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MITTAG-LEFFLER THEOREMS ON RIEMANN SURFACES
AND RIEMANNIAN MANIFOLDS

PAUL M. GAUTHIER

ABSTRACT. Cauchy and Poisson integrals over unbounded sets are employed to
prove Mittag-Leffler type theorems with massive singularities as well as approximation
theorems for holomorphic and harmonic functions.

1. Introduction. Let Ω be a connected complex (respectively, Riemannian) man-
ifold. In the Riemannian case, we assume that Ω is C1 and oriented. Our results will
clearly hold also on an open subset Ω of the complex plane C (respectively, of Euclidean
space Rn), by considering components, although such an Ω need not be connected.
For F ² Ω, we write f 2 H(F), if f is holomorphic (respectively, harmonic) on a
neighbourhood of F.

THEOREM 1 (MITTAG-LEFFLER, MASSIVE SINGULARITIES). Let e ² ° ² Ω, where Ω
is a Stein or noncompact Riemannian manifold, e is closed and ° is open. For any
fe 2 H(° n e) there exists a function f 2 H(Ω n e) such that f � fe extends to a a function
in H(°).

In particular: let Ω be the complex plane C; let e be a discrete subset of C, which we
may think of as a sequence of distinct points e1Ò e2Ò    ; let ° be a sequence of disjoint
discs°j, j = 1Ò 2Ò    , centered respectively at the ej’s; let pj, j = 1Ò 2Ò    , be polynomials;
let

fj(x) = pj

� 1
z� ej

�
Ò j = 1Ò 2Ò   

and define fe on °ne by setting fe = fj on each°j nfejg. Theorem 1, in this case, says that,
given a sequence of distinct points ej tending to 1, there exists a meromorphic function
f on C, having prescribed principal parts pj

�
1Û(z � ej)

�
at the points ej and having no

other singularities. This is the classical Mittag-Leffler theorem.
If we consider a singular point of a function to be a point where the function is not

holomorphic, then, since holomorphic functions are defined on open sets, it is natural to
look at closed sets as possible singularity sets of functions. Given a closed set e ² C,
we say that fe is a singularity function at e if there is an open set ° containing e such
that fe is holomorphic on ° n e. The singularity function fe prescribes the nature of the
singularity at e. Two singularity functions fe and ge at e are said to have singularities of
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the same nature at e if fe � ge extends holomorphically to (a neighbourhood of) e. In the
classical Mittag-Leffler theorem, the nature of the prescribed singularities is given by
prescribing the principal parts at the prescribed sequence of points. Theorem 1 allows
us to replace the discrete set of singularities in the classical Mittag-Leffler theorem by
an arbitrary singularity set and, moreover, the nature of the singularity can be arbitrary
instead of being poles. That is, there is no restriction on the singularity function fe at e.

This theorem was stated by Saakian [20] for the case that Ω = C. In fact, Theorem 1
is a particular case of the following.

LEMMA 1 (COUSIN LINKING). Let a Stein or noncompact Riemannian manifold Ω be
written as the union of two open sets Ω�, Ω+ and let g 2 H(Ω� \ Ω+). Then, there are
functions g� 2 H(Ω�) and g+ 2 H(Ω+) such that

g = g� + g+

For the case that Ω is an arbitrary open set in C, this linking lemma is the well known
theorem of Aronszajn [1] on the separation of singularities, for which Havin [15] gave
a short proof using duality. Another proof (cf. Example 3.2.5 in the book by Berenstein
and Gay [3]) follows immediately from the solvability of the additive Cousin problem,
and hence clearly holds on any Stein manifold Ω, and, in particular, on any open set of
holomorphy Ω ² Cn.

Since the additive Cousin problem can also be solved for harmonic functions, in fact,
for elliptic systems on manifolds (cf. Tarkhanov [23]), the proof also works for harmonic
functions on Riemannian manifolds.

Let e� and e+ be two disjoint closed subsets of a manifold Ω. By the condenser (or
capacitor) C(e�Ò e+), we understand the open set C(e�Ò e+) = Ωn (e�[ e+). Let H(e�Ò e+)
denote the family of holomorphic (if Ω is Stein) or harmonic (if Ω is Riemannian)
functions on the condenser C(e�Ò e+). We say that a condenser C(e�Ò e+) on a manifold Ω
admits linking if, for each g 2 H(e�Ò e+), there are g� 2 H(Ω n e�) and g+ 2 H(Ω n e+)
such that

g = g� + g+

The following weaker form of the Cousin linking lemma is clearly equivalent to
Theorem 1 and brings out the symmetry of the problem.

LEMMA 2 (WEAK LINKING). On a Stein manifold or a noncompact Riemannian man-
ifold, every condenser admits linking.

Theorem 1, for the simple case that Ω n e is an annulus in the complex plane, is an
immediate consequence of the Cauchy formula (which in this case yields a more explicit
representation, namely, the Laurent expansion). Although the general proof for elliptic
systems [23] is in the sophisticated language of cohomology, we shall show that, at least
for holomorphic functions on Riemann surfaces and harmonic functions on Riemannian
manifolds, we can imitate the proof for the annulus, by using Cauchy and (respectively)
Poisson integrals. In the next section, we start with the holomorphic case on Riemann
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surfaces although (or because) it is better known and simpler. In Section 3, we prove
the harmonic case. Then, in Section 4, we look at these questions on compact surfaces.
Finally, in the last section, we take a closer look at the more traditional point singularities.

In fact, this paper was at one time a short note on the Mittag-Leffler theorem for
harmonic functions with prescribed point singularities. I wish to thank Ashot Nersessian
for suggesting that such a theorem might also hold with massive singularities and Thomas
Ransford for pointing out that the holomorphic case is a consequence of the Cousin
linking lemma. Our approach finesses the language of cohomology by exploiting the
properties of Cauchy and Poisson integrals over unbounded sets.

This paper was completed in the fragrance of lotus pools and surrounded by the
enchanting musical strains of Chinese opera emanating from the island temple on the
campus of Peking University. Xiexie Beida!

2. Open Riemann surfaces. In this section, Ω will denote a Riemann surface and,
for F ² Ω, we write f 2 Hol(F) if f is a function holomorphic on (a neighbourhood of)
F. We denote the one-point compactification of Ω by ΩŁ = Ω [ fŁg.

In 1927, Carleman established the following remarkable result. If f is any continuous
function on the real axis R and è is any positive continuous function on R, then, there is
an entire function g such that jf�gj Ú è. In attempting to perform similar approximations
on more general unbounded subsets of the complex plane C than the real axis, the author
introduced the so-called “long islands” condition on a closed subset F of C, which he
showed to be a necessary condition for such Carleman type approximation. Nersessian
completed the characterization of sets of Carleman approximation by showing that this
condition was, in fact, also sufficient. This result was extended to Riemann surfaces by
Boivin [4]. For our purposes, we do not require the full strength of Boivin’s theorem; the
following is adequate.

THEOREM 2 (CARLEMAN TYPE). Suppose ç is a closed subset of an open Riemann
surface Ω. The following are equivalent.

i) For each f 2 C(ç) and positive è 2 C(ç), there is a g 2 Hol(Ω) such that jf�gj Ú è.
ii) ç0 = ; and ΩŁ n ç is both connected and locally connected.

The above theorem gives a complete answer to the problem of (better than) uniform
approximation of continuous functions on closed subsets of Riemann surfaces.

The analogous problem of uniform approximation of holomorphic functions on a
closed subset e ² Ω was solved by Alice Roth for the case that Ω is a plane domain
and partially extended to Riemann surfaces by the author [10]. The basic tool exploited
was that of Cauchy integrals on (possibly) unbounded curves. The main objective of this
section will be to point out that the Cauchy integral also (in fact, more easily) yields the
Mittag-Leffler theorem with massive singularities on Riemann surfaces.

Letß be a global local uniformizer on Ω, shown to exist by Gunning and Narasimhan
[14]. This is just a function ß 2 Hol(Ω) which is locally injective. Thus, in the neigh-
bourhood of each point p0 2 Ω, we may take z = ß(p) as a local parameter. By a Cauchy
kernel C on the Riemann surface Ω, we mean a meromorphic function C(pÒ q) on ΩðΩ,

https://doi.org/10.4153/CJM-1998-030-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-030-1


550 PAUL M. GAUTHIER

whose only singularities are along the diagonal, and if (DÒ ß) is a parametric disc and
(zÒ ê) =

�
ß(p)Ò ß(q)

�
, then, in the local coordinates (zÒ ê),

C(zÒ ê) =
1

ê � z
+ h(zÒ ê)Ò

where h is holomorphic. Every open Riemann surface admits a Cauchy kernel. A short
proof [10] can be based on the fact that the product Ω ð Ω of an open Riemann surface
with itself is a Stein manifold. Indeed, we have only to solve the first Cousin problem on
ΩðΩ, with Cousin data equal to 0 off of the diagonal and equal to 1Û[ß(p)�ß(q)] on
every set DðD, where D is an open subset of Ω on which the global parameter function
ß is injective. Of course, by invoking Stein theory, we are making an implicit appeal to
cohomology theory. However, the Cauchy kernel is such a natural entity that it seems
of interest to present an exposition based on the Cauchy kernel as an alternative to that
based on the linking lemma. Moreover, Magnus [17] has recently given an elementary
construction of the Cauchy kernel, which is free of cohomology.

Let õ be a smooth curve on Ω. By this we mean that õ is a closed set in Ω and, for each
z 2 õ, there is an open neighbourhood z 2 U ² Ω and a C1-diffeomorphism s: ∆ ! U
of the unit disc ∆ onto U such that the image of the interval (�1Ò+1) is the set õ\U. We
fix an orientation on õ. If † is a continuous function on õ, we consider, for p 2 Ω � õ,
the Cauchy integral

Ψ(p) = Ψ(z) =
1

2ôi

Z
õ
†(ê)C(zÒ ê) dêÒ

which is well defined if (zÒ ê) =
�
ß(p)Ò ß(q)

�
, ß is the previously defined holomorphic

function on Ω, and † decays sufficiently rapidly at the ideal boundary.

LEMMA 3. Given a smooth curve õ in Ω, there exists a positive continuous function
ë 2 C(õ) such that, if j†j Ú ë, then the Cauchy integral Ψ of † converges uniformly on
compact subsets of Ω n õ and hence Ψ 2 Hol(Ω n õ).

We shall say that a Cauchy kernel C on an open Riemann surface Ω is bounded at
infinity if, for each compact K ² Ω, and each neighbourhood U of K, the Cauchy kernel
is bounded on Kð (ΩnU) and on (ΩnU)ðK. For example, if Ω is a plane domain, then
the standard Cauchy kernel 1Û(ê � z), is bounded at infinity. On the other hand, there
exist open Riemann surfaces, for example, the so-called Myrberg surfaces, for which no
Cauchy kernel is bounded at infinity (cf. [12]).

LEMMA 4. If, under the hypotheses of the previous lemma, the Cauchy kernel is
bounded at infinity, then, given a closed set e ² Ω n õ and a positive constant è Ù 0, we
may so choose the function ë that jΨj Ú è on e.

Thus far, we have considered the Cauchy integral Ψ of a general continuous (or even
locally integrable) function † on õ which decays rapidly at infinity. We have noted that
Ψ 2 Hol(Ω n õ). The behaviour of Ψ as we approach õ has been studied in depth in the
literature. From the definition of õ, each point of õ has an open neighbourhood V which
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is separated by õ \ V into two disjoint domains V� and V+, where õ \ V is oriented
positively with respect to V+ and negatively with respect to V�. Let us denote by Ψ� and
Ψ+ the restrictions of Ψ to V� and V+ respectively. The following jump lemma is easily
verified.

LEMMA 5 (JUMP). If † 2 Hol(V�), then Ψ+ extends holomorphically across õ \V. If
we retain the notation Ψ+ for this extension, then

Ψ+ � Ψ� = †Ò on V�

We now have all of the ingredients to prove a Runge type approximation theorem, that
is, a theorem on the uniform approximation of holomorphic functions on closed subsets
of Riemann surfaces.

THEOREM 3 (RUNGE TYPE). Let Ω be an open Riemann surface having a Cauchy
kernel bounded at infinity. Let e be a closed subset of Ω. The following are equivalent.

1) For each constant è Ù 0 and each fe 2 Hol(e), there is a g 2 Hol(Ω) such that
jfe � gj Ú è.

2) ΩŁ n e is connected and locally connected.

If Ω is a plane domain, then, for e compact, this is the classical theorem of Runge
(1885); for e closed, the implication 2) ! 1) is due to Alice Roth (1938); and the
implication 1) ! 2) is due to Arakelian (see [8] and [12]). If Ω is an open Riemann
surface and e is compact, the assumption on the Cauchy kernel is superfluous and the
result is the famous theorem of Behnke-Stein (cf. [18]). The general version was proved
by the author (see [10]). If the assumption on the Cauchy kernel is dropped, the theorem
no longer holds [12].

PROOF OF THEOREM 1 FOR RIEMANN SURFACES. In fact, we shall notice that the
proof also yields the implication 2) ! 1) in Theorem 3. Suppose, then, that ° is an open
neighbourhood of e and fe 2 Hol(° n e) (respectively, fe 2 Hol(°).) We may construct a
smoothly bordered neighbourhood U of e whose closure is in ° and such that °Ł n Ū is
connected and also locally connected. We decompose the boundary of U into two disjoint
parts ] U = ç + õ. The part ç consists of certain components of ] U which lie on the
boundary of unbounded components of U: namely, all unbounded boundary components
and also those bounded boundary components, which lie on the boundary of unbounded
components of U and which do not separate Ω. The part õ consists of all other boundary
components of U. From the construction of ç, we have that ΩŁ n ç is connected and
locally connected. Let ë be a positive continuous function on ç. By Theorem 2, there is
a function gë 2 Hol(Ω) such that jfe � gëj Ú ë on ç. By Lemma 3, we may choose ë
such that the Cauchy integral Ψç of fe � gë on ç is in Hol(Ω n ç).

Let Ψ+
ç = ΨçjU and Ψ�

ç = ΨçjΩ n Ū. Let õ0 be a component of õ. Since Ψç is
well defined in a neighbourhood of õ0, we may extend Ψ+

ç and Ψ�
ç across õ0 and

Ψ+
ç = Ψç = Ψ�

ç near õ0. This continuation, starting near ç, cannot lead to other values
than

Ψ+
ç � Ψ�

ç = fe � gë
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because by continuing through components of õ it is impossible to travel from one side
of ç to the other side. This is because a path starting on the inner side of a component
ç0 of ç is in an unbounded component of U. As it traverses a õ0, it can never get to the
other side of ç, because õ0 separates Ω. Thus, Ψ+

ç extends to a function in Hol(°) and
Ψ�
ç extends to a function in Hol(Ω n e) (respectively, to a function in Hol(Ω) in the case

of Theorem 3) and
fe = (Ψ+

ç + gë) � Ψ�
ç on ° n e(1)

Now write õ =
P
õ(j), where each õ(j) is either the entire boundary of a bounded

component of U or a component of õ which separates Ω. Choose a sequence fé(j)g of
positive numbers such that

P
é(j) Ú 1 and the function

Ψõ(z) =
X

j
Ψõ(j)(z) =

X
j

é(j)
2ôi

Z
õ(j)

fe(ê)C(zÒ ê) dê

is in Hol(Ω n õ). By Lemma 5,

Ψ+
õ(j) � Ψ�

õ(j) = é(j)fe

near õ(j). Since õ(j) separates Ω, this allows us to extend Ψ+
õ(j) and Ψ�

õ(j) so Ψ+
õ(j) is in

Hol(°) and Ψ�
õ(j) is in Hol(Ω n e) (respectively, in Hol(Ω) in the case of Theorem 3.)

Hence,
Ψ+
õ � Ψ�

õ =
X

é(j)fe on ° n e(2)

Set é =
P
é(j). Combining (1) and (2), we have

(1 + é)fe = (Ψ+
ç + Ψ+

õ + gë) � (Ψ�
ç + Ψ�

õ )Ò

which concludes the proof of Theorem 1.
To prove the implication 2) ! 1) in Theorem 3, we write

(1 + é)fe = (gë � Ψ�
ç � Ψ�

õ ) + (Ψ+
ç + Ψ+

õ) = g + Ψ+

on °, where g 2 Hol(Ω). If è is any positive continuous function on e, we may, by
Lemma 4, choose ë and fé(j)g to decrease so rapidly that jΨ+j Ú èÛ(1 + é) on e. This
proves the implication 2) ! 1).

3. Riemannian manifolds. The proof of the harmonic Mittag-Leffler theorem with
massive singularities is completely analogous to the proof we have just given for the
holomorphic case on Riemann surfaces. Of course, we must replace the Cauchy integral
of a function by a Poisson-Green integral. Since the Poisson-Green integral of a function
involves, not only the function and the “Poisson” kernel, but also their normal derivatives,
we shall need a Carleman type lemma which allows one to approximate, not only a
function, but also its derivatives. On a manifold, derivatives do not have definite values,
but depend on the local coordinates. As Narasimhan notes [18, p. 176], since, locally,
any vector bundle is isomorphic to the trivial bundle, we may speak of the local uniform
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convergence, together with all partial derivatives, of a sequence of smooth sections. It
is not so clear what would be meant by global uniform convergence of a sequence and
its derivatives. Thus, although the notion of uniform approximation of a function on an
unbounded set makes sense, we do not see how to make sense of the notion of uniform
approximation of the derivative of a function on an unbounded set. Nevertheless, we
can give a sense to the stronger notion of Carleman approximation of the derivative. We
shall use Carleman approximation of functions and their derivatives on very particular
sets to obtain uniform approximation of functions on rather general sets and linking for
completely general condensers.

Let F be a closed subset of a manifold Ω. By a Carleman gauge for F, we mean a
family fBjÒ ßjÒ èjgj2J, where fBjÒ ßjgj2J is a locally finite cover of F by parametric balls
and fèjgj2J is a set of positive numbers.

The notations f 2 C1(S) and f 2 Har(S) mean that f is C1 and harmonic respectively
on (a neighbourhood of) the set S. If x = ß(p) is a local coordinate in a parametric
ball (BÒ ß), we use the abusive notation f (x) and (rf )(x) for f Ž ß�1 and r(f Ž ß�1)
respectively evaluated at x. Of course, the former is independent of the chart while the
latter is not. With this understanding, we introduce the notation kfk1 = jf j + krfk and
the notation kfk1(x) stands for the function kfk1 evaluated at the point x.

By a Newtonian kernel on Ω, we mean a function e: ΩðΩ ! (�1Ò+1], such that, if
R is a smoothly bounded subregion of Ω, then we may write e(pÒ q) = GR(pÒ q) + vR(pÒ q),
for p and q in R, where GR is the Green function for R and vR is harmonic in each variable.
For the existence and properties of the Newtonian kernel e, see [2]. In particular, we
have the usual Poisson-Green formula

h(q) =
Z

]R

�
e(pÒ q)

] h
]ó

(p) � h(p)
] e
]ó

(pÒ q)
½

dAÒ

which follows from the Green formula II [6, p. 144], where q 2 R, h 2 Har(R̄), ó is
the outward unit vector field along ] R which is pointwise orthogonal to ] R, ] fÛ]ó =
hgrad f Ò ói, and dA is the Riemannian “area” measure on ] R.

LEMMA 6 (RUNGE TYPE). Let f 2 Har(K), where K ² Ω is compact and ΩŁ n K is
connected. Let fBjÒ ßjgj2J be a finite cover of K by parametric balls. For each è Ù 0,
there exists g 2 Har(Ω) such that, for each j 2 J,

kf � gk1(x) Ú èÒ x 2 ßj(K \ B̄j)

More generally, we wish to perform such an approximation in certain situations,
where the hypothesis that f 2 Har(K) is relaxed (see the Saturn lemma below).

PROOF. We may construct a compact set Q such that L ² Qo, ΩŁ n Q is connected
and f 2 Har(Q). By [2, Theorem 9.3], there is a sequence gk 2 Har(Ω) which converges
uniformly to f in Q. It follows that in any parametric ball B̄ ² Qo, the convergence also
holds for derivatives. Since any K \ B̄j can be covered by finitely many such parametric
balls B, the lemma follows.
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Let us say that two sets K1 and K2 are properly linked if K1 n K2 and K2 n K1 have
disjoint closures. In the following lemma, we shall, in some sense, “fuse” two functions,
g1 and g2, by a single function g.

LEMMA 7 (FUSION). Let K = K1 [ K2, where K1 and K2 are properly linked compact
sets and let fBjÒ j 2 Jg be a finite cover of K by parametric balls. There is a constant
a Ù 0 such that, if gi 2 Har(K), i = 1Ò 2, then there exists g 2 Har(K) such that, for
i = 1Ò 2 and j 2 J,

kgi � gk1(x) Ú a Ð Mj(g1 � g2)Ò x 2 ßj(Ki \ B̄j)Ò

with
Mj(g1 � g2) = maxfkg1 � g2k1(y) : y 2 ßj(K1 \ K2 \ B̄j)g

PROOF. Let h 2 C1
o (Ω) such that 0 � h � 1, h = 1 on a neighbourhood of K1 n K2

and h = 0 on a neighbourhood of K2 nK1. The constant a will depend on h only. We may
assume that g2 = 0 and that g1 2 C1

o (Ω). Thus, we seek a constant a and a g 2 Har(K)
such that g fuses g1 and 0 in the sense that, for j 2 J,

kg1 � gk1(x) Ú a Ð Mj(g1)Ò x 2 ßj(K1 \ B̄j)

kgk1(x) Ú a Ð Mj(g1)Ò x 2 ßj(K2 \ B̄j)

Set† = hÐg1. Then,† does indeed fuse g1 and 0 with some constant ao depending only
on h. However, † is merely a C1-fusion whereas we are seeking a fusion g 2 Har(K).

Fix a bounded neighbourhood V of K1 \ K2 such that g1 2 Har(V̄) and for j 2 J,

maxfkg1k1(y) : y 2 ßj(v \ B̄j)g � 2Mj(g1)

If e(pÒ q) is the the Newtonian kernel introduced above, then following [2, Theorem 4.8],

†(q) = �
Z

e(pÒ q)(∆†)(p) dï(p)

= �
Z

ΩnV
e(pÒ q)(∆†)(p) dï(p) �

Z
V

e(pÒ q)(∆†)(p) dï(p)

Set
g(q) = �

Z
ΩnV

e(pÒ q)(∆†)(p) dï(p)

Then, g 2 Har(K), since ∆† = 0 on a neighbourhood of K n V. We have in V

∆† = g1 Ð ∆h + 2 grad h Ð grad g1

From [2, Lemma 6.1], there is an a1 Ù 0, depending only on h and the Newtonian kernel
e, such that, for i = 1Ò 2 and j 2 J,

kg� †k1(x) Ú a1 Ð Mj(g � †)Ò x 2 ßj(Ki \ Bj)

Since kg1 � gk1 � kg1 �†k1 + kg�†k1, and † has already been seen to fuse g1 and 0,
and Mj(g � †) � a2 Ð Mj(g1), for some constant a2, the lemma follows.
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LEMMA 8 (LOCALIZATION). Let K ² Ω be a compact set with ΩŁ nK connected, f be
a function which is C1 in a neighbourhood of K, and fBjÒ ßjgj2J be a finite cover of K by
parametric balls. The following two conditions are equivalent.

(i) For each set of èj, j 2 J, there exists a family of gj 2 Har(Ω) such that

kf � gjk1(x) Ú èjÒ x 2 ßj(K \ B̄j)

(ii) For each set of èj , j 2 J, there exists a g 2 Har(Ω) such that, for each j 2 J,

kf � gk1(x) Ú èjÒ x 2 ßj(K \ B̄j)

PROOF. The implication (ii) ! (i) is trivial. The idea of proving localization via
fusion was introduced by Alice Roth in the context of rational approximation (see [8]
and [12]). In order to apply this technique, we shall refine the covering fBjgj2J. We may
suppose that Ω is embedded in some Euclidean space Rm. Now we partition Rm into
m-cubes in the usual way by hyperplanes parallel to the coordinate hyperplanes, with
mesh size h. We choose h so small that, for each such hypercube Q, K \ Q is contained
in some Bj. We may now prove localization via fusion following Roth’s technique (see
[8, p. 117].)

In general, the family of sets on which approximation is possible is not preserved
under unions. However, we have the following special result.

LEMMA 9 (SATURN). Suppose K is a compact set, H is a compact set situated on a
smooth hypersurface and ΩŁ n (K [ H) is connected. Then, for each function f which
is C1 in a neighbourhood of K [ H and harmonic on K and for each Carleman gauge
fBjÒ ßjÒ èjgj2J for K [ H, there exists a function g 2 Har(Ω) such that, for each j 2 J,

kf � gk1(x) Ú èjÒ x 2 ßj

�
(K [ H) \ B̄j

�

PROOF. This follows immediately from the above localization lemma, the Hartogs-
Rosenthal type theorem (see [5, Theorem 3.23], [13, Theorem 5.1], [23], [24, Theo-
rem 3.4] and [21, Satz 1, p. 247]), and the Runge type lemma.

LEMMA 10 (CARLEMAN TYPE). Suppose Γ is a smooth hypersurface in Ω with ΩŁ nΓ
connected. Let f 2 Har(Γ) and fBjÒ ßjÒ èjgj2J be a Carleman gauge for Γ. Then, there
exists a function g 2 Har(Ω) such that

kf � gk1(x) Ú èjÒ x 2 ßj(B̄j \ Γ)(3)

We pause to explain in which sense we consider this lemma to be a result on Carleman
type approximation. Let f be a C1-function in a neighbourhood of a closed set F ² Ω and
let fBjÒ ßjg, j 2 J be a locally finite cover of F by parametric balls. We say that f admits
C1-Carleman approximation with respect to this cover fBjÒ ßjg, j 2 J by functions in
Har(Ω), if for each set fèjg, j 2 J, there is a g 2 Har(Ω), such that, for each j 2 J,

kf � gk1(x) Ú èjÒ x 2 ßj(F \ B̄j)
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It is easy to see that, if f admits C1-Carleman approximation with respect to one such
cover, then it admits C1-Carleman approximation with respect to any such cover. We
are thus justified in saying that f admits C1-Carleman approximation by functions in
Har(Ω), without reference to any particular cover of F. The above lemma then asserts
that f restricted to Γ admits C1-Carleman approximation by functions in Har(Ω).

PROOF OF LEMMA. We may construct an exhaustion, Ω =
S

Ωi, of Ω by bounded
open sets Ωi, Ω̄i ² Ωi+1, i = 1Ò 2Ò    , which is compatible with Γ in the sense that, for
i = 1Ò 2Ò    , ΩŁ n (Ω̄i [ Γ) is connected.

Let fékg be a sequence of positive numbers. Set Ω0 = ; and é0 = 0. We shall construct
inductively a sequence gk 2 Har(Ω), such that, for k = 1Ò 2Ò    and j 2 J,

1) kgkk1 Ú ék on ß(B̄j \ Ω̄k+1)
2) kf � g1 � Ð Ð Ð � gkk1 Ú ék on ß(B̄j \ Γ \ [Ω̄k+1 n Ωk])
3) kf � g1 � Ð Ð Ð � gkk1 Ú 2ék�1 + ék on ß(B̄j \ Γ \ [Ω̄k n Ωk�1]).
Indeed, set Xk = Γ\ Ω̄k. By the harmonic Runge lemma, there is a g1 2 Har(Ω) such

that kf � g1k1 Ú é1 on X2. Let h2 be a function C1 on Ω̄1 [ X3, with: kh2k1 Ú é1 on
each ßj(B̄j \ [Ω̄1 [ X3]); h2 = 0 on a neighbourhood of Ω̄1, and h2 = f � g1 on X3 n Ω2.
By the saturn lemma, there exists a g2 2 Har(Ω) such that kh2 � g2k1 Ú é2 on each
ßj(B̄j \ [Ω̄1 [ X3]). Then, 1), 2) and 3) are satisfied for k = 1.

Suppose now that 1), 2) and 3) have been established for k = 1Ò    Òm � 1. We
establish 1), 2) and 3) for k = m. Let hm be: C1 on Ω̄m�1 [ Xm+1; khmk1 Ú ém�1 on each
ß(B̄j\[Ωm�1[Xm+1]); and equal to f�g1�Ð Ð Ð�gm�1 on Xm+1nΩm. By the Saturn lemma,
there exists a gm 2 Har(Ω) such that khm � gmk1 Ú ém on eachßj(B̄j \ [Ω̄m�1 [ Xm+1]).
Then, gm satisfies 1), 2) and 3) for k = m. By induction, then, we may construct a
sequence satisfying 1), 2) and 3).

We may choose fékg such that
P
ék Ú 1. Thus, by 1), g =

P
gk is in Har(Ω). Now,

fix f and a sequence fèkgj2J. If the fékg are chosen to decrease sufficiently rapidly, it
follows from 2) and 3) that, for all j, we have (3). This completes the proof of the lemma.

PROOF OF THEOREM 1 ON RIEMANNIAN MANIFOLDS. The proof now proceeds in
complete analogy to the proof of Theorem 1, which we presented on Riemann surfaces.
We have only to replace the Cauchy integral by the Poisson-Green integral and Carleman
approximation by C1-Carleman approximation.

As in the proof of Theorem 1 on Riemann surfaces, we may also prove a harmonic
analog of Theorem 3. However, this is of less interest than Theorem 3, for, in the harmonic
case, a much better Runge theorem is known [2] (see [9] also).

4. Compact Riemann surfaces. Let C(e�Ò e+) and C(E�ÒE+) be two condensers
(cf. Introduction) on a manifold Ω. We say that the condenser C(e�Ò e+) contains the
condenser C(E�ÒE+) if e� ² E� and e+ ² E+.

Now suppose that Ω is a Riemann surface or a Riemannian manifold and suppose
C(e�Ò e+) and C(E�ÒE+) are two condensers on Ω such that C(e�Ò e+) contains C(E�ÒE+).
If C(e�Ò e+) admits linking, then C(E�ÒE+) also admits linking. Indeed, let f 2 H(E�ÒE+).
Then by the weak linking lemma applied to the noncompact manifold Ω n e�, we may
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write f = f� + f+, where f� 2 H
�
(Ω n e�) nE�

�
= H(Ω nE�) and f+ 2 H

�
(Ω n e�) nE+

�
.

Again applying the weak linking lemma to the manifold Ωne+, we may write f+ = g�+g+,
where g� 2 H

�
(Ω n e+) n e�

�
= H(e�Ò e+) and g+ 2 H

�
(Ω n e+) nE+

�
= H(Ω nE+). Now,

since, by hypothesis, C(e�Ò e+) admits linking, we have g� = h�+h+, with hš 2 H(Ωneš).
Thus,

f = (f� + h�) + (h+ + g+)Ò

with f� + h� 2 H(Ω nE�) and h+ + g+ 2 H(Ω nE+). Hence, C(E�ÒE+) admits linking as
claimed.

Because of the preceding remarks, it is particularly interesting to consider the largest
possible condensers, namely the two-point condensers. These are condensers C(e�Ò e+)
for which eš are singletons fpšg. For simplicity, we denote such a two-point condenser
by C(p�Ò p+).

On the Riemann sphere Ω = C̄, any two-point condenser admits holomorphic linking.
This follows immediately from the Laurent expansion (after a Möbius transformation
taking one of the two points to the point at infinity). Since any condenser is contained in
a two-point condenser, it follows that the weak linking lemma holds, not only for open
Riemann surfaces, but also on the Riemann sphere, which is compact.

We shall show that the Riemann sphere is the only compact Riemann surface for
which the weak holomorphic linking lemma holds. In fact, we shall show that if Ω is
any compact Riemann surface other than the Riemann sphere, then there is a two-point
condenser on Ω which does not admit linking.

Suppose, then, that Ω is a compact Riemann surface other than C̄. Then, the genus g of
Ω is at least 1. We may choose two distinct points p1Ò p2 2 Ω which are not Weierstrass
points [20, p. 274]. Consider the divisor D = �gp1 � gp2. By Riemann’s inequality (see
[22, p. 266] and [16, p. 197], dim D ½ 2g � g + 1 ½ 2. Hence, there are at least two
linearly independent meromorphic functions whose only singularities are poles at p1 and
p2 of order at most g. At most one of these can be a constant. Let† be such a nonconstant
function. Since p1 and p2 are not Weierstrass points, † has a pole at both p1 and p2.
Suppose we have a linking of †:

† = f1 + f2Ò fj 2 Hol(Ω n fpjg)

Note that fj extends to be meromorphic on Ω. Then, the only singularity of fj is a pole at
pj of the same order as the pole of † at pj. Since this order is at most g, this contradicts
the choice of pj as points which are not Weierstrass points. Thus, the above linking is
impossible. We have shown that every compact Riemann surface other than the Riemann
sphere has a two-point condenser which does not admit holomorphic linking, whereas
on the Riemann sphere, every condenser admits holomorphic linking.

Let us consider, for a moment, the analogous question of linking meromorphic func-
tions. We shall say that the weak holomorphic (meromorphic) linking lemma holds for
meromorphic functions on a Riemann surface Ω if, for every condenser C(e�Ò e+) on
Ω and every function f meromorphic on C(e�Ò e+), we can write f = f� + f+, with fš
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holomorphic (meromorphic) on Ω n eš. If we form a new condenser by adding the
poles of f to one of the sides eš of the condenser C(e�Ò e+), it is clear that the weak
holomorphic linking lemma holds for meromorphic functions on Ω if and only if it holds
for holomorphic functions on Ω and the latter problem is precisely the one we have
been investigating. Thus, this linking holds on open Riemann surfaces and the Riemann
sphere, but fails on all other compact surfaces. On the other hand, the weak meromor-
phic linking lemma for meromorphic functions is a different issue and, since compact
Riemann surfaces are more hospitable to meromorphic functions than to holomorphic
ones, meromorphic linking might be more successful on compact Riemann surfaces than
holomorphic linking. We shall not, however, pursue this question.

The situation for harmonic linking on the Riemann sphere is different from that for
holomorphic linking. In fact, the two-point condenser C(0Ò1) does not admit harmonic
linking. Indeed, suppose it were possible to write log jzj = u0(z) + u1(z), with u0 2

Har(C̄ n f0g) and u1 2 Har(C̄ n f1g). Then, since both u0 and u1 have single-valued
harmonic conjugates, so would log jzj, which is absurd.

5. Isolated singularities. In this section, we look more closely at the classical
case of isolated singularities. In the (punctured) neighbourhood of an isolated (possibly
artificial) singularity z, a holomorphic function f of a single complex variable ê has a
Laurent expansion

f (ê) =
+1X
�1

aj(ê � z)j


For any integer J, we shall call a series of the form

JX
�1

aj(ê � z)j

a left tail at the point z. If a left tail is convergent in some deleted neighbourhood of z then
we say that it is an admissible left tale. If the coefficients of a left tail at z are the Laurent
coefficients of a function f holomorphic in a deleted neighbourhood of z, then we say
that the left tail is the left tail of f at the point z. Clearly such a left tail is admissible. The
following is a more precise version of the Mittag-Leffler Theorem.

THEOREM 4. Let Z be a discrete set in an open subset Ω of the complex plane. For
each z 2 Z let tz be any admissible left tail at z. Then there exists a function f holomorphic
on Ω except for isolated (possible artificial) singularities at the points of Z such that for
each z 2 Z, tz is a left tail of f at z.

If each tail tz is of the form
�1X
�nz

aj(ê � z)j
Ò

where nz is some positive integer, then we have the usual Mittag-Leffler theorem. If each
tail tz is of the form

jzX
0

aj(ê � z)j
Ò
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where jz is a non-negative integer, then we obtain a holomorphic function whose Taylor
polynomial of degree jz is prescribed at each z 2 Z. Thus we interpolate not only the
values of the function f at the points z 2 Z but also the values of finitely many (depending
on z) derivatives. Such interpolations are well known (see [19]), however, the possibility
of also specifying essential singularities for holomorphic functions as above is not so
generally known. Arakelian stated such theorems in private discussions with the author
during the late 70’s. An analogous result (Theorem 6 below) was proved for harmonic
functions by Goldstein, Gauthier and Ow [11]. The reader can reconstruct the proof of
Theorem 4 by looking at that of Theorem 7.

By a singularity function at a point x 2 Rn we mean a function sx which is harmonic in
a deleted neighbourhood of x. If a singularity function at x can be extended harmonically
to the point x, then we say that the point x is an artificial singularity of sx. In this case,
we also say by anticipation that sx is harmonic at x.

THEOREM 5 ([11]). Let X be a discrete set in an open subset Ω of Rn and for each
x 2 X let sx be any singularity function at x. Then, there exists a function u 2 Har(Ω nX)
such that at each x 2 X the function u � sx is harmonic.

Of course, Theorem 5 is a particular case of Theorem 1. In the remaining pages,
we shall prove a harmonic analog of Theorem 4, which does not follow directly from
Theorem 1 and which improves Theorem 5.

Recall that if u is a C1-function in a neighbourhood of a point x 2 Rn, then, for each
j = 0Ò 1Ò    , the Taylor polynomial of order j at x is the polynomial

p(y) =
X
ãj�j

1
ã!

(] ãu)(x) Ð (y � x)ã

where ] ã denotes as usual the partial differentiation operator with multi-index ã.

THEOREM 6. Let X be a discrete set in an open subset Ω of Rn and for each x 2 X
let px be any harmonic polynomial whose degree we denote by jx. Then there exists a
function u 2 Har(Ω) such that at each x 2 X its Taylor polynomial of order jx is px.

The following Runge type lemma for harmonic functions is due to Walsh (see [9] and
[12]).

LEMMA 11 (RUNGE TYPE). Let W ² Ω be open subsets of Rn with ΩŁ nW connected.
Then, Har(Ω) is dense in Har(W).

The following assures us that if we can approximate, then we may simultaneously
approximate and interpolate.

LEMMA 12 (WALSH TYPE [7]). Suppose S is a dense subspace of a locally convex
linear topological space H. Then, for every h 2 H, neighbourhood U of zero in H, and
continuous linear functionals T1Ò    ÒTm on H, there is an s 2 S such that s 2 h + U and
Tj(s) = Tj(h), j = 1Ò    Òm.
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PROOF OF THEOREM 6. Let fΩkg
1
k=0 be a regular exhaustion of Ω by relatively

compact open sets. We may assume that X \ Ω0 = ;. We may also assume that

X \ (Ω̄2k+1 n Ω2k) = ;

for k = 0Ò 1Ò    . Thus, for each x 2 X, there is some k = kx such that

x 2 Ω2k n Ω̄2k�1

Hence, for each x 2 X we may choose a radius rx such that the closed balls B̄x of center
x and radius rx are mutually disjoint and B̄x ² Ω2kx n Ω̄2kx�1 . Set

Wk = Ω2k�1 [
[
fBx : kx = kg

and
Kk = Ω̄2k�2 [ (X \ Ω2k)

Let èk, k = 1Ò 2Ò    be any sequence of positive numbers whose sum converges.
Define a function h1 on W1 by setting h1 equal to any harmonic function on Ω1 and by

setting h1 = px on Bx for each x 2 Ω2 nΩ1. By the harmonic Runge lemma, the harmonic
functions on Ω3 are dense in the harmonic functions on W1. By the Walsh lemma, then,
there is a function u1 harmonic on Ω3 such that

ju1 � h1j Ú è1 on K1

and for each x 2 X \ Ω2,

] ãu1(x) = ] ãh1(x)Ò for jãj � jxÒ

It follows that at each x 2 X \Ω2 the Taylor polynomial of order jx of the function u1 is
px.

Next, define a function h2 on W2 by setting h2 = h1 on Ω3 and by setting h2 = px on
Bx for each x 2 Ω4 nΩ3. By the harmonic Runge lemma, the harmonic functions on Ω5

are dense in the harmonic functions on W2. By the Walsh lemma, then there is a function
u2 harmonic on Ω5 such that

ju2 � h2j Ú è2 on K2

and for each x 2 X \ Ω4,

] ãu1(x) = ] ãh1(x)Ò for jãj � jxÒ

It follows that at each x 2 X \Ω4 the Taylor polynomial of order jx of the function u2 is
px.

Proceeding by induction, we construct a sequence uk of functions with the following
properties:

1) uk is harmonic on Ω2k+1;
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2) juk � uk�1j Ú èk on Kk, for k = 2Ò 3Ò    ;
3) at each x 2 X \ Ω2k, the Taylor polynomial of order jx of the function u2 is px.
Since the series

P
èk converges, the sequence fukg is uniformly Cauchy on compact

subsets of Ω and hence converges to a function u which has the required properties. This
completes the proof.

We note here one of the differences between the holomorphic situation and the har-
monic one. Any complex polynomial is holomorphic, whereas not every real polynomial
is harmonic. Thus, we can specify any (complex) polynomials as the Taylor polynomials
of a holomorphic function at a discrete set of points. However, it can be shown that the
Taylor polynomial of a harmonic function must also be harmonic. Thus, the restriction
to harmonic polynomials in the preceding theorem is a necessary one.

COROLLARY 1. Let X be a discrete set in an open subset Ω of Rn and, for each x 2 X,
let yx be any real number. Then there exists a function u 2 Har(Ω) such that u(x) = yx

for each x 2 X.

THEOREM 7. Let X be a discrete set in an open subset Ω of Rn. For each x 2 X, let
sx be any singularity function at x and let px be any harmonic polynomial whose degree
we denote by jx. Then there exists a function u 2 Har(Ω n X) such that at each x 2 X the
function u � sx is harmonic and its Taylor polynomial of order jx is px.

PROOF. By Theorem 5, there is a function u1 2 Har(Ω n X) such that at each x 2 X
the function u1 � sx is harmonic. By Theorem 6, there is a function u2 2 Har(Ω) such
that at each x 2 X its Taylor polynomial of order jx is the same as that of px + sx � u1.
The function u = u1 + u2 has the required properties.

In (deleted) neighbourhoods of isolated singularities, harmonic functions have
Laurent-type expansions resembling those of holomorphic functions and Theorem 7
can be formulated in the same way as Theorem 4 was for holomorphic functions. One
can prove Theorem 4 in the same way as Theorem 7, replacing the harmonic Runge
theorem in the proof by the classical complex Runge theorem. In the special case where
Ω is a simply connected domain in the plane, Theorem 6 can also be deduced from
Theorem 4. However, for multiply connected plane domains, it is not clear that one
could deduce the harmonic case from the holomorphic one since a harmonic function in
a multiply connected domain need not be the real part of a (global) holomorphic function.
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