Can. J. Math. Vol. 50 (3), 1998 pp. 547-562.

MITTAG-LEFFLER THEOREMS ON RIEMANN SURFACES
AND RIEMANNIAN MANIFOLDS

PAUL M. GAUTHIER

ABSTRACT. Cauchy and Poisson integrals over unbounded sets are employed to
prove Mittag-L effl er type theorems with massive singul arities aswell as approximation
theorems for holomorphic and harmonic functions.

1. Introduction. Let Q be a connected complex (respectively, Riemannian) man-
ifold. In the Riemannian case, we assume that Q is C*™ and oriented. Our results will
clearly hold also on an open subset Q of the complex plane C (respectively, of Euclidean
space R"), by considering components, although such an Q need not be connected.
For F C Q, we write f € H(F), if f is holomorphic (respectively, harmonic) on a
neighbourhood of F.

THEOREM 1 (MITTAG-LEFFLER, MASSIVE SINGULARITIES). Lete C w C Q, where Q
is a Sein or noncompact Riemannian manifold, e is closed and w is open. For any
fe € H(w \ €) thereexistsa functionf € H(Q \ €) such that f — fe extendsto a a function
in H(w).

In particular: let Q be the complex plane C; let e be adiscrete subset of C, which we
may think of as a sequence of distinct points ey, e, . . . ; let w be a sequence of disjoint
discswi,j = 1.2, ..., centeredrespectively et theg’s; letp;,j = 1, 2. ..., bepolynomials;
let

fi(x) = p,-(i). i=12...

and definefe on w\ eby setting fe = fj oneachw; \ {g }. Theorem 1, in this case, saysthat,
given a sequenceof distinct points g tending to oo, there exists a meromorphic function
f on C, having prescribed principal parts p; (1 /(@z— q)) at the points g and having no
other singularities. Thisisthe classical Mittag-L effler theorem.

If we consider a singular point of afunction to be a point where the function is not
holomorphic, then, since holomorphic functions are defined on open sets, it is natural to
look at closed sets as possible singularity sets of functions. Given a closed set e C C,
we say that fe is a singularity function at e if there is an open set w containing e such
that fe is holomorphic on w \ e. The singularity function fe prescribes the nature of the
singularity at e. Two singularity functions f, and ge at e are said to have singularities of
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the same nature at eif fo — ge extends holomorphically to (a neighbourhood of) e. In the
classical Mittag-Leffler theorem, the nature of the prescribed singularities is given by
prescribing the principal parts at the prescribed sequence of points. Theorem 1 allows
us to replace the discrete set of singularities in the classical Mittag-Leffler theorem by
an arbitrary singularity set and, moreover, the nature of the singularity can be arbitrary
instead of being poles. That is, there is no restriction on the singularity function f at e.

This theorem was stated by Saakian [20] for the case that Q = C. In fact, Theorem 1
isaparticular case of the following.

LEMMA 1 (COUSIN LINKING). Let a Stein or noncompact Riemannian manifold Q be
written as the union of two open sets Q_, Q. and let g € H(Q_ N Q.). Then, there are
functionsg_ € H(Q_) and g+ € H(Q.) such that

g=g-+0

For the casethat Q is an arbitrary open set in C, thislinking lemmais the well known
theorem of Aronszajn [1] on the separation of singularities, for which Havin [15] gave
a short proof using duality. Another proof (cf. Example 3.2.5 in the book by Berenstein
and Gay [3]) follows immediately from the solvability of the additive Cousin problem,
and hence clearly holds on any Stein manifold Q, and, in particular, on any open set of
holomorphy Q c C".

Since the additive Cousin problem can also be solved for harmonic functions, in fact,
for elliptic systems on manifolds (cf. Tarkhanov [23]), the proof also works for harmonic
functions on Riemannian manifolds.

Let e_ and e be two disjoint closed subsets of a manifold Q. By the condenser (or
capacitor) C(e_, e;), we understand the open set C(e_, e;) = Q\ (e_Ue,). LetH(e_, e;)
denote the family of holomorphic (if Q is Stein) or harmonic (if Q is Riemannian)
functionson the condenser C(e_, e;). We say that acondenser C(e_, e;) onamanifold Q
admitslinking if, for eachg € H(e_, e;), thereareg_ € H(Q \ e_) and g+ € H(Q \ &})
such that

9=0-*+0.

The following weaker form of the Cousin linking lemma is clearly equivalent to

Theorem 1 and brings out the symmetry of the problem.

LEMMA 2 (WEAK LINKING). Ona Sein manifold or a noncompact Riemannian man-
ifold, every condenser admits linking.

Theorem 1, for the simple case that Q \ eis an annulus in the complex plane, is an
immediate conseguenceof the Cauchy formula (which in this caseyields a more explicit
representation, namely, the Laurent expansion). Although the general proof for elliptic
systems[23] isin the sophisticated language of cohomology, we shall show that, at least
for holomorphic functions on Riemann surfaces and harmonic functions on Riemannian
manifolds, we can imitate the proof for the annulus, by using Cauchy and (respectively)
Poisson integrals. In the next section, we start with the holomorphic case on Riemann
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surfaces although (or because) it is better known and simpler. In Section 3, we prove
the harmonic case. Then, in Section 4, we look at these questions on compact surfaces.
Finally, in thelast section, wetakeacloser |ook at the moretraditional point singularities.

In fact, this paper was at one time a short note on the Mittag-Leffler theorem for
harmonic functions with prescribed point singularities. | wish to thank Ashot Nersessian
for suggesting that such atheorem might al so hold with massive singularitiesand Thomas
Ransford for pointing out that the holomorphic case is a consequence of the Cousin
linking lemma. Our approach finesses the language of cohomology by exploiting the
properties of Cauchy and Poisson integrals over unbounded sets.

This paper was completed in the fragrance of lotus pools and surrounded by the
enchanting musical strains of Chinese opera emanating from the island temple on the
campus of Peking University. Xiexie Beidal

2. Open Riemann surfaces. In this section, Q will denote a Riemann surface and,
for F C Q, wewritef € Hol(F) if f is afunction holomorphic on (a neighbourhood of)
F. We denote the one-point compactification of Q by Q* = Q U {x}.

In 1927, Carleman established the following remarkable result. If f is any continuous
function on thereal axisR and e is any positive continuous function on R, then, thereis
anentirefunction g suchthat |f —g| < e. Inattempting to perform similar approximations
on more general unbounded subsets of the complex plane C than the real axis, the author
introduced the so-called “long islands’ condition on a closed subset F of C, which he
showed to be a necessary condition for such Carleman type approximation. Nersessian
completed the characterization of sets of Carleman approximation by showing that this
condition was, in fact, also sufficient. This result was extended to Riemann surfaces by
Boivin [4]. For our purposes, we do not require the full strength of Boivin'stheorem; the
following is adequate.

THEOREM 2 (CARLEMAN TYPE). Suppose 7 is a closed subset of an open Riemann
surface Q. The following are equivalent.

i) For eachf € C(7) andpositivee € C(7), thereisag € Hol(Q) suchthat |f —g| < e.

ii) 7% =0and Q*\ 7 is both connected and locally connected.

The above theorem gives a complete answer to the problem of (better than) uniform
approximation of continuous functions on closed subsets of Riemann surfaces.

The analogous problem of uniform approximation of holomorphic functions on a
closed subset e C Q was solved by Alice Roth for the case that Q is a plane domain
and partially extended to Riemann surfaces by the author [10]. The basic tool exploited
wasthat of Cauchy integrals on (possibly) unbounded curves. The main objective of this
section will be to point out that the Cauchy integral also (in fact, more easily) yields the
Mittag-L effler theorem with massive singularities on Riemann surfaces.

Let ¢ beaglobal local uniformizer on Q, shown to exist by Gunning and Narasimhan
[14]. Thisisjust afunction ¢ € Hol(Q) which is locally injective. Thus, in the neigh-
bourhood of each point pp € Q, we may takez = p(p) asalocal parameter. By a Cauchy
kernel C on the Riemann surface Q, we mean ameromorphic function C(p. g) on Q x Q,
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whose only singularities are along the diagonal, and if (D, ¢) is a parametric disc and
(z.9) = (#(p). »(a)), then, in the local coordinates (z.(),

Czo) = ?lz +h(z.0).

where h is holomorphic. Every open Riemann surface admits a Cauchy kernel. A short
proof [10] can be based on the fact that the product Q x Q of an open Riemann surface
with itself isa Stein manifold. Indeed, we have only to solve thefirst Cousin problem on
Q x Q, with Cousin data equal to 0 off of the diagonal and equal to 1/[»(p) — ¢(g)] on
every set D x D, whereD isan open subset of Q on which the global parameter function
p isinjective. Of course, by invoking Stein theory, we are making an implicit appeal to
cohomology theory. However, the Cauchy kernel is such a natural entity that it seems
of interest to present an exposition based on the Cauchy kernel as an alternative to that
based on the linking lemma. Moreover, Magnus [17] has recently given an elementary
construction of the Cauchy kernel, which is free of conomology.

Let o beasmooth curveon Q. By thiswemeanthat o isaclosed setin Q and, for each
zZ € o, there is an open neighbourhood z € U C Q and a C*-diffeomorphism s:A — U
of the unit disc A onto U such that the image of theinterval (—1, +1) isthesetcNU. We
fix an orientation on ¢. If v is a continuous function on ¢, we consider, for p € Q — o,
the Cauchy integral

W) =¥ = - [ OCE

which is well defined if (z.¢) = (<p(p). gp(q)),  isthe previously defined holomorphic
function on Q, and v decays sufficiently rapidly at the ideal boundary.

LEMMA 3. Given a smooth curve o in Q, there exists a positive continuous function
n € C(o) suchthat, if || < 1, then the Cauchy integral W of ¢ converges uniformly on
compact subsetsof Q \ o and hence W € Hol(Q \ o).

We shall say that a Cauchy kernel C on an open Riemann surface Q is bounded at
infinity if, for each compact K C Q, and each neighbourhood U of K, the Cauchy kernel
isboundedonK x (Q\ U) and on (Q \ U) x K. For example, if Q isaplanedomain, then
the standard Cauchy kernel 1/(¢ — 2), is bounded at infinity. On the other hand, there
exist open Riemann surfaces, for example, the so-called Myrberg surfaces, for which no
Cauchy kernel is bounded at infinity (cf. [12]).

LEMMA 4. If, under the hypotheses of the previous lemma, the Cauchy kernel is
bounded at infinity, then, given a closed set e C Q \ ¢ and a positive constant ¢ > 0, we
may so choose the function 1 that |¥] < e one.

Thusfar, we have considered the Cauchy integral W of ageneral continuous (or even
locally integrable) function ) on o which decays rapidly at infinity. We have noted that
W € Hol(Q \ ). The behaviour of W aswe approach ¢ has been studied in depth in the
literature. From the definition of o, each point of o has an open neighbourhood V which
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is separated by o NV into two disoint domains V_ and V., where o NV is oriented
positively with respect to V. and negatively with respect to V_. Let usdenoteby W_ and
W, therestrictions of W to V_ and V., respectively. The following jump lemmais easily
verified.

LEMMA 5 (ump). If ¢ € Hol(V-), then W, extends holomorphically acrosso NV. If
we retain the notation V.. for this extension, then

Y, —Y_=19, onV_.

Wenow haveall of theingredientsto prove a Rungetype approximation theorem, that
is, atheorem on the uniform approximation of holomorphic functions on closed subsets
of Riemann surfaces.

THEOREM 3 (RUNGE TYPE). Let Q be an open Riemann surface having a Cauchy
kernel bounded at infinity. Let e be a closed subset of Q. The following are equivalent.

1) For each constant ¢ > 0 and each f, € Hol(€), thereis a g € Hol(Q) such that
Ife—g| <e.

2) Q*\ eisconnected and locally connected.

If Q is a plane domain, then, for e compact, this is the classical theorem of Runge
(1885); for e closed, the implication 2) — 1) is due to Alice Roth (1938); and the
implication 1) — 2) is due to Arakelian (see [8] and [12]). If Q is an open Riemann
surface and e is compact, the assumption on the Cauchy kernel is superfluous and the
result is the famous theorem of Behnke-Stein (cf. [18]). The general version was proved
by the author (see[10]). If the assumption on the Cauchy kernel is dropped, the theorem
no longer holds[12].

PROOF OF THEOREM 1 FOR RIEMANN SURFACES. In fact, we shall notice that the
proof also yieldsthe implication 2) — 1) in Theorem 3. Suppose, then, that w isan open
neighbourhood of e and fe € Hol(w \ €) (respectively, fo € Hol(w).) We may construct a
smoothly bordered neighbourhood U of e whose closureis in w and such that w* \ Uis
connected and also locally connected. We decomposethe boundary of U into two digjoint
parts 9U = v + ¢. The part v consists of certain components of U which lie on the
boundary of unbounded componentsof U: namely, all unbounded boundary components
and also those bounded boundary components, which lie on the boundary of unbounded
componentsof U and which do not separate Q. The part ¢ consists of all other boundary
components of U. From the construction of v, we have that Q* \ 7 is connected and
locally connected. Let 1 be apositive continuous function on v. By Theorem 2, there is
afunction g, € Hol(Q) such that |fe — g,| < 1 on. By Lemma 3, we may choose
such that the Cauchy integral W, of fe — g, ony isin Hol(Q \ V).

Let W5 = W,|U and W; = W,|Q \ U. Let 0o be a component of o. Since W, is
well defined in a neighbourhood of ¢p, we may extend WS and W5 across oo and
W =W, = Y7 near oo. This continuation, starting near v, cannot lead to other values
than

W - =f.—g,
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because by continuing through components of ¢ it isimpossible to travel from one side
of v to the other side. Thisis because a path starting on the inner side of a component
Yo of v isin an unbounded component of U. Asit traverses a oy, it can never get to the
other side of v, because o separates Q. Thus, W7 extends to a function in Hol(w) and
W extendsto afunctionin Hol(Q \ €) (respectively, to afunction in Hol(Q) in the case
of Theorem 3) and

(1) fe= (W +g,)—¥; onw\e

Now write ¢ = ¥ o(j), where each o(j) is either the entire boundary of a bounded
component of U or a component of o which separates Q. Choose a sequence {6(j)} of
positive numbers such that 3~ 4(j) < oo and the function

-y w0 =30
Vi@ =2 W@ =2 57 [ HOCEOK

isin Hol(Q \ ¢). By LemmaJ5,
Wi — Wogy = 00)e

near o(j). Since o(j) separates Q, this allows us to extend Wy, and W, so Wy, isin
Hol(w) and W7, isin Hol(Q \ e (respectively, in Hol(Q) in the case of Theorem 3.)
Hence,

) W - =%"4()fe onw\e

Set § = -6()). Combining (1) and (2), we have
(L+6)fe= (LP:: + LP; +g,) — (W +¥)),

which concludes the proof of Theorem 1.
To prove theimplication 2) — 1) in Theorem 3, we write

(1+0)fe= (g, — Wy — W)+ (W7 +W)) =g+ W7

on w, where g € Hol(Q). If € is any positive continuous function on e, we may, by
Lemma 4, choose n; and {6(j)} to decrease so rapidly that |¥*| < /(1 + ) on e. This
provesthe implication 2) — 1).

3. Riemannian manifolds. The proof of the harmonic Mittag-L effler theorem with
massive singularities is completely analogous to the proof we have just given for the
holomorphic case on Riemann surfaces. Of course, we must replace the Cauchy integral
of afunction by a Poisson-Greenintegral. Since the Poisson-Green integral of afunction
involves, not only thefunction and the* Poisson” kernel, but al so their normal derivatives,
we shall need a Carleman type lemma which alows one to approximate, not only a
function, but also its derivatives. On amanifold, derivatives do not have definite values,
but depend on the local coordinates. As Narasimhan notes [18, p. 176], since, locally,
any vector bundleisisomorphic to thetrivial bundle, we may speak of the local uniform
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convergence, together with all partial derivatives, of a sequence of smooth sections. It
is not so clear what would be meant by global uniform convergence of a sequence and
its derivatives. Thus, although the notion of uniform approximation of a function on an
unbounded set makes sense, we do not see how to make sense of the notion of uniform
approximation of the derivative of a function on an unbounded set. Nevertheless, we
can give asense to the stronger notion of Carleman approximation of the derivative. We
shall use Carleman approximation of functions and their derivatives on very particular
sets to obtain uniform approximation of functions on rather general sets and linking for
completely general condensers.

Let F be aclosed subset of a manifold Q. By a Carleman gauge for F, we mean a
family {B;. ¢j. € }jcs, Where {B;. ¢; }jes isalocally finite cover of F by parametric balls
and {¢; }je; isaset of positive numbers.

The notationsf € C}(S) andf € Har(S) meanthat f is C! and harmonic respectively
on (a neighbourhood of) the set S If x = ¢(p) is a local coordinate in a parametric
ball (B. ¢), we use the abusive notation f(x) and (Vf)(x) for f o o=t and V(f o p™%)
respectively evaluated at x. Of course, the former is independent of the chart while the
latter is not. With this understanding, we introduce the notation ||f ||, = |f| + || Vf| and
the notation ||f||1(x) stands for the function ||f ||, evaluated at the point x.

By aNewtoniankernel on Q, wemeanafunctione: Q x Q — (—o0, +o0], suchthat, if
Risasmoothly bounded subregion of Q, then we may write e(p, q) = Gr(p, q) + Vr(p, 0),
for pand qin R, where Gy isthe Green function for Rand vg isharmonicin each variable.
For the existence and properties of the Newtonian kernel e, see [2]. In particular, we
have the usual Poisson-Green formula

h(a) = ‘/HR[e(p, q)g—:(p) - h(p)g—f (p.q)| dA,

which follows from the Green formula Il [6, p. 144], whereq € R, h € Har(ﬁ), vis
the outward unit vector field along 9 R which is pointwise orthogonal to R, of /ov =
(gradf.v), and dAis the Riemannian “area’ measureon d R.

LEMMA 6 (RUNGE TYPE). Letf € Har(K), where K C Q is compact and Q* \ K is
connected. Let {B;. ; }jcs be a finite cover of K by parametric balls. For each e > 0,
there existsg € Har(Q) such that, for eachj € J,

If —glli) <e. x€ g(KNB).

More generally, we wish to perform such an approximation in certain situations,
where the hypothesisthat f € Har(K) is relaxed (see the Saturn lemma below).

PrROOF. We may construct a compact set Q such that L € Q°, Q* \ Q is connected
andf € Har(Q). By [2, Theorem 9.3], thereis a sequencegy € Har(Q) which converges
uniformly to f in Q. It follows that in any parametric ball BcC Q°, the convergence also
holds for derivatives. Sinceany KN I§J can be covered by finitely many such parametric
balls B, the lemma follows.
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Let us say that two sets K; and K; are properly linked if K; \ Kz and K; \ K3 have
digioint closures. In the following lemma, we shall, in some sense, “fuse” two functions,
01 and gy, by asingle function g.

LEMMA 7 (FUSION). Let K = K3 UKy, whereK; and K, are properly linked compact
sets and let {B;,j € J} be a finite cover of K by parametric balls. Thereis a constant
a > Osuch that, if g € Har(K), i = 1,2, then there exists g € Har(K) such that, for
i=12andj € J,

g — gl <a-Mj(g — @), X € (K NBy),
with _
M;j(91 — 92) = max{]|gs — Q2[l1(Y) : ¥ € ¢j(KiNK2N By}

PrOOF. Leth € CX(Q) suchthat 0 < h < 1, h = 1 on aneighbourhood of K; \ K;
and h = 0 on aneighbourhood of K5 \ K. The constant awill depend on h only. We may
assumethat g; = 0 and that g; € C°(Q). Thus, we seek a constant a and ag € Har(K)
such that g fusesg; and O in the sensethat, for j € J,

lgr — g0 <a-Mj@). x€ ¢j(KiNB)
9100 <a-Mj(@). X< ¢j(KaNBy).

Set ) = h-g;. Then, ¢ doesindeed fuse g; and 0 with some constant a, depending only
on h. However, ¢ is merely a C*-fusion whereas we are seeking afusion g € Har(K).
Fix abounded neighbourhood V of K; N K, such that g; € Har(V) andfor j € J,

max{[|ga/l1(y) : ¥ € i (VO By} < 2M;(9n).
If &(p. g) isthe the Newtonian kernel introduced above, then following [2, Theorem 4.8],
(@) = — [ e(p. AE)P) dAP)
= Jory - D@Y)(P) dA(P) — /V &(p. A)(A)(p) dA(p)-

Q\V

Set
9@ == J,, &P DAV)(P) dA(P).
Then, g € Har(K), since Ay = 0 on a neighbourhood of K \ V. We havein V
Ay =g;-Ah+2gradh- gradg;.

From[2, Lemma®.1], thereisana; > 0, depending only on h and the Newtonian kernel
e suchthat,fori=1.2andj € J,

lg—v[1i(x) <ar-Mj(@g—v). xe ¢i(KinB;).

Since|gr — g1 < ||g1 — ¥||1 +]|g — ¥||1, and ¢ has already been seen to fuse g; and 0,
and M;(g — ¢) < ay - Mj(g1), for some constant ay, the lemma follows.
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LEMMA 8 (LOCALIZATION). Let K C Q bea compact set with Q* \ K connected, f be
afunctionwhichis C* in a neighbourhood of K, and {B;. ¢; }jc3 be afinite cover of K by
parametric balls. The following two conditions are equivalent.

(i) For eachsetof¢j, j € J, thereexistsa family of g; € Har(Q) such that

If =gl <¢, x€ ga,-(KﬂIgj).
(i) Foreachsetof¢j,j € J, thereexistsa g € Har(Q) such that, for eachj € J,
If —glli) <¢. Xx€ @(KNB).

PrROOF. The implication (ii) — (i) is trivial. The idea of proving localization via
fusion was introduced by Alice Roth in the context of rational approximation (see [8]
and [12]). In order to apply this technique, we shall refine the covering {B; };<;. We may
suppose that Q is embedded in some Euclidean space R™. Now we partition R™ into
m-cubes in the usual way by hyperplanes parallel to the coordinate hyperplanes, with
mesh size h. We choose h so small that, for each such hypercube Q, K N Q is contained
in some B;. We may now prove localization via fusion following Roth's technique (see
[8, p. 117].)

In general, the family of sets on which approximation is possible is not preserved
under unions. However, we have the following special result.

LEMMA 9 (SATURN). Suppose K is a compact set, H is a compact set situated on a
smooth hypersurfaceand Q* \ (K U H) is connected. Then, for each function f which
is Ct in a neighbourhood of K U H and harmonic on K and for each Carleman gauge
{B;. ¢j. € }jes for KU H, there exists a function g € Har(Q) such that, for eachj € J,

If =gl <. x€ g ((KUH)NB)

PrOOF. This follows immediately from the above localization lemma, the Hartogs-
Rosenthal type theorem (see [5, Theorem 3.23], [13, Theorem 5.1], [23], [24, Theo-
rem 3.4] and [21, Satz 1, p. 247]), and the Runge type lemma.

LEMMA 10 (CARLEMAN TYPE). Supposel” isasmooth hypersurfacein Q with Q*\ T
connected. Let f € Har(I") and {B;. ¢j. ¢ };ca be a Carleman gauge for I". Then, there
exists a function g € Har(Q) such that

3) If =gl < ¢, xe€BNT).

We pauseto explain in which sensewe consider thislemmato be aresult on Carleman
type approximation. Letf beaC-function in aneighbourhood of aclosed set F ¢ Q and
let {B;. ¢j},] € Jbealocally finite cover of F by parametric balls. We say that f admits
C!-Carleman approximation with respect to this cover {B;. ¢;}, j € J by functions in
Har(Q), if for each set {¢; }, j € J, thereisag € Har(Q), such that, for eachj € J,

If —gli) <6 x€ p(FNB).
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It is easy to see that, if f admits C!-Carleman approximation with respect to one such
cover, then it admits C!-Carleman approximation with respect to any such cover. We
are thus justified in saying that f admits C-Carleman approximation by functions in
Har(Q), without reference to any particular cover of F. The above lemma then asserts
that f restricted to I” admits C*-Carleman approximation by functionsin Har(Q).

PROOF OF LEMMA. We may construct an exhaustion, Q = |J Q;, of Q by bounded
open sets Qi, Q; C Qi1 i = 1.2...., which is compatible with I in the sense that, for
i=12...,0%\ (Q UT) isconnected.

Let {éx} beasequenceof positive numbers. Set Qo = () and o = 0. We shall construct
inductively asequence gy € Har(Q), suchthat, fork=1,2,... andj € J,

D ol <dokone(B NQus) _

2) If—gr—- =gl <done®B NI N[Qu1\ Ql)

3) If —gr— — k1 < 2k—1+dkon (B NT N[QK\ Qu—1]).

Indeed, set X = I N Q. By the harmonic Rungelemma, thereisag; € Har(Q) such
that [[f — gi1fl2 < 61 0n Xo. Let hy be afunction Ct on Q1 U X, with: [|hy|1 < &1 on
each ¢j(Bj N [Q1 U X3]); h, = 0 on aneighbourhood of Q, andh, =f — g1 on X3 \ Qa.
By the saturn lemma, there exists a g, € Har(Q) such that ||h, — gz||1 < 62 on each
i(B; N [Q1 U Xs]). Then, 1), 2) and 3) are satisfied for k = 1.

Suppose now that 1), 2) and 3) have been established for k = 1,..., m— 1. We
establish 1), 2) and 3) for k = m. Let hy, be: C* on Qp1 U X1 [|himl|2 < 6m-1 0N each
¢(BiN[Qm-1UXme1]); andequal tof — gy —- - - —Gm—1 0N X1 \ Qm. By the Saturn lemma,
there existsagm € Har(Q) such that ||hm — gm|[1 < ém on each ¢j(Bj N [Qm-1 U Xm1]).
Then, gn, satisfies 1), 2) and 3) for k = m. By induction, then, we may construct a
sequence satisfying 1), 2) and 3).

We may choose {éx} such that 36k < oo. Thus, by 1), g = > gk isin Har(Q). Now,
fix f and a sequence {ey }jes. If the {éx} are chosen to decrease sufficiently rapidly, it
followsfrom 2) and 3) that, for all j, we have (3). This completesthe proof of the lemma.

PROOF OF THEOREM 1 ON RIEMANNIAN MANIFOLDS. The proof now proceeds in
complete analogy to the proof of Theorem 1, which we presented on Riemann surfaces.
We have only to replace the Cauchy integral by the Poisson-Greenintegral and Carleman
approximation by C*-Carleman approximation.

Asin the proof of Theorem 1 on Riemann surfaces, we may also prove a harmonic
analog of Theorem 3. However, thisisof lessinterest than Theorem 3, for, intheharmonic
case, amuch better Runge theorem is known [2] (see [9] as0).

4. Compact Riemann surfaces. Let C(e_,e.) and C(E_, E.) be two condensers
(cf. Introduction) on a manifold Q. We say that the condenser C(e_, e:) contains the
condenser C(E_,E,)ife_. C E_ande, C E..

Now suppose that Q is a Riemann surface or a Riemannian manifold and suppose
C(e_, e;) and C(E_. E.) aretwo condenserson Q suchthat C(e_, e,) containsC(E_. E..).
If C(e_. e,) admitslinking, then C(E_. E.) aso admitslinking. Indeed, letf € H(E_, E,).
Then by the weak linking lemma applied to the noncompact manifold Q \ e_, we may
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writef = f_+f,, wheref_ e H((Q\ e ) \E_) =H(Q\E_)andf. € H((Q\e) \ E+).
Again applying theweak linking lemmato themanifold Q\ e,, wemay writef, = g_+g.,
whereg_ € H((Q\e:)\e ) =H(e_.e) andg. € H((Q\ &) \ E+) = H(Q \ E.). Now,
since, by hypothesis, C(e_, e,) admitslinking, wehaveg_ = h_+h,,withh. € H(Q\e.).
Thus,

f=(+h)+(h +g).

withf_ +h_ € H({Q\ E_) and h; +g. € H(Q \ E+). Hence, C(E_. E.) admitslinking as
claimed.

Because of the preceding remarks, it is particularly interesting to consider the largest
possible condensers, namely the two-point condensers. These are condensers C(e_, e;)
for which e, are singletons {p.. }. For simplicity, we denote such a two-point condenser
by C(p-. p+). _

On the Riemann sphere Q = C, any two-point condenser admits holomorphic linking.
This follows immediately from the Laurent expansion (after a Mobius transformation
taking one of the two pointsto the point at infinity). Since any condenser is containedin
atwo-point condenser, it follows that the weak linking lemma holds, not only for open
Riemann surfaces, but also on the Riemann sphere, which is compact.

We shall show that the Riemann sphere is the only compact Riemann surface for
which the weak holomorphic linking lemma holds. In fact, we shall show that if Q is
any compact Riemann surface other than the Riemann sphere, then there is a two-point
condenser on Q which does not admit linking. B

Suppose, then, that Q isacompact Riemann surface other than C. Then, the genusg of
Qisat least 1. We may choosetwo distinct points p1, p2 € Q which are not Welerstrass
points[20, p. 274]. Consider the divisor D = —gp; — gp.. By Riemann’sinequality (see
[22, p. 266] and [16, p. 197], dmD > 2g — g+ 1 > 2. Hence, there are at least two
linearly independent meromorphic functions whose only singularities are polesat p; and
p2 of order at most g. At most one of these can be a constant. L et ¢ be such anonconstant
function. Since p; and p, are not Weierstrass points, ¢ has a pole at both p; and p,.
Supposewe have alinking of v:

b=f+f f eHI@\ {p).

Note that f; extendsto be meromorphic on Q. Then, the only singularity of f; isapole at
p; of the same order as the pole of + at p;. Since this order is at most g, this contradicts
the choice of p; as points which are not Weierstrass points. Thus, the above linking is
impossible. We have shown that every compact Riemann surface other than the Riemann
sphere has a two-point condenser which does not admit holomorphic linking, whereas
on the Riemann sphere, every condenser admits holomorphic linking.

Let us consider, for amoment, the anal ogous question of linking meromor phic func-
tions. We shall say that the weak holomorphic (meromorphic) linking lemma holds for
meromorphic functions on a Riemann surface Q if, for every condenser C(e_.e;) on
Q and every function f meromorphic on C(e_, e;), we can write f = f_ + f,, with f.
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holomorphic (meromorphic) on Q \ e.. If we form a new condenser by adding the
poles of f to one of the sides e of the condenser C(e_, e}), it is clear that the weak
holomor phic linking lemmaholds for meromorphic functionson Q if and only if it holds
for holomorphic functions on Q and the latter problem is precisely the one we have
been investigating. Thus, this linking holds on open Riemann surfaces and the Riemann
sphere, but fails on al other compact surfaces. On the other hand, the weak meromor-
phic linking lemma for meromorphic functions is a different issue and, since compact
Riemann surfaces are more hospitable to meromorphic functions than to holomorphic
ones, meromor phic linking might be more successful on compact Riemann surfacesthan
holomor phic linking. We shall not, however, pursue this question.

The situation for harmonic linking on the Riemann sphereis different from that for
holomorphic linking. In fact, the two-point condenser C(0, co) does not admit harmonic
linking. Indeed, suppose it were possible to write log|z| = uo(2) + Ux(2), with Uy €
Har(C \ {0}) and u,, € Har(C \ {oo}). Then, since both ug and u, have single-valued
harmonic conjugates, so would log |z|, which is absurd.

5. Isolated singularities. In this section, we look more closely at the classical
case of isolated singularities. In the (punctured) neighbourhood of an isolated (possibly
artificial) singularity z, a holomorphic function f of a single complex variable ¢ has a
Laurent expansion

(0= a2,

For any integer J, we shall call a series of the form
J )
> a(C—2

aleft tail at the point z. If aleft tail is convergentin some del eted neighbourhood of zthen
we say that it isan admissible | eft tale. If the coefficients of aleft tail at zarethe Laurent
coefficients of a function f holomorphic in a deleted neighbourhood of z, then we say
that the left tail isthe left tail of f at the point z. Clearly such aleft tail isadmissible. The
following is a more precise version of the Mittag-L effler Theorem.

THEOREM 4. Let Z be a discrete set in an open subset Q of the complex plane. For
eachz € Zlett, beanyadmissibleleft tail at z. Thenthereexistsa functionf holomor phic
on Q except for isolated (possible artificial) singularities at the points of Z such that for
eachze Z, t,isaleft tail of f at z

If eachtail t; is of theform
-1 .
25 —2),
ey
where n, is some positiveinteger, then we havethe usual Mittag-L effler theorem. If each
tail t; isof the form

éq«—ﬁ,
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where j; is a non-negative integer, then we obtain a holomorphic function whose Taylor
polynomial of degreej, is prescribed at each z € Z. Thus we interpolate not only the
valuesof thefunction f at thepointsz € Z but also the valuesof finitely many (depending
on 2) derivatives. Suchinterpolations are well known (see[19]), however, the possibility
of also specifying essential singularities for holomorphic functions as above is not so
generally known. Arakelian stated such theorems in private discussions with the author
during the late 70's. An analogous result (Theorem 6 below) was proved for harmonic
functions by Goldstein, Gauthier and Ow [11]. The reader can reconstruct the proof of
Theorem 4 by looking at that of Theorem 7.

By asingularity function at apointx € R" wemean afunction s, whichisharmonicin
adeleted neighbourhood of x. If asingularity function at x can be extended harmonically
to the point x, then we say that the point x is an artificial singularity of s,. In this case,
we also say by anticipation that s, is harmonic at x.

THEOREM 5 ([11]). Let X be a discrete set in an open subset Q of R" and for each
x € X let s, beany singularity function at x. Then, there existsa function u € Har(Q \ X)
such that at each x € X the function u — s is harmonic.

Of course, Theorem 5 is a particular case of Theorem 1. In the remaining pages,
we shall prove a harmonic analog of Theorem 4, which does not follow directly from
Theorem 1 and which improves Theorem 5.

Recall that if uisa C>-function in a neighbourhood of a point x € R", then, for each
j=0,1,...,theTaylor polynomial of orderj at x is the polynomial

PO) = 3 (3709 - (Y= X"

af<j 2
where 9 * denotesas usual the partial differentiation operator with multi-index «.

THEOREM 6. Let X be a discrete set in an open subset Q of R" and for each x € X
let px be any harmonic polynomial whose degree we denote by jx. Then there exists a
function u € Har(Q) such that at each x € X its Taylor polynomial of order j is px.

Thefollowing Rungetype lemmafor harmonic functionsis due to Walsh (see[9] and
[12)).

LEMMA 11 (RUNGE TYPE). Let W C Q be open subsetsof R" with Q* \ W connected.
Then, Har(Q) isdensein Har(W).

The following assures us that if we can approximate, then we may simultaneously
approximate and interpolate.

LEMMA 12 (WALSH TYPE [7]). Suppose S is a dense subspace of a locally convex
linear topological space H. Then, for every h € H, neighbourhood U of zeroin H, and
continuouslinear functionalsT;. ..., Ty, onH, thereisans € Ssuchthats € h+U and
Ti(9 =Tjh),j=1...., m.
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PROOF OF THEOREM 6. Let {Qy}e2, be a regular exhaustion of Q by relatively
compact open sets. We may assume that X N Qo = §). We may also assume that

XN (Qaer \ Q) = 0
fork=0.1..... Thus, for each x € X, thereis some k = k, such that
X € Qac \ Qa1

Hence, for each x € X we may choosearadius ry such that the closed balls B, of center
x and radius ry are mutually disjoint and By C Qu \ Qu, ,. Set

and B
Kk = Qa2 U (XM Q).

Letex, k=1,2,... beany sequenceof positive numbers whose sum converges.

Defineafunction hy on W by setting h; equal to any harmonic function on Q; and by
setting h; = px on By for eachx € Q,\ Q;. By the harmonic Rungelemma, the harmonic
functions on Q3 are dense in the harmonic functions on W;. By the Walsh lemma, then,
there is afunction u; harmonic on Q3 such that

|U1 — h1| < €1 0nKy
and for eachx € XN Qy,
U (x) = 9%y (x),  for o <jx.

It follows that at each x € XM Q, the Taylor polynomial of order jx of the function u; is
Px.

Next, define a function h, on W, by setting h, = h; on Q3 and by setting h, = p, on
By for each x € Q4 \ Q3. By the harmonic Runge lemma, the harmonic functions on Qs
are densein the harmonic functions on W,. By the Walsh lemma, then there isafunction
U harmonic on Qs such that

|U2—h2| <e onkKy
and for each x € XN Qq,
U (x) = 9%y (x),  for o] <jx.

It follows that at each x € XM Q4 the Taylor polynomial of order jx of the function u; is
Px-

Proceeding by induction, we construct a sequence uy of functions with the following
properties:

1) ugisharmonic on Qoyy1;
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2) |uk — W1| <exonKy, fork=23,...;

3) at eachx € XN Qy, the Taylor polynomial of order jx of the function u; is px.

Since the series ¥ ¢, converges, the sequence {uy} is uniformly Cauchy on compact
subsets of Q and hence convergesto afunction u which hasthe required properties. This
completes the proof.

We note here one of the differences between the holomorphic situation and the har-
monic one. Any complex polynomial is holomorphic, whereas not every real polynomial
is harmonic. Thus, we can specify any (complex) polynomialsasthe Taylor polynomials
of a holomorphic function at a discrete set of points. However, it can be shown that the
Taylor polynomial of a harmonic function must also be harmonic. Thus, the restriction
to harmonic polynomialsin the preceding theorem is a necessary one.

COROLLARY 1. Let X beadiscretesetin an open subset Q of R" and, for each x € X,
let yx be any real number. Then there exists a function u € Har(Q) such that u(x) = yx
for each x € X.

THEOREM 7. Let X be a discrete set in an open subset Q of R". For each x € X, let
s; be any singularity function at x and let px be any harmonic polynomial whose degree
we denote by jx. Then there exists a function u € Har(Q \ X) such that at each x € X the
function u — s, is harmonic and its Taylor polynomial of order jy is px.

ProoF. By Theorem 5, thereis afunction u; € Har(Q \ X) such that at eachx € X
the function u; — s, is harmonic. By Theorem 6, there is a function u, € Har(Q) such
that at each x € X its Taylor polynomial of order jx is the same as that of px + s — u;.
The function u = u; + u, hasthe required properties.

In (deleted) neighbourhoods of isolated singularities, harmonic functions have
Laurent-type expansions resembling those of holomorphic functions and Theorem 7
can be formulated in the same way as Theorem 4 was for holomorphic functions. One
can prove Theorem 4 in the same way as Theorem 7, replacing the harmonic Runge
theorem in the proof by the classical complex Runge theorem. In the special case where
Q is a simply connected domain in the plane, Theorem 6 can also be deduced from
Theorem 4. However, for multiply connected plane domains, it is not clear that one
could deduce the harmonic case from the holomorphic one since a harmonic function in
amultiply connected domain need not bethereal part of a(global) holomorphicfunction.
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