will be quite close to expected response over a
small number of generations or years, quite a large population is required. For
example, if the top 10 % of individuals are selected for a character with a herita-
bility of 0-3, then ih is approximately 1, in which case an effective population
size of approximately 200 is required for the coefficient of variation of response to
be 10%, and an effective population size of approximately 330 is needed to ensure
a 90 % chance of achieving 9/10 of the expected response to one generation of
selection (t = 1).

6. DISCUSSION

There are several different approaches that can be taken in planning selection
programmes. The one used in this paper involves designing the programme so as
to maximize response per generation or per unit of time, in the latter case along
the lines suggested by Ollivier (1974). Having done this, the question then is how
large does the population have to be in order to satisfy specific requirements in
relation to coefficient of variation or chance of success. This approach is most
relevant to commercial programmes, and to any experimental programme in
which the aim is to maximize response. For example, the aim may be to obtain the
largest possible difference between a selection line and a control as quickly as
possible.

https://doi.org/10.1017/S0016672300013951 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300013951


100 F. W. NICHOLAS

If, however, the aim is to compare two or more selection strategies and if the
total facilities are limited, then a different approach can be taken. Suppose, for
example, there is a restriction on the number of individuals that can be measured.
In this case, the smaller the proportion selected, the greater the expected response,
but also the greater the variance of response. Combining these two effects together,
the coefficient of variation of response increases as the proportion selected ap-
proaches both zero and one, for a given number of individuals measured. Clearly
there is an optimum value of proportion selected for which the coefficient of
variation of response is a minimum (Soller & Genizi, 1967). In planning a selection
programme along these lines, the power of the experiment and hence its ability to
differentiate between various strategies, is maximized for a given amount of work
done.

It could be, however, that the minimum coefficient of variation so calculated is
too high, or the corresponding chance of success may be unacceptably low, in
which case it would be best not to proceed with the programme until further
facilities can be found.

(i) The choice of values for the criteria

This raises the question as to what are acceptable values for the coefficient of
variation, and, in relation to chance of success, what are acceptable values of a
and/??

There may be some situations in which quite high values of y, or low values of
a and /? will be sufficient. There are many situations, however, where the reverse
will apply.

Consider, for example, a selection programme in which the aim is to use a single
herd, flock or population to demonstrate the desirable effects of selection to the
members of a breed society; or a programme for a herd, flock or population
belonging to a commercial breeding company, in which the board of directors
will tend to judge the merit (and hence future employment prospects) of their
geneticist according to the response actually observed from year to year; or a
student research project involving a selection programme in which the supervisor
needs to be quite certain, for example 90 % certain, that after a limited (and usually
short) period of time, the student will have obtained the desired difference between
a selection line and its control.

In all these situations, the selection programme would have been designed so as
to maximize expected response {o~AG, or o~AG/L). But the breed society, the board
of directors and the student will not be impressed if they fail to actually observe
a response that is fairly close to that predicted. And although theoretically it is
often sufficient to invoke chance variation due to small population size as the
reason for a large and unfavourable discrepancy between expected and observed
response, this explanation provides very little comfort to those who have devoted
considerable effort and expense to a selection programme which they may be
unable, or unwilling, to repeat. Thus there will be many situations in the labora-
tory and in the field where y should be low, and where both a and /? need to be high.
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(ii) Practical examples

In order to illustrate the application of the results obtained in this paper, let us
consider some particular selection programmes. A typical Drosophila programme,
for example, might involve discrete generations with the top 5 out of 25 in each
sex being selected for a character with heritability of 0-4. If there is a control of
similar size, then we have Ne = Ke = 10, Me = Je = 50, W = 0-4, p = 20%
leading to i = 1-4, and hence G = ih = 0-89. If this were a student project which
was to run for 10 generations (t = 10), then we have from equation (25) a coefficient
of variation, crR/R, of 16%. The chance of observing at least 9/10 of expected
response after 10 generations is, from equation (8),

Prob{Z > (0-9-1-0)6-1} = Prob (Z > -0-61),

which when read from appropriate tables of the standard normal deviate, is 73 %.
Had we used Figs. 1 and 2 (derived from equation (26)) in order to obtain approxi-
mate and, if anything, over-optimistic answers, then ih^(Net) is 8-9 for t = 10
which, from the graphs gives a coefficient of variation of approximately 16 %, and
a chance of success of approximately 74%. Thus for this particular example, and
for many others that have been tested, the approximate coefficient of variation
and chance of success as obtained from Figs. 1 and 2 are sufficiently accurate to be
quite useful.

To illustrate the determination of size of population required, consider a typical
beef cattle selection programme of the type discussed by Hill (19776), which
involves two pathways with overlapping generations. In this programme the top
7 % of bulls (pm = 0-07) and all cows (pf = 1) are selected as parents, giving 1-9
and zero as the respective values of i, and the character being selected has h2 =
0-4. This gives ih = {(l-9 + 0)/2}0-63 = 0-6. If the aim of this selection programme
is to illustrate to breeders what can be achieved over a ten year period, then
t = 10 and since average generation interval is 2-5 years, ih^(t/L) = 1-2. As this
selection programme is largely a public relations exercise, it is not worth doing
unless, for example, there is a high probability that the observed results will be
quite close to the predicted results, such that both a and /? equal 0-9. From Fig.
4 it can be seen that these values require an Se of approximately 230 and hence a
value of SmrmL approximately equal to 57. Since all bulls and one-third of the cows
are replaced each year (rm = 1, rf = 1/3), the size of herd required is Sm =
(SmrmL)/rmL = 57/(1x2-5) = 23 bulls and £, = xSm = {(p,rm)/(pmrf)}Sm = 42-9
x 23 = 987 cows.

(iii) Replication

For any total fixed number of individuals that can be scored, the variance of
response in one selection hne of size N is the same as the variance of mean response
in n lines each of size N/n (Hill, 1971). Thus, for a given total size of facilities
available, the answers obtained in this paper apply equally to response to selection
in one liae, or to average response to selection in several proportionately smaller
lines.
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Although the opportunity for replication in many large animal selection pro-
grammes is usually very limited, laboratory experiments are often replicated. The
theory developed in this paper can be used to determine the number of replicates
required to bring the coefficient of variation down, or the chance of success up to a
particular level. Consider, for example, the Drosophila research project discussed
above. How many replicates of size Ne = 10 would the student require in order
to provide a 90 % chance of the average response being 9/10 of that predicted over
10 generations? With ih = 0-89 and t = 10 we have ihjt = 2-81 for which, from
Fig. 4, it can be seen that the effective population size required is approximately
40, which means that 4 replicates each of size Ne = 10 would be required.

(iv) Inbreeding depression

Throughout this paper, the effect of inbreeding depression on expected response
has been ignored. To what extent will inbreeding depression alter the conclusions
reached? If inbreeding depression reduces expected response by a fraction b, then
the coefficient of variation of response is increased from (rB/R to crB/R(l — b) and the
chance of success is decreased to Prob {Z > (/?—1) (l — b)R/crB}. In order to
illustrate the effect of inbreeding depression, it is convenient to express R and
inbreeding depression as a percentage of the original population mean. Suppose,
for example, that it is 3 % per generation, and that inbreeding depression occurs
at the rate of 0-5 % per 1 % AF, where AF is the increase in average inbreeding
coefficient per generation. If AF = 1 % in this programme, then expected response
is reduced from 3 % to 2-5% per generation, a reduction of one-sixth. Thus
b — 1/6, in which case the coefficient of variation is 1-2 times greater than in the
absence of inbreeding depression. If <rB/R was originally 15 %, then it is increased
to 18%, and the chance of observing at least 90% of expected response is de-
creased from 75 % to 71 %. In this way it is relatively easy to quantify the effect
of inbreeding depression on coefficient of variation and chance of success.

I t is much more difficult, unfortunately, to calculate the size of population re-
quired. In order to do this, the reduction in expected response has to be expressed
in terms of the effective population size so that expected response becomes ap-
proximately tiho~A — 100It/2N, where / is inbreeding depression expressed in
units of the character being selected, per 1 % AF, and where the programme is
sufficiently short-term such that A-P is approximately t/2N. Thus the denominator
of the expression for coefficient of variation now contains two terms, and no simple
algebraic expression for size of population required can be obtained. It would be
possible, however, to solve equations (9) or (13) numerically in order to determine
the appropriate size for a particular programme.

(v) Another measure of size required

I t is obvious that the results of this study apply only to relatively short-term
selection response, before the values of h2 and/or o-p are altered by selection. This
being so, it is of interest to compare the results obtained here with those obtained
by Comstock (1974, 1977), who, as mentioned earlier, was concerned with the size
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of population required to provide a high chance of ultimately fixing most favour-
able alleles. An important difference between Comstock's long-term criterion and
the short-term criteria discussed in this paper is that the size required in relation
to the former is inversely proportional to the frequency and to the size of the effect
of individual alleles. In comparison, these factors are relevant to the short-term
criteria only in so far as they affect additive genetic variance.

How different are the requirements for short-term and long-term selection? In
order to provide a 90 % chance of fixing alleles with an effect on the population
mean of at least 1 % and with an initial frequency as low as 0-1, Comstock showed
that a population size of 230 was required. If one was content to fix only genes of
larger effect (2 % of the mean) with a higher initial frequency (0-2), then the number
required was reduced to approximately 60. In the present study, it was concluded
that the absolute minimum population size required in order to provide a 90 %
chance of observing at least 9/10 of the expected response after t generations is
82ft. For many programmes, where ih ^ 1, the absolute minimum is much higher,
at approximately 300/t.

Thus it appears that the minimum population size required to give a high chance
of observing a large proportion of response to one generation of selection (t = 1) is
of the same order as that required to give a high chance of ultimately fixing a
reasonable proportion of useful genes. However, the size of population required in
relation to the short-term criteria is indirectly proportional to t, so that, for
example, the size required for a quite satisfactory short-term programme lasting
five generations is approximately one-fifth of that required to satisfy the long-
term criterion. Thus, the selection programmes most likely to be large enough to
eventually retain most of the available useful genes are those that have to be
evaluated every generation or every year. To the extent that frequent evaluation
occurs in commercial selection programmes, those commercial programmes that
satisfy the appropriate criteria as described in this paper are likely to be large
enough to satisfy the long-term criteria as well. Consequently, there may be less
conflict than is generally assumed between short-term and long-term aims in a
well-designed commercial selection programme.

(vi) Sources of error

Various approximations have been used throughout this study. Not the least of
these were setting drift variance in a selection line equal to ta^/N, and assuming
that measurement error variance is negligible in comparison with drift variance. In
addition, implicit throughout this study is the assumption that parameters such as
heritability are known without error, and that there is no variance in i, the
standardized selection differential. The use of these and other assumptions and
approximations means that the results obtained are approximate. They do, how-
ever, provide general guidelines as to the size of population required in artificial
selection programmes. To the extent that measurement error variance is not
negligible, especially when programmes are to be evaluated at short intervals, the
guidelines should be viewed as minimum requirements.
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(vii) Conclusion

The present study has examined the coefficient of variation, the chance of
success, and the population size required in relation to the short-term of an
artificial selection programme. In so doing, it has not been concerned with
methods of maximizing short-term response, but rather with the size of popu-
lation required once the optimum design in relation to maximizing short-term
response has been determined.
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be considered, and to Associate Professor J. W. James for various comments. Part of this
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